
Vol:.(1234567890)

Int J  Syst  Assur  Eng  Manag (December 2023) 14(6):2684–2694
https://doi.org/10.1007/s13198-023-02161-2

1 3

ORIGINAL ARTICLE

A comparative analysis of genetic algorithms on a case study 
of asymmetric traveling salesman problem

Amit Raj1 · Parul Punia1 · Pawan Kumar1  

Received: 8 April 2023 / Revised: 16 August 2023 / Accepted: 7 September 2023 / Published online: 7 October 2023 
© The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and 
The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2023

Abstract In the present paper, the genetic algorithm and 
some of its variants i.e. adaptive genetic algorithm, binary-
coded genetic algorithm and real-coded genetic algorithm 
are applied to the Asymmetric Traveling Salesman Prob-
lem (ATSP). ATSP is one of the most widely studied com-
binatorial NP-hard problems of finding the shortest path. 
The present ATSP is a novel real-life case of the shortest 
path problem based on the distances between 22 districts 
of Haryana, India. To solve the above problem, one-point 
crossover and exchange mutation are applied to compare 
the performance of these algorithms on different parameters 
such as the size of the population, the number of iterations, 
and the rate of crossover. The main objective of this paper is 
to study the influence of these parameters on ATSP. Numeri-
cal results show that the binary genetic algorithm worked 
better in terms of the size of the population and the number 
of iterations, while the real-coded genetic algorithm worked 
better in terms of the rate of crossover.

Keywords Asymmetric traveling salesman problem · 
Genetic algorithms · Population size · Crossover

1 Introduction

The Traveling Salesman Problem (TSP) is a classical 
optimization problem introduced by Bellmore and 
Nemhauser (1968) that has gained recognition in the fields 
of graph theory and operations research. This classic 

problem entails finding the shortest route for a salesman 
to visit a set of cities exactly once before returning to the 
starting point. However, as the number of cities increases, 
the complexity of the TSP grows exponentially, rendering 
the search for optimal solutions computationally inefficient 
and known for its complexity as it falls into the NP-hard 
class (Gary and Johnson 1979).

Despite its notorious difficulty and classification as 
NP-hard, TSP is one of the most widely studied problems 
in computational mathematics across various domains 
including vehicle routing (Adewumi and Adeleke 2018), 
computer wiring, engineering design (Li et  al. 2022), 
machine sequencing (Raj and Bhattacharyya 2018; 
Mahapatra et al. 2021; Dehedkar and Raj 2022; Mahapatra 
and Raj 2023; Raj et  al. 2023) and scheduling (Bansal 
and Singh 2022), as well as frequency assignment in 
communication networks.

Based on the structure of the distance matrix, the 
TSP problem is divided into two types: symmetric and 
asymmetric. The distance between any two cities is the 
same, regardless of the order in which they are visited is 
known as Symmetric Traveling Salesman Problem (STSP) 
while the distance between two cities may differ depending 
on the direction of travel is known as Asymmetric Traveling 
Salesman Problem (ATSP). This study is focused on 
solving ATSP. Mathematically, ATSP is represented as 
d(i, j) ≠ d(j, i) , where d(i, j) represents the distance from 
city i to city j, and d(j, i) represents the distance from city 
j to city i.

The primary objective of the ATSP is to find the most 
efficient tour that allows a traveling salesman to visit each 
city exactly once and return to the starting point, considering 
the asymmetrical distances. There are some exact methods 
such as branch and cut (Ascheuer et al. 2000), etc in the 
literature for solving ATSP problems, but all of them have 
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exponential complexity, need too much computation time, or 
use too much memory to obtain the optimal solution.

In contrast to exact algorithms, new metaheuristic 
approaches are being utilized to address the NP-hard ATSP. 
Some of these approaches include the genetic algorithm 
(Nagata and Soler 2012), harmony search algorithm 
(Boryczka and Szwarc 2019), discrete bat algorithm (Osaba 
et al. 2016), discrete water cycle algorithm (Osaba et al. 
2018) and discrete mayfly algorithm (Zhang et al. 2023).

Even though these metaheuristic algorithms have been 
applied to the ATSP, there is a gap in the existing literature 
when it comes to comparing various variants of the genetic 
algorithm (GA) against the standard GA on real-life instances 
of the ATSP. This research gap highlights the need for a com-
prehensive study that systematically evaluates and compares 
the performance of various GA variants on a real-life ATSP.

Genetic algorithms (Goldberg 1989; Deepa 2008; Katoch 
et al. 2021) belong to the larger class of evolutionary algo-
rithms inspired by biological evolution. Holand’s GA (1970) 
is a powerful optimization technique that generates solutions 
to optimization problems using natural selection and genet-
ics techniques. These algorithms are typically quite simple 
and have a quick processing time. As a result, using genetic 
algorithms and their variants to solve an NP-hard problem 
such as ATSP may be appropriate. That is why, this study 
is focused on evaluating the performance of simple GA and 
its variants i.e., adaptive genetic algorithm (AGA), binary-
coded genetic algorithm (BGA), and real-coded genetic 
algorithm (RCGA). This evaluation is carried out on a real-
life ATSP problem involving 22 districts of Haryana, India.

The main contributions of this research are as follows:

• A novel real-life ATSP problem is formulated by using 
22 districts of Haryana, India.

• Some Variants of the GA algorithm have been applied to 
the formulated ATSP problem in MATLAB.

• one-point crossover and exchange mutation are two 
genetic operators used in this study.

• A comparative analysis has been carried out to evaluate 
the performance of GAs on different parameters such as 
the size of the population, the number of iterations, and 
the rate of crossover.

• The evaluated results show that the binary genetic algo-
rithm worked better in terms of the size of the population 
and the number of iterations, while the real-coded genetic 
algorithm worked better in terms of the rate of crossover.

The subsequent sections of the paper are structured as fol-
lows: Sect. 2 explains the related work on the ATSP prob-
lem. Section 3 introduces the real-life ATSP problem. Sec-
tion 4 presents the mechanism of the genetic algorithms. 
Section 5 presents the genetic operators of GAs. Section 6 
presents the implementation of GAs on formulated ATSP. 

Section 7 contains the results and discussion. Finally, Sect. 8 
presents the conclusion of the paper.

2  Related work

Over the past fifty years, researchers have developed 
numerous algorithms, both exact and heuristic, to solve TSP. 
Balas and Christofides (1981) came up with a new approach 
called the restricted Lagrangean algorithm to solve TSP by 
adding linear inequalities to the constraints in a clever way. 
Deep et al. (2018) modeled a traveling salesman problem 
involving seven cities connected by Indian railways. To solve 
this problem, a genetic algorithm (GA) is employed with the 
fourth variant of order crossover (OX4) as proposed in Deep 
and Mebrahtu’s work and two mutation operators, namely 
inversion mutation and inverted displacement mutations, 
were incorporated.

For more surveys on solution methods for the TSP, the 
reader may refer to Fiechter (1994), Carpaneto et al. (1995), 
Potvin (1996), and Larranaga et al. (1999). We also strongly 
recommend Tawhid and Savsani (2019), Akhand et  al. 
(2020), Li et al. (2023), Rocha and Subramanian (2023), and 
Mzili et al. (2023). These algorithms encompass iterative 
improvement methods, construction procedures, branch-and-
bound exact algorithms, as well as popular meta-heuristic 
approaches like Ant Colony (AC), Genetic Algorithm (GA), 
Tabu Search (TS), Sine-Cosine Algorithm and Artificial rat 
optimization algorithm.

Exact and metaheuristic algorithms have been proposed 
for both symmetric TSP and asymmetric TSP cases but this 
study is focusing on the ATSP problem. Pekny and Miller 
(1990) introduced a parallel branch and bound algorithm to 
solve the ATSP problem. The algorithm employs various 
techniques, including an assignment problem-based lower 
bounding technique, subtour elimination branching rules, 
and a subtour patching algorithm for upper bounding. 
Ascheuer et al. (2000) introduced a branch and cut algorithm 
for ATSP with precedence constraints. Apart from these 
exact algorithms, researchers have also successfully applied 
meta-heuristic methods to solve the ATSP.

Buriol et al. (2004) proposed a new memetic algorithm 
designed specifically to solve ATSP. The algorithm includes 
a new and effective local search called the recursive arc 
insertion (RAI) mechanism along with various innovative 
features. These features encompass a complete ternary tree 
structure with thirteen nodes to organize the population 
topologically, a hierarchical organization of overlapping 
clusters leading to a unique selection scheme, and the 
implementation of efficient data structures.

Majumdar and Bhunia (2011) introduced a novel 
GA approach to address a realistic version of the ATSP 
focused on time minimization. The problem incorporates 



2686 Int J  Syst  Assur  Eng  Manag (December 2023) 14(6):2684–2694

1 3

inter-city travel times represented as intervals and the 
approach is designed by combining local GA (LGA) and 
Global GA (GGA). GGA is employed to search for global 
optima within the main tours, while the LGA is specifically 
applied to randomly selected sub-tours derived from the 
main tour obtained by GGA. This use of LGA allows for 
the exploration of local optimal solutions within the sub-
tours, contributing to improved overall performance. Nagata 
and Soler (2012) came up with a new operator called the 
edge assembly crossover (EAX) operator to modify GA and 
applied it to an ATSP problem.

Osaba et al. (2018) introduced a discrete version of the 
Water Cycle Algorithm (DWCA) tailored for efficiently 
solving two well-known optimization problems: TSP and 
ATSP. DWCA retains its inspiration from hydrological 
phenomena but incorporates novel elements to address 
these routing problems effectively. The algorithm uses the 
Hamming distance to measure differences between routes 
found during the search process, adapts the movement 
function based on the estimated inclination of the river, and 
employs an insertion-based mutation operator that emulates 
evaporation and raining processes in the discrete solution 
space encoded by permutations.

Zhang et al. (2023) proposed a Discrete Mayfly Algorithm 
(DMA), a swarm-based metaheuristic, specifically designed 
for the spherical ATSP. The DMA utilizes various operators, 
including inver-over, crossover, and 3-opt, to simplify 
parameters, enhance population diversity, and improve local 
search capabilities.

3  Problem statement

The TSP has numerous real-world applications across 
various domains, including logistics, transportation, 
manufacturing, and network routing. In road networks, it 
is common for the travel distance between two locations 
to be different in opposite directions due to factors like 
road conditions, traffic flow, and road restrictions. This 
asymmetry in travel distances creates a more complex 
and challenging problem, making it essential to explore 
specialized algorithms to address such real-life scenarios. 
In this specific case, solving the ATSP for the 22 districts 
of Haryana, India has different distances between nodes 
in both directions, which is of great importance in various 
scenarios, such as logistics, transportation planning, and 
resource allocation.

The state of Haryana, with its 22 districts, represents a sig-
nificant geographical area with various important locations 

that require efficient visitation by a traveling salesman. By for-
mulating this problem as an ATSP and using real-world data 
extracted from Google Maps, we can model and evaluate the 
most efficient routes for the salesman to visit all the districts 
while minimizing the overall travel distance. This analysis 
can lead to insights and decision-making tools that can ben-
efit businesses, government agencies, and other organizations 
operating in Haryana. With this context in mind, 22 districts 
of Haryana, India modeled as an ATSP problem in the study.

Each district is represented by a node and is numbered from 
1 to 22. Also, the shortest distance between node 1 to node 2 is 
not always the same as the distance between node 2 to node 1. 
In matrix notation of this ATSP, the entries above the diagonal 
represents the maximum distance between the nodes and the 
entries below the diagonal represents the minimum distance 
between them. Faridabad, Gurugram, Panchkula, Karnal, 
Hisar, Panipat, Ambala, Kurukshetra, Rohtak, Jind, Rewari, 
Jhajjar, Kaithal, Bhiwani, Fatehabad, Sirsa, Yamunanagar, 
Sonipat, Palwal, Mahendergarh, Charkhi Dadri, and Nuh 
are the 22 districts of Haryana represented by nodes 1 to 22 
respectively. The data used in the present study is taken from 
Google Maps and is presented in Table 1. By exploring this 
formulated problem, we aim to compare different GA variants 
and assess their performance in finding the most efficient 
routes for a salesman to visit all the districts in Haryana, India 
while minimizing the overall travel distance.

4  Genetic algorithms

In this section, we discuss genetic algorithm (or simple 
genetic algorithm) and some of its variants, i.e., adaptive 
genetic algorithm, binary-coded genetic algorithm, and real-
coded genetic algorithm. Since GAs are the most popular 
algorithms, we just introduce the basic working principles of 
these algorithms.

4.1  Simple genetic algorithm (SGA)

The mechanism of simple genetic algorithm is very simple, 
involving copying and exchanging bits of partial strings. 
Reproduction, crossover, and mutation are three operations 
in the algorithm. Depending on the fitness value of the 
chromosome, a reproduction operator is applied to generate 
parent chromosomes or strings. After that, offspring are 
produced by applying a crossover operator to the parent 
chromosomes and then a mutation operator is used to keep 
the population diverse. A Pseudo Code is used to summarise 
the steps involved in the process of SGA is given below:
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Algorithm 1 Simple Genetic Algorithm (SGA)

1: Initialize the parameters such as Population size, crossover probability, and
mutation probability.

2: Generate an initial population
3: Calculate the objective function (or fitness ) of the chromosomes
4: Choose the individuals with higher fitness values to have a greater chance

of surviving in the next generation (Selection Process)
5: Perform Crossover operator
6: Perform Mutation operator
7: Calculate the fitness value
8: Update best candidate solution
9: Output best candidate solution obtained by SGA

4.2  Binary coded genetic algorithm (BGA)

Depending upon the representation of the chromosomes 
genetic algorithm can be classified into binary genetic 
algorithm and real coded genetic algorithm. The 
chromosomes in binary coded genetic algorithm are encoded 
in the string of bits 0 and 1. The length of bit string is kept 

fixed. Then suitable crossover and mutation operators are 
applied on the population. To perform mutation random 
number for each bit of the string is generated and its value 
are swapped 0 for 1 and vice-versa. After obtaining the 
solutions they are then again converted into actual values. 
For more details about the algorithm, go through the paper 
(Kim et al. 2002; Mohebifar 2006).

Table 1  The formulated asymmetric travelling salesman problem is in matrix form

Cities 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0 45 295 169 239 136 296 208 119 201 98 88 224 157 290 310 264 92 36 148 135 81
2 39 0 315 190 176 152 273 228 81 162 68 47 209 122 240 268 269 112 82 113 95 66
3 287 293 0 123 247 194 49 97 257 205 340 298 126 283 241 282 96 255 358 330 294 359
4 160 157 123 0 173 46 81 36 145 103 211 158 79 163 179 224 77 113 257 227 202 234
5 208 166 241 154 0 176 210 185 113 74 185 132 127 81 64 98 239 166 243 136 110 223
6 128 136 157 35 143 0 150 95 94 91 175 123 97 134 182 224 113 74 214 190 156 196
7 249 253 42 81 199 117 0 50 216 139 297 246 87 245 205 240 81 196 334 310 252 353
8 198 209 90 35 167 72 50 0 162 114 248 195 69 199 195 222 53 158 287 265 239 306
9 111 79 236 114 101 76 196 150 0 83 100 45 133 76 168 210 210 50 150 110 66 123
10 164 155 180 83 71 71 139 102 67 0 173 120 74 91 122 149 158 107 229 170 102 206
11 89 54 327 203 158 165 287 240 89 161 0 58 227 99 234 278 277 121 93 55 70 51
12 84 44 278 153 120 119 236 187 36 108 52 0 174 78 181 225 223 85 116 81 43 92
13 216 200 121 62 116 81 80 51 118 56 215 161 0 140 133 156 120 139 269 208 169 252
14 151 110 248 151 62 113 207 182 50 69 97 65 125 0 132 182 228 108 185 68 29 168
15 260 218 216 170 50 167 197 165 151 98 226 172 114 115 0 41 237 189 290 189 157 274
16 306 264 281 212 93 214 234 206 193 141 274 217 156 156 41 0 258 259 334 225 207 316
17 232 237 92 64 219 100 60 45 179 146 274 218 99 217 216 258 0 178 306 285 250 300
18 87 86 206 81 149 49 164 117 47 83 114 61 127 104 182 228 146 0 155 155 115 129
19 31 54 353 196 226 197 278 233 139 217 80 100 262 169 276 322 295 146 0 148 151 36
20 144 107 316 207 129 169 274 244 96 136 55 65 193 68 182 225 272 135 133 0 40 132
21 129 87 278 166 90 129 236 207 56 98 68 43 154 29 139 186 232 99 145 40 0 129
22 59 47 323 212 208 180 295 253 122 198 47 81 244 150 257 303 282 129 36 104 117 0
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4.3  Real coded genetic algorithm (RCGA)

Real coded genetic algorithm (Goldberg 1991) has strings 
made of real numbers unlike those of binary coded genetic 
algorithm and also takes the operators reproduction, 
crossover and mutation of real vectors. Hence, the 
representation of the chromosomes is very close to natural 
formulation of many problems and by the use of real 
parameters large and continuous domains can be easily 
searched as RCGA works well with the continuous space. 
The chromosomes in RCGA are bounded depending on 
the variables they represent. For more details about the 
algorithm, go through the paper (Eshelman and Schaffer 
1993; Singh et al. 2015; Ali et al. 2018; Wang et al. 2019).

4.4  Adaptive genetic algorithm (AGA)

The basic idea behind adaptive genetic algorithm (Lin 2009) 
was to prevent pre-mature convergence of the algorithm 
arising due to lack of diversity in the population and 
unbalanced exploration and exploitation rate. In AGA, the 
parameters like population size, crossover and mutation rate 
are varied while the GA is still running so as to maintain 
diversity and exploitation and exploration rate in the 
population. For more details about the algorithm, go through 
the paper (Wang et al. 2008; Saptarini et al. 2020).

5  Genetic operators

In this section, we discuss the essential genetic operators 
used in genetic algorithms: encoding, selection, crossover, 
and mutation. Each of these operators plays a crucial 
role in shaping the algorithm’s efficiency, convergence, 
and exploration of the solution space. By applying these 
operators intelligently, we aim to find the most efficient 
routes for a traveling salesman to visit all the districts, 
thereby minimizing the overall travel distance and 
optimizing the solution.

5.1  Encoding or design the chromosome

A population is an accumulation of chromosomes. Each 
chromosome represents a possible solution and contains 
several genomes. An algorithm’s efficiency and processing 
power rely on the encoding of a problem. Designing 
a chromosome to represent a problem is a significant 
architectural decision in the algorithm. So, the primary 
focus is to design the chromosomes so that they can have 
a considerable influence on processing speed, convergence, 
and the overall ease of crossover and mutation. In addition 
to being the most effective and efficient method for 
encoding parameters into chromosomes, the representation’s 

underlying shape is also crucial. It is also important that 
the values of a chromosome are a solution’s parameters, 
and they must always be accompanied by an evaluation 
process that uses the parameters to determine the system’s 
aspect or conclusion. Given the value of the chromosome’s 
parameters, the fitness function measures how much this 
outcome is a better or worse solution.

5.2  Selection operator

Selection operator chooses the best possible chromosomes 
from the existing population to create the next generation. In 
various situations, a distinct selection procedure is utilized for 
the purpose of picking the population of the healthiest indi-
viduals, parents, or chromosomes for crossover or mutation.

5.3  Crossover

Crossover is the process of making new solutions from 
solutions that already exist. It is a form of reproduction 
through sexual means. To generate superior offspring, a 
random selection is made from the mating pool to choose 
two different string combinations to crossover. The approach 
that is selected is determined by the encoding method.

5.4  Mutation

Mutation is a small random change in the chromosome 
to produce a new solution. Crossover breeding can often 
provide too much variability, making it difficult to fully 
explore the underlying solution space. To maintain the 
diversity in the population, a mutation operator is used.

6  Implementation

In Sect.  4, the basic ideas of genetic algorithms were 
introduced. In this section, we will discuss the actual 
working & the time and space complexity of various genetic 
algorithms to solve the formulated ATSP problem.

6.1  Basic steps of algorithms

The various steps of implementation of genetic algorithms 
to our real-life problem are as follows:

Generate the initial population Generate a random initial 
population of potential solutions, where each chromosome 
represents a valid tour visiting all 22 districts exactly once. 
Each chromosome is a permutation of the numbers from 1 
to 22, representing the order of city visits.
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Fitness Value Define the fitness function to calculate the 
total distance of each tour in the population. The fitness 
value of each individual (chromosome) is the sum of the 
distances between consecutive cities based on the matrix 
notation. The fitness value represents the length of the 
tour, and it should be used to compute the fitness score 
for selection. The fitness value can be calculated using the 
formula,

where aij is the distance between the two adjacent cities i 
and j of the tour.

Selection Operator The roulette wheel selection operator 
is used in this work for selecting the parent chromosomes. 
The value of the fitness function and the corresponding 
probability of every individual is calculated. Each individual 
is assigned a portion of the wheel. Each roulette wheel slice’s 
size corresponds exactly to its fitness value. According to 
fitness value, an individual has a higher chance of being 
selected i.e., Individual with higher fitness value have more 
chances of selection. The wheel slice is calculated as

where

FR is the reversed magnitude fitness function, Fj is the 
fitness of the jth chromosome, Fk is the fitness of the 
kth chromosome, Fmax is the maximum fitness out of all 
the population’s chromosomes, and N is the number of 
chromosomes in the population.

Crossover In this work, a one-point crossover operator is 
used to create offspring. In this crossover operator, one cut 
point is selected randomly at the same position from both the 
parent chromosomes and the right (left) section of the points 
is exchanged resulting in the formation of two offspring.

Mutation Exchange mutation (Banzhaf 1990) is used in 
the work to avoid premature convergence by giving new 
paths. The exchange mutation operator randomly selects 
two cities in the tour and exchanges them.

Termination condition The termination condition (or 
stopping criteria) is to stop the process of the genetic 
algorithms. The algorithm finds better solutions after a few 
iterations but this tends to stop working in the later phases 
when the changes aren’t as large. So, we need to stop the 
process to make sure that the solution is close to the best 
one. In most cases, we preserve one of the following criteria 
for termination: 

(1)FIndividual =

22
∑

i,j=1

aij

(2)Ws =
FR

∑N

j=1
FR
j

(3)FR = (Fmax − Fk) + 1,

(a) When there hasn’t been any change in the population 
for a while.

(b) When we have reached a certain, predetermined 
number of generations.

(c) When the objective function has attained a certain value 
that has already been set.

The number of iterations is used as a termination condition 
in this study.

6.2  Time and space complexity

The time complexity of the SGA algorithm as per the steps 
mentioned will be as under:

Initialization The initialization step involves setting 
up the parameters such as population size, crossover 
probability and mutation probability. So, it has a constant 
time complexity O(1).

Generate an Initial Population Generating the initial 
population involves creating a fixed number of candidate 
solutions, which typically have a linear time complexity 
O(n).

Calculate the Objective Function Evaluating the objective 
function for each candidate solution in the population 
requires calling the function n times. Thus, the time 
complexity for this step is O(n).

Selection Process Fitness proportionate selection or 
roulette wheel selection can be implemented efficiently 
with a linear time complexity of O(n). The process involves 
calculating the cumulative fitness and selecting individuals 
accordingly.

Crossover Operator The time complexity of a one-point 
crossover operator depends on the size of the candidate 
solution representation and hence the time complexity can 
be approximated as O(n).

Mutation Operator The exchange mutation operation also 
depends on the size of the candidate solution representation. 
So, the time complexity can be approximated as O(n).

Update Best Candidate Solution Updating the best 
candidate solution involves comparing the fitness of newly 
generated individuals to determine the best. This step has a 
linear time complexity O(n).

Output Best Candidate Solution The output step has a 
constant time complexity O(1) as it involves returning the 
best candidate solution found.

The overall time complexity of the SGA can be 
approximated as the sum of the complexities of each step. 
So, the SGA’s overall expected time complexity is 
is O(1)+O(n)+O(n)+O(n)+O(n)+O(n)+O(n)+O

(1)= 2×O(1)+6×O(n) ∼∼∼ O(n). .

Similarly, the overall time complexity of the AGA, BGA 
and RCGA can be approximated as O(n2).
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7  Results and discussion

In this section, we evaluate the performance of the SGA, 
AGA, BGA and RCGA approaches to obtain the optimal 
solution. The discussed algorithms were implemented in 
MATLAB R2021b, and their performances were tested using 
a laptop (computer) core i5-11300 H CPU @ 3.10GHz, with 
16 GB of RAM. The performance of these four algorithms 
is analyzed by varying the parameters like population size, 
crossover and iteration. The results obtained by these algo-
rithms on various parameters are listed in Table 2. Each 
algorithm is performed 20 times to obtain the minimum dis-
tance (Best value), the mean value, the standard deviation 
(S.D.) and the estimated time (ET).

In evolutionary computation, one of the most impor-
tant factors to think about is an algorithm’s population size 
(Mora-Melia et al. 2017) as it has a big effect on how well 
and quickly an algorithm works. So, it is foremost to inves-
tigate the performance of various genetic algorithms (SGA, 
AGA, BGA, RCGA) with fixed crossover and mutation at 
different population sizes. Figure 1 shows the performance 
of various GAs at different population sizes. The results are 
performed at fixed crossover, mutation, and iteration rates of 
90, 5, and 100 respectively to evaluate the influence of the 
population size on these algorithms.

When the population size (p) increases, the minimum 
distance in each algorithm also increases. As we can see, 
in SGA at p = 100, p = 150, p = 200, and p = 300, the 
minimum distance is 2139.2, 2143.45, 2150.8, and 2235.9, 
respectively. Also, at p = 100, p = 150, p = 200, and p = 
300 in the BGA, the minimum distance is 2002.05, 2019.1, 
2067.6 and 2111.7 respectively. Similarly, in AGA and 
RCGA, as the population size increases, so does the mini-
mum distance. So, the behavior of all of these algorithms Ta
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Fig. 1  Shortest distance of different algorithms at different popula-
tion size
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appears to be similar as the minimum distance increases 
with population size. It means that to find the minimum 
distance, we have to consider the smallest population size. 
Therefore, the performance of these algorithms is analyzed 
at a population size of 100 to see which one provides a bet-
ter optimal solution. At p = 100, the minimum distances 
of SGA, AGA, BGA, and RCGA are 2139.2, 2151.6, 
2002.05, and 2076.55, respectively. In this case, BGA pro-
vides a better optimal solution (minimum distance) with 
a path 4 → 17 → 7 → 9 → 18 → 1 → 22 → 20 → 15 → 16 → 5
→ 12 → 11 → 14 → 19 → 2 → 21 → 10 → 6 → 8 → 13 → 3..

Now we investigate the effect of iteration on these 
algorithms by varying the size in the range of 100–500. 
The higher iteration size increases the chance of getting 
a better solution as the solution space is searched more 
thoroughly. With each passing iteration, the bad quality 
solutions get discarded, and the better solutions participate 
in the search process. To investigate the performance of 
various genetic algorithms, the results are performed at 
fixed rate of crossover, mutation, and population size of 
50, 10, and 100 respectively. Figure 2 shows that when the 
iteration increases, the minimum distance in each algo-
rithm decreases. In SGA, at iteration = 100, 200, 300, and 
500, the minimum distances are 2044.15, 1792.05, 1653.7, 
and 1539.15, respectively. In AGA, at iteration = 100, 
200, 300, and 500, the minimum distances are 2009.35, 
1822.3, 1685.65,and 1591.2 respectively. Similarly in 
other algorithms, as iteration increases, the minimum dis-
tance decreases. So, the behavior of all of these algorithms 
appears to be similar as the minimum distance decreases 
with increasing of iteration. It means that to find the mini-
mum distance, we have to consider the higher iteration.

Therefore, the performance of these algorithms is ana-
lyzed at the iteration, 500 to see which one provides a 

better optimal solution. At iteration = 500, the minimum 
distance of SGA, AGA, BGA, and RCGA is 1539.15, 
1591.2, 1517.5, and 1521.8 respectively. In this case, 
BGA provides a better optimal solution (minimum dis-
tance). So, in all of these algorithms, BGA also gives 
a better optimal solution in terms of iteration with a 
p a t h  10 → 14 → 21 → 20 → 19 → 1 → 2 → 22 → 11 → 12 → 9

→ 18 → 6 → 5 → 16 → 15 → 17 → 7 → 3 → 4 → 8 → 13.

Now we investigate the effect of crossover on vari-
ous genetic algorithms analyzed by varying it. It is well 
known that the selection of crossover rate is crucial to the 
effectiveness of genetic algorithms. In the past, various 
research have been worked on determining optimal crosso-
ver or mutation rates which is still a problem as it depends 
on problems and even for different stages of the genetic 
process. So, here we applied various genetic algorithms on 
our problem to see the effect of the rate of crossover. The 
results are performed at fixed iteration (100), population 
size (100) and mutation rate (5) with crossover rates of 25, 
50, 75, and 95, i.e., crossover probability 0.25, 0.50, 0.75, 
0.95. The performance of these algorithms is analyzed 
using Fig. 3 to see which one provides a better optimal 
solution in terms of crossover rate.

At crossover = 25, the minimum distance for SGA, 
AGA, BGA, and RCGA, respectively, is 1681.15, 
1654, 2102.15, and 1613.1. In this case, RCGA 
provides a better optimal solution (minimum distance). 
Similarly, at the rate of crossover = 50, the minimum 
distances of SGA, AGA, BGA, and RCGA are 1606.85, 
1597.95, 2076.4 and 1491.5 respectively. In this case, 
RCGA also provides a better optimal solution. As a 
result, RCGA provides a better optimal solution in 
all these algorithms in terms of crossover with a path 
15 → 4 → 3 → 13 → 16 → 21 → 11 → 19 → 8 → 22 → 9

→ 2 → 17 → 7 → 1 → 5 → 12 → 18 → 10 → 14 → 6 → 20.
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Fig. 4  Highlighted the shortest path in a formulated ATSP problem
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The results discussed above are based on their mean 
and standard deviation values. However, the best minimum 
distance is 1264 provided by the SGA at iteration 500 and 
the corresponding path has been highlighted in Fig. 4.

8  Conclusion

In the present work, we have discussed genetic algorithm 
and its variants on a asymmetric TSP as our aim was to com-
pare the quality of solutions at different parameters. Based 
on the results of various GAs on the given ATSP, the real-
coded genetic algorithm is superior in terms of the rate of 
crossover. The binary genetic algorithm performs better in 
finding the optimal solution in terms of iteration and popula-
tion size. The major and minor variations in the distance are 
observed in the parameters such as size of population and 
the number of iterations. This study presents a compara-
tive analysis of various genetic algorithms on ATSP, which 
is realistic and relevant for GA’s adaptability in real-world 
applications. Also, this study suggests various research 
directions for future research, one of which involves devel-
oping hybrid or improvement versions of GA to apply the 
ATSP problem.
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