
Vol.:(0123456789)1 3

Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496
https://doi.org/10.1007/s13198-023-02098-6

ORIGINAL ARTICLE

Formally modeling and verifying a software component retrieval
system using mCRL2

Nisha Pal1  · Dharmendra Kumar Yadav1

Received: 21 October 2021 / Revised: 21 May 2023 / Accepted: 8 August 2023 / Published online: 27 August 2023
© The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and
The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2023

Abstract  Software reuse is the process of building a new
software application by using existing software compo-
nents. Component-based software engineering is one of the
approaches that is based on reusability concepts. It helps
to improve the software quality and performance. Effective
storage and retrieval scheme are two of the essential factors
in the software reuse process. It reduces maintenance costs
and easily upgrades a large and complex software system.
The selection of appropriate components becomes more
complex due to unexpected requirements. To overcome
these problems, many researchers have developed differ-
ent types of software component storage and retrieval tech-
niques. However, all the techniques do not give the proper
satisfaction of the developer requirements. In this paper,
we proposed a software component retrieval schema which
is built on different group of repositories namely metadata
repository, description repository, component repository,
and ontology repository. These repositories give semantic
information related to the component. For the correctness
of the proposed system, we proposed a formal model of
that system which verifies the correct flow of a sequence of
these repositories for finding the desired component. Formal
specification and verification technique helps to determine
the correct matching component from the repository. This
new system improves searching results for the developer
to develop the software project. We used mCRL2 process
algebra for describing the behavior of storing and retrieving

system. The requirement of the proposed system has written
in a modal mu-calculus. It has been verified by using the
mCRL2 toolset.

Keywords  CBSE · Metadata repository · mCRL2 tool ·
Formal verification · Ontology repository · Formal methods

1  Introduction

Client’s expectations have been increasing continuously for
the recent years. This situation affects the quality and pro-
ductivity of the software, which increases the complexity
of the software system. Therefore, the developer needs an
effective technique to achieve the desired result. CBSE is
one of the reuse techniques that help to achieve the above
goal. It reduces development cost and effort, and increases
the quality and productivity of the software system. In this
approach, the software is developed by selecting appropri-
ate components and then assembling these components with
well-defined architecture. The selection of the desired com-
ponent becomes more complex due to the rapidly changing
end user requirements. For any software applications to be
successful it is very important that the appropriate compo-
nent is selected which minimizes the developer’s effort and
development time (Yahlali 2022). A software repository is
one of the essential elements for successfully developing
the software product. It is used for storing, retrieving and
managing a large number of software components. It sup-
ports the effective classification schema, standard compo-
nent framework, and allocates the desired software resource
(Guo et al. 2000; Xu et al. 2020). Repositories have designed
to meet the rapidly changing demand of the software devel-
opment organization. The storage and retrieval mechanism
of the repository in CBSE’s are the main key research area.

 *	 Nisha Pal
	 2016rcs05@mnnit.ac.in

	 Dharmendra Kumar Yadav
	 dky@mnnit.ac.in

1	 Motilal Nehru National Institute of Technology Allahabad,
Prayagraj, Uttar Pradesh 211004, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-023-02098-6&domain=pdf
http://orcid.org/0000-0003-0448-9256

2486	 Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496

1 3

Researchers have proposed several storage and retrieval
approaches for acquiring desired components from reposi-
tory (Aman et al. 2014). However, these approaches retrieve
a limited set of components from the repository that do not
meet the user’s requirement. Because, these techniques do
not understand the user query properly and also do not give
proper meaning of the software component. Due to this, the
important information related to the software component is
omitted. Hence, software repositories need a technique that
provides the semantic interrelation among the components
for effectively storing and retrieving. This technique helps in
locating and comparing different components in repository.

In this paper, we proposed a software component storage
and retrieval system with the help of four types of reposi-
tory such as metadata, description, component, and ontol-
ogy. These repositories provide exact behavior and domain
knowledge of the component and help to store, search and
reuse these components on demand. These repositories help
to retrieve the target software component from the reposi-
tory. Hence, users get the generic or acceptable software
component from the repository. For the correctness of the
proposed system, we have proposed a formal model of pro-
posed system that verifies the correct flow of a sequence
of these repositories for finding the desired component
(Almeida et al. 2011). Formal specification and verifica-
tion techniques help to determine the correct matching
component from the repository. We represent the flow of a
sequence of the proper selection of software components and
reduce the mismatch problem for selecting the appropriate
component from the repository through the formal method.
It helps to automate the search and retrieval mechanism.
To describe the proposed system’s behavior, we have used
mCRL2 formal language, and through the mu-calculus we
have represented the requirement of the proposed model.
In this paper, we design a system that supports automati-
cally identifying, comparing and retrieving the desired
reusable software component from the repository. This pro-
posed model has been verified by using the mCRL2 toolsets
(Groote et al. 2008; Bunte et al. 2019).

The rest of the paper is organized as follows: Sect. 2
presents the motivation of the work. Section 3 explores the
related work. Section 4 provides the overview of mCRL2
tool sets. Section 5 discusses the software component stor-
ing and retrieving system. Section 6 describes the modeling
and verification of software component retrieval system.
Finally some concluding and future work remarks are drawn
in Sect. 7.

2 � Motivation

Component-Based Software Development (CBSD) is
an approach in which every software component is an

independent executable unit that is tested and deployed, and
stored in a component repository. Hence, these components
can be assembled together to form a new software. The main
objective of CBSE is to reuse the components for building
more complex and large systems with no or minor modifi-
cation. In the CBSE technique, the developer spends more
time and effort for selecting relevant reusable components
from a large repository. If search and retrieval techniques
are not effective, users may not be able to get the desired
component because many components have almost the same
name and functionality. They get multiple and ambiguous
components. To the success of any software application an
effective scheme is needed for organizing and describing
the repository properly at the different levels of detail, and
also provided mechanism for retrieving and storing these
components to the repository. Hence, the software industry
needs for an effective storage and retrieval mechanism that
provides the exact software components and delivers the
quality software for the end user.

3 � Related work

Effective storing and retrieving schema are the essential
for locating and comparing any desired services from the
commercial repository. Since in many fields such as soft-
ware engineering, IoT, image processing, soft computing,
healthcare sector, etc., exact information retrieval according
to the end user is difficult task (Kavitha and Vidhya Saras-
wathi 2021; Gavrilović and Mishra 2021; Shi et al. 2021;
Vasanthi et al. 2021; El-Ansari et al. 2021). Because due to
a large number of available services, to choose the appropri-
ate services that satisfying the end user requirement is time
consuming process. In the case of component base software
engineering selecting the appropriate components from the
repository is a main process for the success or failure of
building a software system. Since the repository is very large
and selection of components is difficult due to continuously
change the component’s demand. Therefore, to understand
the customer demands is an important task. There are many
techniques exist that help to search and store a component in
a repository effectively (Yahlali 2022; Lucredio et al. 2004).

In Aman et al. (2014), Bawa and Kaur (2016), the authors
provided a systematic review of different kinds of storing
and retrieving techniques. In this paper, the authors dis-
cussed various algorithms for storing and retrieving the
exact components with well-structured repositories. In
Chatterjee and Rathi (2014), the author discussed different
storage and retrieval techniques, but the main focus is on
the concept of associated with signature matching and key-
words base technique. In Gajala (2013), the author described
another integrated technique based on attribute value and
faceted classification schema. This technique improves the

2487Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496	

1 3

retrieving technique, reduces cost and investment on the user
requirement. Lucredio et al. (2004) presented an effective
retrieving technique that supports metric indexing structure
and similarity measures between components. This tech-
nique overcomes the problem of component retrieval and
offer reductions in search time, and increasing the reuse and
saving effort.

Dixit and Saxena (2009) presented another component
retrieval technique that using the genetic algorithm. In this
paper, the authors discussed the major issue related to the
component selection from the repository. Using the genetic
algorithm, they tried to minimize the gap between compo-
nents’ needs and availability. In Nie and Zhong (2009), the
authors discussed the component retrieval technique based
on ontology. In this paper, the authors presented a com-
ponent description model based on ontology features and
the retrieval method of user interest. This retrieval method
provides a clear definition of component that easily under-
stands by the user. This can be processed by computer auto-
matically. In Desouky and El-Khouly (2015), the authors
have proposed an overview of the key research on software
component clustering and explores the need for an effec-
tive search mechanism in order to enable software compo-
nent as a service in the cloud. In Zhang (2007), Chythanya
and Reddy (2021), the authors presented a survey of dif-
ferent retrieval techniques and introduced the concepts of
some commercial repositories. According to the authors,
systematic reuse activities help reduce the duplication of
effort, imposed standardizations, and ensure the correct
retrieving component from the repository on user demand.
In Guo et al. (2000), Bakshi and Bawa (2013), the authors
presented a survey of effective search and retrieval methods
and techniques and various software repositories. According
to the authors, an effective retrieval schema is essential for
locating, storing, and comparing the component in a reposi-
tory. The authors discussed different repository requirements
based on different domain-specific communities.

In Chapman et al. (2009), the authors discussed the
approaches and challenges of the metadata repository. In this
paper, the authors discussed the repository efforts at three
major universities. They discussed the challenges of crea-
tion, management, and access to the repository. The authors
also discussed local strategies for metadata creation, user
behavior, and the aggregation of heterogeneous metadata.
In Bibi et al. (2022), the authors have build a conceptual
framework that retrieves code snippets and implements a tar-
geted code retrieval method. In order to obtain more precise
and pertinent computer programming code for a query (i.e.,
search results based on query interpretation), this research

will use ontologies and construct a web application. At the
end of this paper data has been extracted from GitHub repos-
itories in order to rate the results of a Natural Language Pro-
cessing (NLP) search for source code. The correctness of the
component obtained from the repository is evaluated using
performance metrics like F-measure, precision, or recall.

In Singh (2013), the authors discussed software compo-
nent retrieval based on metadata and ontology repository.
This paper presents a meta-data model and effective storage
and retrieval system of software components that consid-
ers semantic domain information based on ontology. This
system provides an effective storage and retrieval schema
but does not guaranty to give the exact appropriate com-
ponent from the software repository. It needs to verify the
correctness of the system. In Chang et al. (1997), the authors
proposed an approach to reuse-based software development
using formal methods. In this paper, authors formalized each
component with the help of a set of predicates. The user
retrieves the component from the repository using either
keywords or predicates and integrates the components with
the designed system. Using this approach user try to find
out the best component from the repository that meets the
requirements. In Guo et al. (1999), the authors discussed an
automated signature matching retrieval technique for search-
ing and storing the component from the software component
repository. The signature matching technique helps to roll
out the candidate component automatically and reduces the
effort for searching the large amounts of candidate compo-
nents during development time.

In Lewczuk (2021), the authors discussed the reliability
and dependability of Automated Storage and Retrieval Sys-
tems (ASRS), which are viewed as solutions with high tech-
nical reliability. This literature study is offered along with a
definition of the terms reliability and dependability as they
relate to logistics systems like ASRS. Based on this, the ele-
ments influencing the dependability of ASRS are discussed
in a way that hasn’t been covered in the conversation so far.
The main purpose of the study is to ascertain how the afore-
mentioned variables affect the reliability and performance
of ASRS as well as the importance of the OTIFEF (on-time,
in-full, error-free parameter), which includes logistics time
metrics and timely warehouse task execution.

4 � Overview of mCRL2 tool set

The analysis of the distributed and parallel system is a com-
plex task that requires some tools. These types of systems
are difficult to design correctly. The mCRL2 language and

2488	 Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496

1 3

toolsets are formal methods based approach that supports
the analysis of distributed applications. mCRL2 stands for
micro Common Representation Language 2. It is a specifi-
cation language that can be used to specify and analyze the
behaviour of distributed and concurrent systems. It is based
on a mathematical approach. It is allowing automatic analy-
sis and verification of these systems. Hence, it provides the
correct specification and verification of the system (Cranen
et al. 2013). The mCRL2 is extended of the algebra of com-
municating processes (ACP) with abstract data types (Hojjat
et al. 2011). This mCRL2 formal language is the collection
of a rich set of abstract data types. It contains a toolset for
analyzing and verifies the specification of the system. The
researchers at the Eindhoven University of Technology was
developed this mCRL2 language and toolset in 2006 (Bunte
et al. 2019). The basic syntax of the mCRL2 specification
language is given below.

Here, “a" is a basic action of a process with some number of
arguments d1,..., dn. “ � " action is the internal action with no
any parameter. “ � " represents the deadlock process where no
further transition is possible. “+” is a choice operator that
may follow different interactions patterns in a non-deter-
ministic environment. “.” is a sequential operator composed
process sequentially. “ || ” is a parallel composition operator
in which two processes communicate concurrently. “ �I ” is
an abstraction operator that renames actions in I. “ �H ” is
encapsulation operator that specifies the set of actions in H
that are not allowed to occur. “ ∇V " is a restriction operator
that allows only the multi-action in set V to occur in p. “ ΓC ”
is a communication operator that depicts possible commu-
nications in a system and the resulting actions. “ 

∑
d∶D ” is

the summation operator that provides sum of the non-deter-
ministic variable D. “c → p0 ⋄ p1” is a conditional operator
where process p0 will happen if condition c evaluates to
true otherwise, p1 will take over. In mCRL2 languages, a
number of built-in data types exist, such as integers, real,
sets, lists, sort, cons, struct, maps, equ, and functions that
support implementation. A new process is defined by proc
and initialize by the keyword init.

The demonstration and analysis procedures of mCRL2
tool as a model-checker has been shown in Fig. 1. The
mCRL2 toolset allows verifying the specification of
complex system designs that are formally described in

p∶∶ = a(d1, ..., dn)|�|�|p + p|p.p|p||p|�I(p)|�H(p)|∇V (p)|

ΓC(p)|
∑

d∶D

p|c → p0 ⋄ p1

the mCRL2 language (Groote et al. 2007; Man and van
der Wulp 2008). It transforms a mCRL2 specification
of the system into the corresponding linear representa-
tion. Then simulator can simulate the behavior of a linear
representation interactively. After this, a space generator
can be generating a state space from a linear represen-
tation. Furthermore, the generated state space of a lin-
ear representation can be read or visualization with the
help of backend tools (CADP). Finally, the requirement
for system behavior is verified (that is specified by the
mCRL2 specification) by using a parameterized Boolean
equation system (PBES) that contains a symbolic speci-
fication of the system’s behavior. The requirements or
properties of the system are formulated with the help of
modal mu-calculus.

5 � Software component storing and retrieving
system

Component-based software engineering has offered many
facilities to develop a large and complex software system.
However, these advancements produce many challenges, one
of them being to develop an effective storage and retrieval
mechanism. Hence, the software industry searches for an
effective storage and retrieval schema that provides the exact
software components and delivers the best results. Storage
and retrieval schema is essential for the software component
reuse process. Many authors have proposed different storage
and retrieval techniques, but none of the techniques have ful-
filled the desired demand (Gupta and Kumar 2013). Because
these techniques provide a limited set of components. Every
technique has its own advantages and disadvantages. The
proposed system have four repositories such as metadata,
description, component, and ontology repository. This new
approach helps to locate the appropriate component from the
repository and develop the software application. The work-
flow diagram of the proposed system has shown in Fig. 2.

All these repositories help to identify the function, static
and dynamic behavior, domain knowledge, and working
environment of the software component. It provides the
component’s accurate behavior that helps store, reuse, and
search the component on demand. The metadata reposi-
tory stores the component’s domain knowledge and helps
provide the accurate description of the component. The
description repository provides a detailed description of the
components such as function, interface, language, applied

2489Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496	

1 3

environment and so on. The component repository helps to
provide appropriate formulated accurate query terms for the
desired component. The ontology repository captures the
semantic information related to the component and provides
the suitable characteristic that helps to retrieve the desired
components. Therefore, the effective storage and retrieval
schema captures the correct domain information related
to the component, which helps analyze the desired com-
ponent’s functionality and behavior. It also gives semantic
information related to the desired component.

6 � Modeling and verification of software
component retrieval system

Model-based formal approaches are used for specifying
the behavior of a retrieval system application. Modeling is
especially helpful for all aspects of systems development,

including the need to understand and organize the specifi-
cations, and supports the automation for implementation of
system. We have created the modeling system for specifying
the characteristics of the proposed system through a mod-
eling language such as mCRL2 languages. We have writ-
ten the property of proposed system in modal mu-calculus.
The proposed model solves the challenge for the retriev-
ing and storing component. It provides the correct flow of
the sequence for selecting the appropriate component in a
repository.

In proposed system, a user provides the input query with
the help of the query interface. The query interface firstly
gives the general query terms related to the desired com-
ponent through the original query module and this module
matches these terms in the metadata repository. If match is
successfully, then the metadata repository sends the accurate

Fig. 1   The basic work-flows of mCRL2 toolset

2490	 Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496

1 3

Fig. 2   Software Component retrieval system

2491Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496	

1 3

description terms for refining the user query. After this,
query interface sends the accurate description terms related
to the components to the accurate query module. The accu-
rate query module sends these descriptions in the description
repository. Description repository checks the functionality
and detailed description of the component and sends the
detailed information related to the component to the accurate
query module. The accurate query module sends the accu-
rate component information to the component repository.
This repository sends the information related to filter com-
ponents to the accurate query module. Then, accurate query
module provides appropriate software components to the
query interface and the user downloads these components
from the repository.

If the accurate description of the component does not
match in the component repository then these components
are searched in the expert description repository which is

called as ontology repository. The query interface searches
the desired component by the accurate query term in the
ontology repository. These accurate query terms are based
on certain rules or formulas. If components match according
to accurate query terms then the user gets the appropriate
component and can downloads it from the repository. If the
query does not match then it needs to create the component
from the scratches and stores it in the component reposi-
tory. This proposed model (see Fig. 3) has been verified by
using the mCRL2 toolsets. The mCRL2 toolsets supported
LTSGraph tool that generate the state space diagram of the
proposed model as shown in Fig. 4. LTS tool provides the
node-link graph that helps to visualized all possible state of
proposed system and their transition relations.

The architecture specification of proposed system using
mCRL2 is given below:

User OrgQueMod

OntRep

AccQueMod

CompRepDesRep

QueInt MetDatRep

recDesComp

inpQT recQT

recAppComp1
senAppComp1

inpGenQueTerm1 recGenQueTerm1

recAccDesTerm1

inpGenQueTerm2

senAccDesTerm1

senAccQueTerm

senAccDesTerm2recAccDesTerm2

recGenQueTerm2

recAccQueTerm

senAppComp2

senAccDesTerm3
recAppComp2

recAccDesTerm3

recAppComp4

senAppComp4

recCompInfoD

senDesComp

senCompInfoD recCompInfo

senAppComp3senCompInfo

recAppComp3

Fig. 3   Architecture of proposed retrieval system

2492	 Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496

1 3

Fig. 4   State space diagram generated by mCRL2 for software component retrieval system

2493Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496	

1 3

Some Essential Properties of the Proposed System is
given below:

	 1.	 There can be an independent input query forward from
the user (P1).

	 2.	 After a request forward through the input query to the
query interface, eventually there will be get a appropri-
ate component (P2).

	 3.	 After an input query request has been made from the
user, systems’ response will be either get the appropri-
ate component or request to the origin query module
(P3).

	 4.	 After an input query request has been made from the
user, systems’ response will be either get the appropri-

2494	 Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496

1 3

ate component or request to the ontology repository
(P4).

	 5.	 It is not possible to have both response and request to
the original query module after request from the user
(P5).

	 6.	 Immediately after inserting the input query from user,
query interface either send the appropriate component
or send the general query term to the original query
module (P6).

	 7.	 Immediately after request from query interface, origi-
nal query module either send the accurate describing
term of component or input the accurate description of
the component to the describing repository (P7).

	 8.	 There is a possibility of a request from user, followed
by request generated from the query interface, fol-
lowed by response from the ontology repository, finally
response from the query interface. This sequence of
action may repeat infinitely (P8).

	 9.	 There is a possibility of a request from user, followed
by request generated from the query interface, followed
by request generated from the original query module,
followed by response from the metadata repository,
followed by response from the original query mod-
ule, finally response from the query interface. This
sequence of action may repeat infinitely (P9).

	10.	 There is a possibility of a request from query inter-
face, followed by request generated from the accurate
query module, followed by response from the describ-
ing repository, followed by request generated from the
accurate query module, followed by response from the
component repository, finally response from the accu-
rate query module. This sequence of action may repeat
infinitely (P10).

	11.	 The proposed system is deadlock free (P11).

prop P1 = ⟨ true ∗ . inpQT ⟩true
prop P2 =

�
true ∗

��
inpQT

�
⟨ true ∗ . appCompCom1 ⟩true

prop P3 =
�
true ∗

��
recQT

�
⟨ true ∗ . appCompCom1 ⟩true ��

�
recQT

�
⟨ true ∗ . generalQue1 ⟩true

prop P4 =
�
true ∗

��
recQT

�
⟨ true ∗ . appCompCom1 ⟩true ��

�
recQT

�
⟨ true ∗ . accQueTerm ⟩true

prop P5 =
�
true ∗

��
recQT

�
⟨ true ∗ . appCompCom1 ⟩true &&

�
recQT

�

⟨ true ∗ . generalQue1 ⟩true

prop P6 = (⟨ true ∗ .!generalQue1 ⟩true && ⟨ true ∗ . appCompCom1 ⟩true) ��

(⟨ true ∗ . generalQue1 ⟩true && ⟨ true ∗ .!appCompCom1 ⟩true)

prop P7 = (⟨ true ∗ .!accDesTerm1 ⟩true && ⟨ true ∗ . generalQue2 ⟩true) ||

(⟨ true ∗ . accDesTerm1 ⟩true && ⟨ true ∗ .!generalQue2 ⟩true)

prop P8 = ⟨ true ∗⟩ mu X . ⟨ recQT ⟩⟨ accQueTerm ⟩⟨ accComp3 ⟩

⟨ appCompCom1 ⟩X

propP9 = ⟨ true ∗⟩ mu Y . ⟨ recQT ⟩⟨ generalQue1 ⟩⟨ generalQue2 ⟩

⟨ accDesTerm2 ⟩⟨ accDesTerm1 ⟩⟨ appCompCom1 ⟩Y

prop P10 = ⟨ true ∗⟩ mu Z . ⟨ recAccDesTerm3 ⟩⟨ desComp ⟩⟨ compInfoD ⟩

⟨ compInfo ⟩⟨ appComp4 ⟩⟨ appComp2 ⟩Z

prop P11 =
�
true ∗

�
⟨ true ⟩true

Abbreviations Table 1 represents the abbreviations and
descriptions of proposed model

7 � Conclusion and future scope

The component-based software system provides more func-
tionality to develop a complex and large software system. The
essential step of this approach is to reuse the software compo-
nents already developed in the repository to build new soft-
ware systems. A software repository is not only a collection of
reusable resources, but also helps to classify, store and retrieve
reusable software components on demand. The proposed work
aims to provide an effective software component retrieval sys-
tem for locating and storing required components from the

Table 1   Abbreviations and descriptions of proposed model

S.No. Abbreviations Descriptions

1 QueInt Query interface
2 OrgQueMod Original query module
3 AccQueMod Accurate query module
4 MetDatRep Metadata repository
5 DesRep Description repository
6 CompRep Component repository
7 OntRep Ontology repository
8 inpQT Input query term
9 recQT Receive query term
10 senAppComp Send appropriate component
11 recAppComp Receive appropriate component
12 inpGenQueTerm Input general query term
13 recGenQueTerm Receive general query term
14 recAccDesTerm Receive accurate description term
15 senAccDesTerm Send accurate description term
16 senAccQueTerm Send accurate query term
17 recAccQueTerm Receive accurate query term
18 senDesComp Send description of component
19 recDesComp Receive description of component
20 senComInfoD Send component information in detail
21 recCompInfoD Receive component information in detail
22 senCompInfo Send component information
23 recCompInfo Receive component information

2495Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496	

1 3

repository. The proposed system is based on metadata and
ontology repositories. The combination of these repositories
proposes a new type of system for processing software devel-
opment. It provides the semantic information of the compo-
nent that helps to search for a more relevant component on
demand. Formal methods help to prove the correctness of the
proposed system. It verifies the correct flow of a sequence of
these repositories for finding the appropriate component. The
proposed system helps to minimize the development cost and
effort at the design time of the software system.

In the future work, we will be implemented a web-based
reusable component repository with several components
using component-based software engineering approach and
try to resolve application design issues using CBSE and
elaborated some design guidelines for CBSE.

Funding  This research received no specific grant from any funding
agency.

Declarations 

Conflict of interest  The authors declare that they have no conflict
of interest.

Human or animals rights  Research does not involve human partici-
pants and/or animals.

Informed consent  Research does not involve humans.

References

Almeida JB, Frade MJ, Pinto JS, de Sousa SM (2011) An overview
of formal methods tools and techniques. In: Rigorous software
development, pp 15–44

Aman N et al (2014) Component retrieval techniques-a systematic
review. Int J Sci Eng Res 5(1):1699–1706

Bakshi A, Bawa S (2013) A survey for effective search and retrieval
of components from software repositories. IJERT Int J Eng Res
Technol

Bawa R, Kaur I (2016) Algorithmic approach for efficient retrieval of
component repositories in component based software engineering.
Indian J Sci Technol 9(48):27–70

Bibi N, Rana T, Maqbool A, Alkhalifah T, Khan WZ, Bashir AK,
Zikria YB (2022) Reusable component retrieval: a semantic
search approach for low resource languages. In: Transactions on
Asian and low-resource language information processing

Bunte O, Groote JF, Keiren JJ, Laveaux M, Neele T, de Vink EP, Wes-
selink W, Wijs A, Willemse TA (2019) The mCRL2 toolset for
analysing concurrent systems: improvements in expressivity and
usability. In: Tools and algorithms for the construction and analy-
sis of systems: 25th international conference, TACAS 2019, Held
as part of the european joint conferences on theory and practice
of software, ETAPS 2019, Prague, Czech Republic, April 6–11,
2019, Proceedings, Part II 25, Springer, pp 21–39

Chang C-T, Chu WC, Liu C-S, Yang H (1997) A formal approach to
software components classification and retrieval. In: Proceedings

twenty-first annual international computer software and applica-
tions conference (COMPSAC’97). IEEE, pp. 264–269

Chapman JW, Reynolds D, Shreeves SA (2009) Repository metadata:
approaches and challenges. Cat Classif Q 47(3–4):309–325

Chatterjee R, Rathi H (2014) A prolific approach towards automat-
ing component repository search. In: 2014 Seventh international
conference on contemporary computing (IC3). IEEE, pp 547–552

Chythanya NK, Reddy C (2021) A survey on mechanisms of reusable
code component retrieval from component repository. In: 2021
2nd international conference on smart electronics and communi-
cation (ICOSEC). IEEE, pp 764–769

Cranen S, Groote JF, Keiren JJ, Stappers FP, De Vink EP, Wesselink
W, Willemse TA (2013) An overview of the mCRL2 toolset and
its recent advances. In: International conference on tools and algo-
rithms for the construction and analysis of systems. Springer, pp.
199–213

Desouky E, El-Khouly M (2015) A survey on clustering software
components for efficient component retrieval. J Inf Soc, ISSN
2356–9328

Dixit A, Saxena P (2009) Software component retrieval using genetic
algorithms. In: 2009 International conference on computer and
automation engineering. IEEE, pp 151–155

El-Ansari A, Beni-Hssane A, Saadi M, El Fissaoui M (2021) Papir:
privacy-aware personalized information retrieval. J Ambient Intell
Humaniz Comput 12:9891–9907

Gajala G (2013) Implementation of attribute value & faceted value
classification scheme for constructing reuse repository. Int J Com-
put Trends Technoly (IJCTT), vol 4(1). ISSN 2231–2803

Gavrilović N, Mishra A (2021) Software architecture of the internet
of things (IoT) for smart city, healthcare and agriculture: analysis
and improvement directions. J Ambient Intell Humaniz Comput
12(1):1315–1336

Groote JF, Keiren J, Mathijssen A, Ploeger B, Stappers F, Tankink C,
Usenko Y, van Weerdenburg M, Wesselink W, Willemse T et al.
(2008) The mCRL2 toolset. In: Proceedings of the international
workshop on advanced software development tools and techniques
(WASDeTT 2008), p 53

Groote JF, Mathijssen A, Reniers M, Usenko Y, Van Weerdenburg
M (2007) The formal specification language mCRL2. In: Dag-
stuhl Seminar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum
für Informatik

Guo J et al. (1999) Toward automated retrieval for a software com-
ponent repository. In: Proceedings ECBS’99. IEEE conference
and workshop on engineering of computer-based systems. IEEE,
pp. 99–105

Guo J. et al. (2000) A survey of software reuse repositories. In: Pro-
ceedings seventh IEEE international conference and workshop on
the engineering of computer-based systems (ECBS 2000). IEEE,
pp 92–100

Gupta S, Kumar A (2013) Reusable software component retrieval sys-
tem. Int J Appl Innov Eng Manag 2(1):187–94

Hojjat H, Mousavi MR, Sirjani M (2011) Formal analysis of SystemC
designs in process algebra. Fund Inform 107(1):19–42

Kavitha P, Vidhya Saraswathi P (2021) Content based satellite image
retrieval system using fuzzy clustering. J Ambient Intell Humaniz
Comput 12:5541–5552

Lewczuk K (2021) The study on the automated storage and
retrieval system dependability. Eksploatacja i Niezawodność
23(4):709–718

Lucredio D, Gavioli A, do Prado AF, Biajiz M (2004) Component
retrieval using metric indexing. In: Proceedings of the 2004 IEEE
international conference on information reuse and integration,
2004. IRI 2004. IEEE, pp 79–84

Lucredio D, Prado AFd, de Almeida ES (2004) A survey on software
components search and retrieval. In: Proceedings 30th Euromicro
Conference, 2004. IEEE, pp 152–159

2496	 Int J Syst Assur Eng Manag (December 2023) 14(6):2485–2496

1 3

Man K, van der Wulp J (2008) Specification and analysis of hardware
designs using mcrl2. In: 2008 Canadian conference on electrical
and computer engineering. IEEE, pp 000211–000214

Nie L, Zhong L (2009) Component retrieval based on domain ontology
and user interest. In: 2009 International conference on e-business
and information system security. IEEE, pp 1–4

Shi H, Chen Y, Hu J-Y (2021) Deep learning on information retrieval
using agent flow e-mail reply system for IoT enterprise customer
service. J Ambient Intell Human Comput. https://​doi.​org/​10.​1007/​
s12652-​021-​02991-7

Singh S (2013) An experiment in software component retrieval
based on metadata and ontology repository. Int J Comput Appl
61(14):1–8

Vasanthi R, Jayavadivel R, Prasadh K, Vellingiri J, Akilarasu G, Sud-
hakar S, Balasubramaniam P (2021) A novel user interaction mid-
dleware component system for ubiquitous soft computing environ-
ment by using fuzzy agent computing system. J Ambient Intell
Humaniz Comput 12:4827–4840

Xu B, An L, Thung F, Khomh F, Lo D (2020) Why reinventing the
wheels? an empirical study on library reuse and re-implementa-
tion. Empir Softw Eng 25:755–789

Yahlali M (2022) Software components selection process: compara-
tive study

Zhang L (2007) Software component repositories. In: Wiley encyclo-
pedia of computer science and engineering

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1007/s12652-021-02991-7
https://doi.org/10.1007/s12652-021-02991-7

	Formally modeling and verifying a software component retrieval system using mCRL2
	Abstract
	1 Introduction
	2 Motivation
	3 Related work
	4 Overview of mCRL2 tool set
	5 Software component storing and retrieving system
	6 Modeling and verification of software component retrieval system
	7 Conclusion and future scope
	References

