
Vol:.(1234567890)

Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694
https://doi.org/10.1007/s13198-023-02161-2

1 3

ORIGINAL ARTICLE

A comparative analysis of genetic algorithms on a case study
of asymmetric traveling salesman problem

Amit Raj1 · Parul Punia1 · Pawan Kumar1

Received: 8 April 2023 / Revised: 16 August 2023 / Accepted: 7 September 2023 / Published online: 7 October 2023
© The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and
The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2023

Abstract In the present paper, the genetic algorithm and
some of its variants i.e. adaptive genetic algorithm, binary-
coded genetic algorithm and real-coded genetic algorithm
are applied to the Asymmetric Traveling Salesman Prob-
lem (ATSP). ATSP is one of the most widely studied com-
binatorial NP-hard problems of finding the shortest path.
The present ATSP is a novel real-life case of the shortest
path problem based on the distances between 22 districts
of Haryana, India. To solve the above problem, one-point
crossover and exchange mutation are applied to compare
the performance of these algorithms on different parameters
such as the size of the population, the number of iterations,
and the rate of crossover. The main objective of this paper is
to study the influence of these parameters on ATSP. Numeri-
cal results show that the binary genetic algorithm worked
better in terms of the size of the population and the number
of iterations, while the real-coded genetic algorithm worked
better in terms of the rate of crossover.

Keywords Asymmetric traveling salesman problem ·
Genetic algorithms · Population size · Crossover

1 Introduction

The Traveling Salesman Problem (TSP) is a classical
optimization problem introduced by Bellmore and
Nemhauser (1968) that has gained recognition in the fields
of graph theory and operations research. This classic

problem entails finding the shortest route for a salesman
to visit a set of cities exactly once before returning to the
starting point. However, as the number of cities increases,
the complexity of the TSP grows exponentially, rendering
the search for optimal solutions computationally inefficient
and known for its complexity as it falls into the NP-hard
class (Gary and Johnson 1979).

Despite its notorious difficulty and classification as
NP-hard, TSP is one of the most widely studied problems
in computational mathematics across various domains
including vehicle routing (Adewumi and Adeleke 2018),
computer wiring, engineering design (Li et al. 2022),
machine sequencing (Raj and Bhattacharyya 2018;
Mahapatra et al. 2021; Dehedkar and Raj 2022; Mahapatra
and Raj 2023; Raj et al. 2023) and scheduling (Bansal
and Singh 2022), as well as frequency assignment in
communication networks.

Based on the structure of the distance matrix, the
TSP problem is divided into two types: symmetric and
asymmetric. The distance between any two cities is the
same, regardless of the order in which they are visited is
known as Symmetric Traveling Salesman Problem (STSP)
while the distance between two cities may differ depending
on the direction of travel is known as Asymmetric Traveling
Salesman Problem (ATSP). This study is focused on
solving ATSP. Mathematically, ATSP is represented as
d(i, j) ≠ d(j, i) , where d(i, j) represents the distance from
city i to city j, and d(j, i) represents the distance from city
j to city i.

The primary objective of the ATSP is to find the most
efficient tour that allows a traveling salesman to visit each
city exactly once and return to the starting point, considering
the asymmetrical distances. There are some exact methods
such as branch and cut (Ascheuer et al. 2000), etc in the
literature for solving ATSP problems, but all of them have

 * Pawan Kumar
 drpawan@cuh.ac.in; chhoker.pawan@rediffmail.com

1 Department of Mathematics, Central University of Haryana,
Jant-Pali, Mahendergarh, Haryana 123031, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-023-02161-2&domain=pdf
http://orcid.org/0000-0003-4140-1006

2685Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694

1 3

exponential complexity, need too much computation time, or
use too much memory to obtain the optimal solution.

In contrast to exact algorithms, new metaheuristic
approaches are being utilized to address the NP-hard ATSP.
Some of these approaches include the genetic algorithm
(Nagata and Soler 2012), harmony search algorithm
(Boryczka and Szwarc 2019), discrete bat algorithm (Osaba
et al. 2016), discrete water cycle algorithm (Osaba et al.
2018) and discrete mayfly algorithm (Zhang et al. 2023).

Even though these metaheuristic algorithms have been
applied to the ATSP, there is a gap in the existing literature
when it comes to comparing various variants of the genetic
algorithm (GA) against the standard GA on real-life instances
of the ATSP. This research gap highlights the need for a com-
prehensive study that systematically evaluates and compares
the performance of various GA variants on a real-life ATSP.

Genetic algorithms (Goldberg 1989; Deepa 2008; Katoch
et al. 2021) belong to the larger class of evolutionary algo-
rithms inspired by biological evolution. Holand’s GA (1970)
is a powerful optimization technique that generates solutions
to optimization problems using natural selection and genet-
ics techniques. These algorithms are typically quite simple
and have a quick processing time. As a result, using genetic
algorithms and their variants to solve an NP-hard problem
such as ATSP may be appropriate. That is why, this study
is focused on evaluating the performance of simple GA and
its variants i.e., adaptive genetic algorithm (AGA), binary-
coded genetic algorithm (BGA), and real-coded genetic
algorithm (RCGA). This evaluation is carried out on a real-
life ATSP problem involving 22 districts of Haryana, India.

The main contributions of this research are as follows:

• A novel real-life ATSP problem is formulated by using
22 districts of Haryana, India.

• Some Variants of the GA algorithm have been applied to
the formulated ATSP problem in MATLAB.

• one-point crossover and exchange mutation are two
genetic operators used in this study.

• A comparative analysis has been carried out to evaluate
the performance of GAs on different parameters such as
the size of the population, the number of iterations, and
the rate of crossover.

• The evaluated results show that the binary genetic algo-
rithm worked better in terms of the size of the population
and the number of iterations, while the real-coded genetic
algorithm worked better in terms of the rate of crossover.

The subsequent sections of the paper are structured as fol-
lows: Sect. 2 explains the related work on the ATSP prob-
lem. Section 3 introduces the real-life ATSP problem. Sec-
tion 4 presents the mechanism of the genetic algorithms.
Section 5 presents the genetic operators of GAs. Section 6
presents the implementation of GAs on formulated ATSP.

Section 7 contains the results and discussion. Finally, Sect. 8
presents the conclusion of the paper.

2 Related work

Over the past fifty years, researchers have developed
numerous algorithms, both exact and heuristic, to solve TSP.
Balas and Christofides (1981) came up with a new approach
called the restricted Lagrangean algorithm to solve TSP by
adding linear inequalities to the constraints in a clever way.
Deep et al. (2018) modeled a traveling salesman problem
involving seven cities connected by Indian railways. To solve
this problem, a genetic algorithm (GA) is employed with the
fourth variant of order crossover (OX4) as proposed in Deep
and Mebrahtu’s work and two mutation operators, namely
inversion mutation and inverted displacement mutations,
were incorporated.

For more surveys on solution methods for the TSP, the
reader may refer to Fiechter (1994), Carpaneto et al. (1995),
Potvin (1996), and Larranaga et al. (1999). We also strongly
recommend Tawhid and Savsani (2019), Akhand et al.
(2020), Li et al. (2023), Rocha and Subramanian (2023), and
Mzili et al. (2023). These algorithms encompass iterative
improvement methods, construction procedures, branch-and-
bound exact algorithms, as well as popular meta-heuristic
approaches like Ant Colony (AC), Genetic Algorithm (GA),
Tabu Search (TS), Sine-Cosine Algorithm and Artificial rat
optimization algorithm.

Exact and metaheuristic algorithms have been proposed
for both symmetric TSP and asymmetric TSP cases but this
study is focusing on the ATSP problem. Pekny and Miller
(1990) introduced a parallel branch and bound algorithm to
solve the ATSP problem. The algorithm employs various
techniques, including an assignment problem-based lower
bounding technique, subtour elimination branching rules,
and a subtour patching algorithm for upper bounding.
Ascheuer et al. (2000) introduced a branch and cut algorithm
for ATSP with precedence constraints. Apart from these
exact algorithms, researchers have also successfully applied
meta-heuristic methods to solve the ATSP.

Buriol et al. (2004) proposed a new memetic algorithm
designed specifically to solve ATSP. The algorithm includes
a new and effective local search called the recursive arc
insertion (RAI) mechanism along with various innovative
features. These features encompass a complete ternary tree
structure with thirteen nodes to organize the population
topologically, a hierarchical organization of overlapping
clusters leading to a unique selection scheme, and the
implementation of efficient data structures.

Majumdar and Bhunia (2011) introduced a novel
GA approach to address a realistic version of the ATSP
focused on time minimization. The problem incorporates

2686 Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694

1 3

inter-city travel times represented as intervals and the
approach is designed by combining local GA (LGA) and
Global GA (GGA). GGA is employed to search for global
optima within the main tours, while the LGA is specifically
applied to randomly selected sub-tours derived from the
main tour obtained by GGA. This use of LGA allows for
the exploration of local optimal solutions within the sub-
tours, contributing to improved overall performance. Nagata
and Soler (2012) came up with a new operator called the
edge assembly crossover (EAX) operator to modify GA and
applied it to an ATSP problem.

Osaba et al. (2018) introduced a discrete version of the
Water Cycle Algorithm (DWCA) tailored for efficiently
solving two well-known optimization problems: TSP and
ATSP. DWCA retains its inspiration from hydrological
phenomena but incorporates novel elements to address
these routing problems effectively. The algorithm uses the
Hamming distance to measure differences between routes
found during the search process, adapts the movement
function based on the estimated inclination of the river, and
employs an insertion-based mutation operator that emulates
evaporation and raining processes in the discrete solution
space encoded by permutations.

Zhang et al. (2023) proposed a Discrete Mayfly Algorithm
(DMA), a swarm-based metaheuristic, specifically designed
for the spherical ATSP. The DMA utilizes various operators,
including inver-over, crossover, and 3-opt, to simplify
parameters, enhance population diversity, and improve local
search capabilities.

3 Problem statement

The TSP has numerous real-world applications across
various domains, including logistics, transportation,
manufacturing, and network routing. In road networks, it
is common for the travel distance between two locations
to be different in opposite directions due to factors like
road conditions, traffic flow, and road restrictions. This
asymmetry in travel distances creates a more complex
and challenging problem, making it essential to explore
specialized algorithms to address such real-life scenarios.
In this specific case, solving the ATSP for the 22 districts
of Haryana, India has different distances between nodes
in both directions, which is of great importance in various
scenarios, such as logistics, transportation planning, and
resource allocation.

The state of Haryana, with its 22 districts, represents a sig-
nificant geographical area with various important locations

that require efficient visitation by a traveling salesman. By for-
mulating this problem as an ATSP and using real-world data
extracted from Google Maps, we can model and evaluate the
most efficient routes for the salesman to visit all the districts
while minimizing the overall travel distance. This analysis
can lead to insights and decision-making tools that can ben-
efit businesses, government agencies, and other organizations
operating in Haryana. With this context in mind, 22 districts
of Haryana, India modeled as an ATSP problem in the study.

Each district is represented by a node and is numbered from
1 to 22. Also, the shortest distance between node 1 to node 2 is
not always the same as the distance between node 2 to node 1.
In matrix notation of this ATSP, the entries above the diagonal
represents the maximum distance between the nodes and the
entries below the diagonal represents the minimum distance
between them. Faridabad, Gurugram, Panchkula, Karnal,
Hisar, Panipat, Ambala, Kurukshetra, Rohtak, Jind, Rewari,
Jhajjar, Kaithal, Bhiwani, Fatehabad, Sirsa, Yamunanagar,
Sonipat, Palwal, Mahendergarh, Charkhi Dadri, and Nuh
are the 22 districts of Haryana represented by nodes 1 to 22
respectively. The data used in the present study is taken from
Google Maps and is presented in Table 1. By exploring this
formulated problem, we aim to compare different GA variants
and assess their performance in finding the most efficient
routes for a salesman to visit all the districts in Haryana, India
while minimizing the overall travel distance.

4 Genetic algorithms

In this section, we discuss genetic algorithm (or simple
genetic algorithm) and some of its variants, i.e., adaptive
genetic algorithm, binary-coded genetic algorithm, and real-
coded genetic algorithm. Since GAs are the most popular
algorithms, we just introduce the basic working principles of
these algorithms.

4.1 Simple genetic algorithm (SGA)

The mechanism of simple genetic algorithm is very simple,
involving copying and exchanging bits of partial strings.
Reproduction, crossover, and mutation are three operations
in the algorithm. Depending on the fitness value of the
chromosome, a reproduction operator is applied to generate
parent chromosomes or strings. After that, offspring are
produced by applying a crossover operator to the parent
chromosomes and then a mutation operator is used to keep
the population diverse. A Pseudo Code is used to summarise
the steps involved in the process of SGA is given below:

2687Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694

1 3

Algorithm 1 Simple Genetic Algorithm (SGA)

1: Initialize the parameters such as Population size, crossover probability, and
mutation probability.

2: Generate an initial population
3: Calculate the objective function (or fitness) of the chromosomes
4: Choose the individuals with higher fitness values to have a greater chance

of surviving in the next generation (Selection Process)
5: Perform Crossover operator
6: Perform Mutation operator
7: Calculate the fitness value
8: Update best candidate solution
9: Output best candidate solution obtained by SGA

4.2 Binary coded genetic algorithm (BGA)

Depending upon the representation of the chromosomes
genetic algorithm can be classified into binary genetic
algorithm and real coded genetic algorithm. The
chromosomes in binary coded genetic algorithm are encoded
in the string of bits 0 and 1. The length of bit string is kept

fixed. Then suitable crossover and mutation operators are
applied on the population. To perform mutation random
number for each bit of the string is generated and its value
are swapped 0 for 1 and vice-versa. After obtaining the
solutions they are then again converted into actual values.
For more details about the algorithm, go through the paper
(Kim et al. 2002; Mohebifar 2006).

Table 1 The formulated asymmetric travelling salesman problem is in matrix form

Cities 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0 45 295 169 239 136 296 208 119 201 98 88 224 157 290 310 264 92 36 148 135 81
2 39 0 315 190 176 152 273 228 81 162 68 47 209 122 240 268 269 112 82 113 95 66
3 287 293 0 123 247 194 49 97 257 205 340 298 126 283 241 282 96 255 358 330 294 359
4 160 157 123 0 173 46 81 36 145 103 211 158 79 163 179 224 77 113 257 227 202 234
5 208 166 241 154 0 176 210 185 113 74 185 132 127 81 64 98 239 166 243 136 110 223
6 128 136 157 35 143 0 150 95 94 91 175 123 97 134 182 224 113 74 214 190 156 196
7 249 253 42 81 199 117 0 50 216 139 297 246 87 245 205 240 81 196 334 310 252 353
8 198 209 90 35 167 72 50 0 162 114 248 195 69 199 195 222 53 158 287 265 239 306
9 111 79 236 114 101 76 196 150 0 83 100 45 133 76 168 210 210 50 150 110 66 123
10 164 155 180 83 71 71 139 102 67 0 173 120 74 91 122 149 158 107 229 170 102 206
11 89 54 327 203 158 165 287 240 89 161 0 58 227 99 234 278 277 121 93 55 70 51
12 84 44 278 153 120 119 236 187 36 108 52 0 174 78 181 225 223 85 116 81 43 92
13 216 200 121 62 116 81 80 51 118 56 215 161 0 140 133 156 120 139 269 208 169 252
14 151 110 248 151 62 113 207 182 50 69 97 65 125 0 132 182 228 108 185 68 29 168
15 260 218 216 170 50 167 197 165 151 98 226 172 114 115 0 41 237 189 290 189 157 274
16 306 264 281 212 93 214 234 206 193 141 274 217 156 156 41 0 258 259 334 225 207 316
17 232 237 92 64 219 100 60 45 179 146 274 218 99 217 216 258 0 178 306 285 250 300
18 87 86 206 81 149 49 164 117 47 83 114 61 127 104 182 228 146 0 155 155 115 129
19 31 54 353 196 226 197 278 233 139 217 80 100 262 169 276 322 295 146 0 148 151 36
20 144 107 316 207 129 169 274 244 96 136 55 65 193 68 182 225 272 135 133 0 40 132
21 129 87 278 166 90 129 236 207 56 98 68 43 154 29 139 186 232 99 145 40 0 129
22 59 47 323 212 208 180 295 253 122 198 47 81 244 150 257 303 282 129 36 104 117 0

2688 Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694

1 3

4.3 Real coded genetic algorithm (RCGA)

Real coded genetic algorithm (Goldberg 1991) has strings
made of real numbers unlike those of binary coded genetic
algorithm and also takes the operators reproduction,
crossover and mutation of real vectors. Hence, the
representation of the chromosomes is very close to natural
formulation of many problems and by the use of real
parameters large and continuous domains can be easily
searched as RCGA works well with the continuous space.
The chromosomes in RCGA are bounded depending on
the variables they represent. For more details about the
algorithm, go through the paper (Eshelman and Schaffer
1993; Singh et al. 2015; Ali et al. 2018; Wang et al. 2019).

4.4 Adaptive genetic algorithm (AGA)

The basic idea behind adaptive genetic algorithm (Lin 2009)
was to prevent pre-mature convergence of the algorithm
arising due to lack of diversity in the population and
unbalanced exploration and exploitation rate. In AGA, the
parameters like population size, crossover and mutation rate
are varied while the GA is still running so as to maintain
diversity and exploitation and exploration rate in the
population. For more details about the algorithm, go through
the paper (Wang et al. 2008; Saptarini et al. 2020).

5 Genetic operators

In this section, we discuss the essential genetic operators
used in genetic algorithms: encoding, selection, crossover,
and mutation. Each of these operators plays a crucial
role in shaping the algorithm’s efficiency, convergence,
and exploration of the solution space. By applying these
operators intelligently, we aim to find the most efficient
routes for a traveling salesman to visit all the districts,
thereby minimizing the overall travel distance and
optimizing the solution.

5.1 Encoding or design the chromosome

A population is an accumulation of chromosomes. Each
chromosome represents a possible solution and contains
several genomes. An algorithm’s efficiency and processing
power rely on the encoding of a problem. Designing
a chromosome to represent a problem is a significant
architectural decision in the algorithm. So, the primary
focus is to design the chromosomes so that they can have
a considerable influence on processing speed, convergence,
and the overall ease of crossover and mutation. In addition
to being the most effective and efficient method for
encoding parameters into chromosomes, the representation’s

underlying shape is also crucial. It is also important that
the values of a chromosome are a solution’s parameters,
and they must always be accompanied by an evaluation
process that uses the parameters to determine the system’s
aspect or conclusion. Given the value of the chromosome’s
parameters, the fitness function measures how much this
outcome is a better or worse solution.

5.2 Selection operator

Selection operator chooses the best possible chromosomes
from the existing population to create the next generation. In
various situations, a distinct selection procedure is utilized for
the purpose of picking the population of the healthiest indi-
viduals, parents, or chromosomes for crossover or mutation.

5.3 Crossover

Crossover is the process of making new solutions from
solutions that already exist. It is a form of reproduction
through sexual means. To generate superior offspring, a
random selection is made from the mating pool to choose
two different string combinations to crossover. The approach
that is selected is determined by the encoding method.

5.4 Mutation

Mutation is a small random change in the chromosome
to produce a new solution. Crossover breeding can often
provide too much variability, making it difficult to fully
explore the underlying solution space. To maintain the
diversity in the population, a mutation operator is used.

6 Implementation

In Sect. 4, the basic ideas of genetic algorithms were
introduced. In this section, we will discuss the actual
working & the time and space complexity of various genetic
algorithms to solve the formulated ATSP problem.

6.1 Basic steps of algorithms

The various steps of implementation of genetic algorithms
to our real-life problem are as follows:

Generate the initial population Generate a random initial
population of potential solutions, where each chromosome
represents a valid tour visiting all 22 districts exactly once.
Each chromosome is a permutation of the numbers from 1
to 22, representing the order of city visits.

2689Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694

1 3

Fitness Value Define the fitness function to calculate the
total distance of each tour in the population. The fitness
value of each individual (chromosome) is the sum of the
distances between consecutive cities based on the matrix
notation. The fitness value represents the length of the
tour, and it should be used to compute the fitness score
for selection. The fitness value can be calculated using the
formula,

where aij is the distance between the two adjacent cities i
and j of the tour.

Selection Operator The roulette wheel selection operator
is used in this work for selecting the parent chromosomes.
The value of the fitness function and the corresponding
probability of every individual is calculated. Each individual
is assigned a portion of the wheel. Each roulette wheel slice’s
size corresponds exactly to its fitness value. According to
fitness value, an individual has a higher chance of being
selected i.e., Individual with higher fitness value have more
chances of selection. The wheel slice is calculated as

where

FR is the reversed magnitude fitness function, Fj is the
fitness of the jth chromosome, Fk is the fitness of the
kth chromosome, Fmax is the maximum fitness out of all
the population’s chromosomes, and N is the number of
chromosomes in the population.

Crossover In this work, a one-point crossover operator is
used to create offspring. In this crossover operator, one cut
point is selected randomly at the same position from both the
parent chromosomes and the right (left) section of the points
is exchanged resulting in the formation of two offspring.

Mutation Exchange mutation (Banzhaf 1990) is used in
the work to avoid premature convergence by giving new
paths. The exchange mutation operator randomly selects
two cities in the tour and exchanges them.

Termination condition The termination condition (or
stopping criteria) is to stop the process of the genetic
algorithms. The algorithm finds better solutions after a few
iterations but this tends to stop working in the later phases
when the changes aren’t as large. So, we need to stop the
process to make sure that the solution is close to the best
one. In most cases, we preserve one of the following criteria
for termination:

(1)FIndividual =

22
∑

i,j=1

aij

(2)Ws =
FR

∑N

j=1
FR
j

(3)FR = (Fmax − Fk) + 1,

(a) When there hasn’t been any change in the population
for a while.

(b) When we have reached a certain, predetermined
number of generations.

(c) When the objective function has attained a certain value
that has already been set.

The number of iterations is used as a termination condition
in this study.

6.2 Time and space complexity

The time complexity of the SGA algorithm as per the steps
mentioned will be as under:

Initialization The initialization step involves setting
up the parameters such as population size, crossover
probability and mutation probability. So, it has a constant
time complexity O(1).

Generate an Initial Population Generating the initial
population involves creating a fixed number of candidate
solutions, which typically have a linear time complexity
O(n).

Calculate the Objective Function Evaluating the objective
function for each candidate solution in the population
requires calling the function n times. Thus, the time
complexity for this step is O(n).

Selection Process Fitness proportionate selection or
roulette wheel selection can be implemented efficiently
with a linear time complexity of O(n). The process involves
calculating the cumulative fitness and selecting individuals
accordingly.

Crossover Operator The time complexity of a one-point
crossover operator depends on the size of the candidate
solution representation and hence the time complexity can
be approximated as O(n).

Mutation Operator The exchange mutation operation also
depends on the size of the candidate solution representation.
So, the time complexity can be approximated as O(n).

Update Best Candidate Solution Updating the best
candidate solution involves comparing the fitness of newly
generated individuals to determine the best. This step has a
linear time complexity O(n).

Output Best Candidate Solution The output step has a
constant time complexity O(1) as it involves returning the
best candidate solution found.

The overall time complexity of the SGA can be
approximated as the sum of the complexities of each step.
So, the SGA’s overall expected time complexity is
is O(1)+O(n)+O(n)+O(n)+O(n)+O(n)+O(n)+O

(1)= 2×O(1)+6×O(n) ∼∼∼ O(n). .

Similarly, the overall time complexity of the AGA, BGA
and RCGA can be approximated as O(n2).

2690 Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694

1 3

7 Results and discussion

In this section, we evaluate the performance of the SGA,
AGA, BGA and RCGA approaches to obtain the optimal
solution. The discussed algorithms were implemented in
MATLAB R2021b, and their performances were tested using
a laptop (computer) core i5-11300 H CPU @ 3.10GHz, with
16 GB of RAM. The performance of these four algorithms
is analyzed by varying the parameters like population size,
crossover and iteration. The results obtained by these algo-
rithms on various parameters are listed in Table 2. Each
algorithm is performed 20 times to obtain the minimum dis-
tance (Best value), the mean value, the standard deviation
(S.D.) and the estimated time (ET).

In evolutionary computation, one of the most impor-
tant factors to think about is an algorithm’s population size
(Mora-Melia et al. 2017) as it has a big effect on how well
and quickly an algorithm works. So, it is foremost to inves-
tigate the performance of various genetic algorithms (SGA,
AGA, BGA, RCGA) with fixed crossover and mutation at
different population sizes. Figure 1 shows the performance
of various GAs at different population sizes. The results are
performed at fixed crossover, mutation, and iteration rates of
90, 5, and 100 respectively to evaluate the influence of the
population size on these algorithms.

When the population size (p) increases, the minimum
distance in each algorithm also increases. As we can see,
in SGA at p = 100, p = 150, p = 200, and p = 300, the
minimum distance is 2139.2, 2143.45, 2150.8, and 2235.9,
respectively. Also, at p = 100, p = 150, p = 200, and p =
300 in the BGA, the minimum distance is 2002.05, 2019.1,
2067.6 and 2111.7 respectively. Similarly, in AGA and
RCGA, as the population size increases, so does the mini-
mum distance. So, the behavior of all of these algorithms Ta

bl
e

2
 St

at
ist

ic
al

 re
su

lts
 o

f c
om

pa
re

d
al

go
rit

hm
s f

or
 fo

rm
ul

at
ed

 p
ro

bl
em

SG
A

A
G

A

B
G

A
RC

G
A

M
ea

n
S.

D
.

B
es

t V
al

ue
ET

M
ea

n
S.

D
.

B
es

t V
al

ue
ET

M
ea

n
S.

D
.

B
es

t V
al

ue
ET

M
ea

n
S.

D
.

B
es

t V
al

ue
ET

T
=
1
0
0

20
44

.1
5

12
6.

67
18

14
3.

52
20

09
.3

5
19

5.
13

16
17

67
2.

75
19

84
.9

11
8.

24
17

42
13

.7
5

19
14

.9
5

18
4.

98
14

48
17

.1
3

T
=
2
0
0

17
92

.0
5

10
5.

52
16

21
6.

45
18

22
.3

14
5.

86
15

01
5.

96
16

92
.3

10
5.

06
15

27
25

.3
5

16
69

.6
13

7.
69

14
11

30
.1

2
T
=
3
0
0

16
53

.7
14

5.
54

14
07

9.
47

16
85

.6
5

12
5.

02
14

38
8.

50
15

78
.9

5
95

.7
4

13
89

29
.4

1
15

92
.3

11
8.

19
13

68
37

.1
4

T
=
5
0
0

15
39

.1
5

14
2.

20
12

64
15

.7
2

15
91

.2
94

.5
2

14
20

19
.6

1
15

17
.5

95
.7

2
13

20
35

.4
1

15
21

.8
11

4.
78

13
22

45
.2

0
P
=
1
0
0

21
39

.2
15

9.
11

18
81

4.
43

21
51

.6
12

9.
36

19
44

3.
29

20
02

.0
5

13
9.

92
17

21
16

.1
3

20
76

.5
5

17
2.

29
17

33
17

.7
4

P
=
1
5
0

21
43

.4
5

15
6.

45
18

18
5.

53
21

80
.3

5
17

2.
33

18
19

4.
61

20
19

.1
13

8.
07

17
68

22
.2

2
21

43
.4

5
17

1.
78

18
13

23
.1

0
P
=
2
0
0

21
50

.8
15

8.
25

17
20

6.
36

21
99

.1
5

16
7.

74
19

61
6.

03
20

67
.6

13
5.

37
18

56
28

.4
8

21
39

.9
17

1.
55

17
54

32
.1

7
P
=
3
0
0

22
35

.9
16

1.
18

19
77

8.
11

21
50

.4
12

6.
11

18
66

10
.7

5
21

11
.7

14
8.

89
19

26
35

.2
6

22
43

.1
5

14
9.

88
19

26
45

.8
5

C
=
2
5

16
81

.1
5

15
5.

07
13

80
21

.8
5

16
54

12
8.

60
13

45
2.

29
21

02
.1

5
13

4.
73

18
48

13
.0

4
16

13
.1

13
8.

31
13

76
22

.1
7

C
=
5
0

16
06

.8
5

12
4.

97
14

04
15

.2
7

15
97

.9
5

11
5.

93
14

31
2.

87
20

76
.4

14
2.

43
17

76
13

.8
5

14
91

.5
13

2.
55

12
91

27
.8

8
C
=
7
5

16
23

.6
5

13
8.

22
13

47
29

.4
1

16
37

.6
5

13
3.

43
14

07
3.

51
19

85
.1

5
15

8.
64

17
01

14
.6

2
15

15
.9

12
3.

29
13

12
31

.1
2

C
=
9
5

16
17

.7
5

12
9.

63
14

33
20

.9
6

15
63

.9
10

6.
07

13
05

4.
37

20
16

.2
5

14
2.

61
17

95
15

.6
3

15
44

.2
95

.5
5

13
18

35
.1

3

100 120 140 160 180 200 220 240 260 280 300

Population size

2000

2050

2100

2150

2200

2250

D
is

ta
nc

e

SGA
AGA
BGA
RCGA

Fig. 1 Shortest distance of different algorithms at different popula-
tion size

2691Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694

1 3

appears to be similar as the minimum distance increases
with population size. It means that to find the minimum
distance, we have to consider the smallest population size.
Therefore, the performance of these algorithms is analyzed
at a population size of 100 to see which one provides a bet-
ter optimal solution. At p = 100, the minimum distances
of SGA, AGA, BGA, and RCGA are 2139.2, 2151.6,
2002.05, and 2076.55, respectively. In this case, BGA pro-
vides a better optimal solution (minimum distance) with
a path 4 → 17 → 7 → 9 → 18 → 1 → 22 → 20 → 15 → 16 → 5
→ 12 → 11 → 14 → 19 → 2 → 21 → 10 → 6 → 8 → 13 → 3..

Now we investigate the effect of iteration on these
algorithms by varying the size in the range of 100–500.
The higher iteration size increases the chance of getting
a better solution as the solution space is searched more
thoroughly. With each passing iteration, the bad quality
solutions get discarded, and the better solutions participate
in the search process. To investigate the performance of
various genetic algorithms, the results are performed at
fixed rate of crossover, mutation, and population size of
50, 10, and 100 respectively. Figure 2 shows that when the
iteration increases, the minimum distance in each algo-
rithm decreases. In SGA, at iteration = 100, 200, 300, and
500, the minimum distances are 2044.15, 1792.05, 1653.7,
and 1539.15, respectively. In AGA, at iteration = 100,
200, 300, and 500, the minimum distances are 2009.35,
1822.3, 1685.65,and 1591.2 respectively. Similarly in
other algorithms, as iteration increases, the minimum dis-
tance decreases. So, the behavior of all of these algorithms
appears to be similar as the minimum distance decreases
with increasing of iteration. It means that to find the mini-
mum distance, we have to consider the higher iteration.

Therefore, the performance of these algorithms is ana-
lyzed at the iteration, 500 to see which one provides a

better optimal solution. At iteration = 500, the minimum
distance of SGA, AGA, BGA, and RCGA is 1539.15,
1591.2, 1517.5, and 1521.8 respectively. In this case,
BGA provides a better optimal solution (minimum dis-
tance). So, in all of these algorithms, BGA also gives
a better optimal solution in terms of iteration with a
p a t h 10 → 14 → 21 → 20 → 19 → 1 → 2 → 22 → 11 → 12 → 9

→ 18 → 6 → 5 → 16 → 15 → 17 → 7 → 3 → 4 → 8 → 13.

Now we investigate the effect of crossover on vari-
ous genetic algorithms analyzed by varying it. It is well
known that the selection of crossover rate is crucial to the
effectiveness of genetic algorithms. In the past, various
research have been worked on determining optimal crosso-
ver or mutation rates which is still a problem as it depends
on problems and even for different stages of the genetic
process. So, here we applied various genetic algorithms on
our problem to see the effect of the rate of crossover. The
results are performed at fixed iteration (100), population
size (100) and mutation rate (5) with crossover rates of 25,
50, 75, and 95, i.e., crossover probability 0.25, 0.50, 0.75,
0.95. The performance of these algorithms is analyzed
using Fig. 3 to see which one provides a better optimal
solution in terms of crossover rate.

At crossover = 25, the minimum distance for SGA,
AGA, BGA, and RCGA, respectively, is 1681.15,
1654, 2102.15, and 1613.1. In this case, RCGA
provides a better optimal solution (minimum distance).
Similarly, at the rate of crossover = 50, the minimum
distances of SGA, AGA, BGA, and RCGA are 1606.85,
1597.95, 2076.4 and 1491.5 respectively. In this case,
RCGA also provides a better optimal solution. As a
result, RCGA provides a better optimal solution in
all these algorithms in terms of crossover with a path
15 → 4 → 3 → 13 → 16 → 21 → 11 → 19 → 8 → 22 → 9

→ 2 → 17 → 7 → 1 → 5 → 12 → 18 → 10 → 14 → 6 → 20.

100 150 200 250 300 350 400 450 500

ITERATION

1500

1600

1700

1800

1900

2000

2100
D
IS
T
A
N
C
E

COMPARISION

SGA
AGA
BGA
RCGA

Fig. 2 Shortest distance of different algorithms at different iteration

20 30 40 50 60 70 80 90 100

Crossover rate

1400

1500

1600

1700

1800

1900

2000

2100

2200

D
is

ta
nc

e

SGA
AGA
BGA
RCGA

Fig. 3 Shortest distance of different algorithms at different crossover

2692 Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694

1 3

Fig. 4 Highlighted the shortest path in a formulated ATSP problem

2693Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694

1 3

The results discussed above are based on their mean
and standard deviation values. However, the best minimum
distance is 1264 provided by the SGA at iteration 500 and
the corresponding path has been highlighted in Fig. 4.

8 Conclusion

In the present work, we have discussed genetic algorithm
and its variants on a asymmetric TSP as our aim was to com-
pare the quality of solutions at different parameters. Based
on the results of various GAs on the given ATSP, the real-
coded genetic algorithm is superior in terms of the rate of
crossover. The binary genetic algorithm performs better in
finding the optimal solution in terms of iteration and popula-
tion size. The major and minor variations in the distance are
observed in the parameters such as size of population and
the number of iterations. This study presents a compara-
tive analysis of various genetic algorithms on ATSP, which
is realistic and relevant for GA’s adaptability in real-world
applications. Also, this study suggests various research
directions for future research, one of which involves devel-
oping hybrid or improvement versions of GA to apply the
ATSP problem.

Acknowledgements The first author is extremely grateful to the
Council of Scientific & Industrial Research (CSIR) for providing Junior
Research Fellowship (JRF) with file number 09/1152(0024)/2020-
EMR-1 and encouragement, which made this research possible.

Declarations

Conflict of interest There are no conflicts of interest to disclose by
the authors in relation to the current study.

Ethical approval The author did not conduct any studies involving
human participants or animals for this article.

Informed consent All the authors have approved the manuscript and
agree with its submission to the International Journal of System Assur-
ance Engineering and Management.

References

Adewumi AO, Adeleke OJ (2018) A survey of recent advances in vehi-
cle routing problems. Int J Syst Assur Eng Manage 9:155–172

Akhand MAH, Ayon SI, Shahriyar SA, Siddique N, Adeli H (2020)
Discrete spider monkey optimization for travelling salesman prob-
lem. Appl Soft Comput 86:105887

Ali MZ, Awad NH, Suganthan PN, Shatnawi AM, Reynolds RG (2018)
An improved class of real-coded genetic algorithms for numerical
optimization. Neurocomputing 275(1):155–166

Ascheuer N, Junger M, Reinelt G (2000) A branch & cut algorithm
for the asymmetric traveling salesman problem with precedence
constraints. Comput Optim Appl 17:61–84

Balas E, Christofides N (1981) A restricted Lagrangean approach to the
traveling salesman problem. Math Program 21(1):19–46

Bansal N, Singh AK (2022) Valuable survey on scheduling algorithms
in the cloud with various publications. Int J Syst Assur Eng Manag
13(5):2132–2150

Bellmore M, Nemhauser GL (1968) The traveling salesman problem:
a survey. Oper Res 16(3):538–558

Boryczka U, Szwarc K (2019) The harmony search algorithm with
additional improvement of harmony memory for asymmetric
traveling salesman problem. Expert Syst Appl 122:43–53

Buriol L, Franca PM, Moscato P (2004) A new memetic algorithm for
the asymmetric traveling salesman problem. J Heurist 10:483–506

Carpaneto G, Dell’Amico M, Toth P (1995) Exact solution of large-
scale, asymmetric traveling salesman problems. ACM Transact
Math Softw (TOMS) 21(4):394–409

Deep K, Mebrahtu H, Nagar AK (2018) Novel GA for metropolitan sta-
tions of Indian railways when modeled as a TSP. Int J Syst Assur
Eng Manage 9:639–645

Deepa SN (2008) Introduction to genetic algorithms. Springer, Berlin
Dehedkar SN, Raj S (2022) Determination of optimal location and

implementation of solar photovoltaic system using ETAP. In: 2022
IEEE 2nd International Symposium on Sustainable Energy, Signal
Processing and Cyber Security (iSSSC). IEEE, pp 1–4

Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and
interval-schemata. Found Genet Algorithm 2(1):187–202

Fiechter CN (1994) A parallel tabu search algorithm for large traveling
salesman problems. Discret Appl Math 51(3):243–267

Gary MR, Johnson DS (1979) Computers and intractability: a guide to
the theory of NP-completeness

Goldberg DE (1989) Genetic algorithms in search, optimization and
machine learning. Addison Wesley, Reading

Goldberg DE (1991) Real-coded genetic algorithms, virtual alphabeths,
and blocking. Complex Syst 5(1):139–167

https:// www. google. com/ maps/@ 29. 28292 9,76. 02653 2,8z
Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm:

past, present, and future. Multimed Tools Appl 80(5):8091–8126
Kim JW, Kim SW, Park P, Park TJ (2002) On the similarities between

binary-coded GA and real-coded GA in wide search space. Proc
2002 Congress Evoluti Comput 1(2):681–686

Larranaga P, Kuijpers C, Murga R (1999) Genetic algorithms for the
travelling salesman problem: a review of representations and
operators. Artif Intell Rev 13(2):129–170

Li K, Zhuo Y, Luo X (2022) Optimization method of fuel saving and
cost reduction of tugboat main engine based on genetic algorithm.
Int J Syst Assur Eng Manage 13(1):605–614

Li W, Wang C, Huang Y, Cheung YM (2023) Heuristic smoothing ant
colony optimization with differential information for the traveling
salesman problem. Appl Soft Comput 133:109943

Lin C (2009) An adaptive genetic algorithm based on population diver-
sity strategy. In: 2009 Third International Conference on Genetic
and Evolutionary Computing, pp 93–96

Mahapatra S, Dey B, Raj S (2021) A novel ameliorated Harris hawk
optimizer for solving complex engineering optimization problems.
Int J Intell Syst 36(12):7641–7681

Mahapatra S, Raj S (2023) A novel meta-heuristic approach for opti-
mal RPP using series compensated FACTS controller. Intell Syst
Appl 18:200220

Majumdar J, Bhunia AK (2011) Genetic algorithm for asymmetric
traveling salesman problem with imprecise travel times. J Comput
Appl Math 235(9):3063–3078

Mohebifar A (2006) New binary representation in genetic algorithms
for solving TSP by mapping permutations to a list of ordered
numbers. WSEAS Transact Comput Res 1(2):114–118

Mora-Melia D, Martinez-Solano FJ, Iglesias-Rey PL, Gutierrez-Baha-
mondes JH (2017) Population size influence on the efficiency of
evolutionary algorithms to design water networks. Procedia Eng
100(186):341–348

https://www.google.com/maps/%4029.282929,76.026532,8z

2694 Int J Syst Assur Eng Manag (December 2023) 14(6):2684–2694

1 3

Mzili T, Mzili I, Riffi ME (2023) Artificial rat optimization with deci-
sion-making: a bio-inspired metaheuristic algorithm for solving
the traveling salesman problem. Decis Making Appl Manage Eng

Nagata Y, Soler D (2012) A new genetic algorithm for the asymmetric
traveling salesman problem. Expert Syst Appl 39(10):8947–8953

Osaba E, Del Ser J, Sadollah A, Bilbao MN, Camacho D (2018) A
discrete water cycle algorithm for solving the symmetric and
asymmetric traveling salesman problem. Appl Soft Comput
71:277–290

Osaba E, Yang XS, Diaz F, Lopez-Garcia P, Carballedo R (2016) An
improved discrete bat algorithm for symmetric and asymmetric
traveling salesman problems. Eng Appl Artif Intell 48:59–71

Pekny JF, Miller DL (1990) A parallel branch and bound algorithm
for solving large asymmetric traveling salesman problems. In:
Proceedings of the 1990 ACM annual conference on Coopera-
tion, pp 56–62

Potvin JY (1996) Genetic algorithms for the traveling salesman prob-
lem. Ann Oper Res 63(3):337–370

Raj S, Bhattacharyya B (2018) Optimal placement of TCSC and SVC
for reactive power planning using Whale optimization algorithm.
Swarm Evol Comput 40:131–143

Raj S, Mahapatra S, Babu R, Verma S (2023) Hybrid intelligence
strategy for techno-economic reactive power dispatch approach
to ensure system security. Chaos, Solitons Fractals 170:113363

Rocha Y, Subramanian A (2023) Hybrid genetic search for the traveling
salesman problem with hybrid electric vehicle and time windows.
Comput Operat Res 155:106223

Saptarini NGAPH, Ciptayani PI, Wisswani NW, Suasnawa IW (2020)
Adaptive genetic algorithm for high school time-table. J Phys
1569(3):01–06

Singh G, Gupta N, Khosravy M (2015) New crossover operators for
real coded genetic algorithm (RCGA). In: 2015 International
Conference on Intelligent Informatics and Biomedical Sciences
(ICIIBMS), pp 135–140

Tawhid MA, Savsani P (2019) Discrete sine-cosine algorithm (DSCA)
with local search for solving traveling salesman problem. Arab J
Sci Eng 44(4):3669–3679

Wang J, Huang J, Rao S, Xue S, Yin J (2008) An adaptive genetic algo-
rithm for solving traveling salesman problem. In: International
Conference on Intelligent Computing, pp 182–189

Wang J, Zhang M, Ersoy OK, Sun K, Bi Y (2019) An improved
real-coded genetic algorithm using the Heuristical normal dis-
tribution and direction-based crossover. Comput Intell Neurosci
2019(1):01–18

Zbigniew M (1996) Genetic Algorithms+ Data Structures= Evolution
Programs. Springer-Verlag, Berlin

Zhang T, Zhou Y, Zhou G, Deng W, Luo Q (2023) Discrete Mayfly
algorithm for spherical asymmetric traveling salesman problem.
Expert Syst Appl 221:119765

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	A comparative analysis of genetic algorithms on a case study of asymmetric traveling salesman problem
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	4 Genetic algorithms
	4.1 Simple genetic algorithm (SGA)
	4.2 Binary coded genetic algorithm (BGA)
	4.3 Real coded genetic algorithm (RCGA)
	4.4 Adaptive genetic algorithm (AGA)

	5 Genetic operators
	5.1 Encoding or design the chromosome
	5.2 Selection operator
	5.3 Crossover
	5.4 Mutation

	6 Implementation
	6.1 Basic steps of algorithms
	6.2 Time and space complexity

	7 Results and discussion
	8 Conclusion
	Acknowledgements
	References

