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1 Introduction

During the past 70 years, the proportional-integral-deriva-
tive (PID) controller has been adopted in a variety of control 
loops due to its simplicity and usefulness (Ziegler and Nich-
ols 1942; Ray 1989; Rivera et al. 1986; Åström et al. 1993; 
O’Dwyer 2006). Numerous modified versions of the stand-
ard form and their tuning methods have been proposed for 
improving the closed-loop response (O’Dwyer 2006). This 
improvement of the PID control technique has significantly 
impacted automation in the process industries.

The settings of a PID controller are mainly done in the 
time domain or the frequency domain. Some methods use 
information regarding the transient response of a step set-
point or the approximated model of a process. Other meth-
ods use some knowledge about the ultimate frequency values 
of a process. Although being initially well set, fixed-gain 
PID controllers often behave poorly due to process varia-
tions or uncertainties. For this reason, periodical retuning is 
required to maintain the desired closed-loop behavior. These 
shortcomings of PID controllers in dealing with complex 
process dynamics have resulted in challenges for research 
works on auto-tuning and self-tuning PID control that can 
deal effectively with a wide range of process control prob-
lems (Lee et al. 2017; Sun et al. 2020; Hernández-Alvarado 
et al. 2016; Pongfai et al. 2020; Ashida et al. 2017; Simorgh 
et al. 2020; Zhao and Xi 2020).

Lee et al. (2017) conducted a case study based on PID 
auto-tuning for the molten carbonate fuel cell (MCFC) 
operation framework. The tuning rules were computed 
based on the fractional-order plus time delay model. In 

Abstract Many processes operated in chemical process 
industries show time-varying and highly nonlinear charac-
teristics. This paper proposes an enhanced nonlinear PID 
(NPID) controller for the improvement of setpoint tracking 
or disturbance rejection responses and new tuning formu-
las for a FOPTD process model. The NPID controller has 
a structure with a first-order filter in the derivative term to 
avoid possible Derivative Kick. The parameters of the NPID 
controller are expressed in terms of the ratio L/τ of the time 
delay L to the time constant τ in the process by using the 
dimensionless approach. Repeated optimizations are per-
formed for each value over the ranges of 0.01 to 1 and 1 to 3 
of L/τ and over the ranges of 5 to 30 of the filter parameter N 
to obtain the average of optimal parameter values that mini-
mize the integral of absolute error performance criterion. By 
using the least-squares method with together the calculated 
optimal values and the rule formulas, the tuning rules are 
obtained. A set of simulation works on the five processes 
are carried out to demonstrate tracking and disturbance per-
formance and robustness against the noise of this approach.

 * Pikaso Pal 
 pikaso.iitism@gmail.com
1 Department of Mechanical Facility Control Engineering, 

Korea University of Technology and Education, 
1600 Chungjeol-ro, Dongnam-gu, Cheonan-si, 
Chungcheongnam-do, Korea

2 Department of Electrical Power and Control Engineering, 
Adama Science and Technology University, P.O. Box 1888, 
Adama, Ethiopia

3 Department of Electrical Engineering, Indian Institute 
of Technology (Indian School of Mines), Dhanbad, 
Jharkhand, India

http://orcid.org/0000-0001-9491-8362
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-023-02094-w&domain=pdf


2471Int J  Syst  Assur  Eng  Manag (December 2023) 14(6):2470–2484 

1 3

an automatic mechanical transmission system application, 
Sun et al. (2020) used a powertrain mathematical model to 
tune PID controller parameters automatically by minimizing 
the cost function in relationship with the outputs’ tracking 
errors by incorporating the Nelder-Mead method. Based on 
neural networks, Hernández-Alvarado et al. (2016) imple-
mented an auto-tune PID controller on remotely operated 
vehicles for trajectory tracking with unknown disturbances. 
Pongfai et al. (2020) designed a novel optimal PID auto-tun-
ing controller based on a swarm learning process in which 
results were performed by comparing ant colony optimiza-
tion with a new constrained Nelder–Mead algorithm, the 
genetic algorithm, the particle swarm optimization algo-
rithm, and a neural network. Ashida et al. (2017) proposed a 
parameter tuning law for an implicit self-tuning PID control 
scheme to track the desired reference model output from the 
system output. In a highly nonlinear process such as a con-
tinuously stirred tank reactor (CSTR), Simorgh et al. (2020) 
designed a self-tuning PID controller using Ziegler–Nich-
ols tuning algorithm based on online estimation methods by 
incorporating the noise, disturbance and variations in system 
dynamics. Zhao and Xi (2020) compared the manually tun-
ing PID controller and the PID controller comprising the 
adaptive genetic algorithm.

Recently, to overcome the fixed-gain PID controller’s 
poor performance, nonlinear PID control strategies using 
nonlinear functions to modify the structure of the conven-
tional PID controller have been actively conducted (Seraji 
1998, 1997; Han 2009; Guerrero et al. 2019; Hua et al. 
2020). Seraji (1998, 1997) introduced a class of nonlinear 
PID controllers which consist of a nonlinear gain in cas-
cade with a linear PID controller to scale the error. Han 
(2009) proposed a nonlinear PID controller with nonlinear 
gain functions combining e(t), ∫e(t)dt and ė(t) to achieve 
better tracking and noise rejection. An approach based on a 
novel nonlinear PID-type controller with an auto gain tun-
ing mechanism was proposed by Guerrero et al. (2019) for 
a rotorcraft-based transportation system, which can achieve 
efficient payload positioning and aggressive maneuvering 
control. A decoupled nonlinear PID controller was devel-
oped via the Lyapunov design by Hua et al. (2020) for tra-
jectory tracking control of an underwater vehicle, which 
proved the stability of the closed-loop system and improved 
robustness.

By the introduction of nonlinearities in their PID control-
ler structure, the responses were successfully improved for 
some types of processes. Nevertheless, in most cases, the 
number of parameters to be tuned is greater than that of the 
standard PID controller, which causes difficulties in both 
tuning and implementation.

For this reason, the author introduced a nonlinear PID 
(NPID) controller that scales the error inputted by the 
integrator in the standard PID controller frame and the 

setpoint tracking rules for the first-order plus time delay 
(FOPTD) model based on the Integral of Squared Error 
(ISE), the Integral of Absolute Error (IAE), and the Inte-
gral of Time multiply Absolute Error (ITAE) performance 
indices (Jin 2019). In this controller structure, the number 
of the tuning parameters is kept at 3, and the integrator 
wind-up can be partially prevented by scaling down large 
errors. Still, due to the use of the pure derivative term, 
there is a possibility that abrupt setpoint change or high-
frequency noises will cause Derivative Kick.

In order to alleviate this limitation, we present an 
NPID controller that is of the form employed in industrial 
sites by supplementing the ideal derivative term with a 
first-order filter. Since many industrial processes can be 
approximated by the FOPTD model and PID controllers 
are usually tuned to fit for either setpoint tracking or dis-
turbance rejection, we propose new tuning formulas for 
setpoint tracking and disturbance rejection for the NPID 
controller based on a genetic algorithm for optimization, 
and the least squares method for curve fitting. Three steps 
are here adopted. The first step involves using the dimen-
sionless approach to express the parameters of the NPID 
controller in terms of the ratio L/τ of the time delay L 
to the time constant τ in the FOPDT process model. The 
second step produces the optimum NPID parameters to 
minimize the IAE performance criterion. Repeated optimi-
zations are performed for different values of L/τ and N to 
obtain their averaged values. The last step obtains the tun-
ing formulas using the least squares method with together 
the calculated values and the rule formulas.

The paper is organized as follows: Sect. 1 shows the 
direction of this study through a survey of existing methods. 
Section 2 gives a brief overview of the author’s previous 
NPID controller and proposes an enhanced NPID controller. 
Section 3 obtains new tuning formulas for the NPID con-
troller. Section 4 verifies the effectiveness of the proposed 
method through simulation of five processes, and finally, 
Sect. 5 offers concluding remarks.

2  Nonlinear PID controller

2.1  Structure of the NPID controller

NPID controller, which employs a nonlinear gain in cas-
cade with the integral action of a conventional PID control-
ler. Figure 1 shows the NPID control system. In Fig. 1, ys 
denotes the setpoint, y the output (or the process variable) 
and u the control input, e the error between the setpoint and 
the output, v the scaled error, and Gp(s) the process. (1)-(2) 
are the linear part transfer functions of the NPID controller, 
given by
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where Kp, Ti and Td are the proportional gain, the integral 
time and the derivative time, respectively. The scaled error 
v(t) in the integral term is described by

k(e) is a nonlinear gain defined by

where σ denotes the difference between the current setpoint 
value and the previous value in the step-type setpoint or 
does dGp(0) in the step-type disturbance d and Gp(0) is the 
steady-state gain of the process.

The disadvantage of the ideal derivative term in (1) is that 
a sudden change in the setpoint or/and high-frequency noises 
coming into control loops will cause a phenomenon known 
as Derivative Kick. Due to this, in many field applications, 
PID controllers with a first-order filter in the derivative term 
are mainly adopted. In this paper, we propose an NPID con-
troller, as shown in Fig. 2, which is an improvement of the 
NPID controller in Fig. 1.

The time-domain equation of the proposed NPID control-
ler is given by

(1)
Upd

E(s)
= Kp(1+Tds)

(2)
Ui(s)

V(s)
=

Kp

Tis

(3)v(t) = k(e)e(t)

(4)k(e) = exp

(

−
e2

2�2

)

where upi and ud denote the PI action and the D action, 
respectively and N is a user-defined parameter. By using the 
approximation of a differentiator, the magnitude of its fre-
quency KpTd�∕

√

1 + T2
d
�2∕N2 limited to NKp as ω → ∞. 

This means that high-frequency measurement noise is ampli-
fied at most by a factor NKp. N is appropriately selected 
according to the noise environment and typical values of N 
are 5 to 30 (O’Dwyer 2006; Åström et al. 1998).

The NPID controller given by (3)—(5) can be applied 
to linear and nonlinear processes, but many industrial pro-
cesses can be approximated with the FOPTD model, i.e., a 
commonly used model. So we obtain new tuning rules based 
on the FOPTD process model given by

where K, τ, and L denote the steady-state gain, the time con-
stant, and the time delay, respectively.

2.2  Dimensionless NPID control system 

Defining dimensionless variable t′ = t/τ and letting 
u(τt′) = u(t�) , e(τt′) = e(t�) and v(τt′) = v(t�) to simplify the 
linear parts of the NPID controller in (5) gives

In a similar fashion, applying the dimensionless approach 
with defining y(τt′) = y(t�) to (6) yields

(7) and (8) can be expressed in the form of the transfer 
function as

(5)

u(t) =up(t) + ui(t) + ud(t),

up(t) =Kpe(t),

ui(t) =
Kp

Ti ∫ v(t)dt,

Td

N

dud(t)

dt
+ ud(t) =KpTd

de(t)

dt

(6)�
dy(t)

dt
+ y(t) = Ku(t − L)

(7)

u(t�) =up(t
�) + ui(t

�) + ud(t
�),

up(t
�) =Kpe(t

�),

ui(t
�) =

Kp�

Ti ∫ v(t�)dt�,

Td

N�

dud(t
�)

dt�
+ ud(t

�) =
KpTd

�

de(t�)

dt�
.

(8)dȳ(t
�

)

dt
�

+ ȳ(t
�

) = Kū
(

t
�

−
L

𝜏

)

(9)U(s) = Kp[E(s) +
1

Tis
V(s) +

Tds

1 +
Td

N
s

E(s)]

Fig. 1  The NPID control system

Fig. 2  The proposed NPID control system
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where Ti = Ti∕� , Td = Td∕� , and L = L∕�.
Combining the process gain K with the proportional gain 

Kp of the NPID controller and applying a disturbance on the 
input side yields the block diagram of the dimensionless 
NPID control system. By doing this, the number of process 
parameters becomes only one, and the tuning parameters 
KKp, Ti and Td of the NPID controller become functions 
of L = L/τ.

3  Tuning formulas of the NPID controller

3.1  Performance Index

When tuning one degree of freedom PID controllers, it is 
difficult to simultaneously achieve good transient behavior 
toward changes in setpoint and an appropriate reduction of 
disturbances. The following shows an example of this. With 
K = 1, τ = 1, L = 1, and N = 10 in Fig. 2, the result of applying 
a non dominated sorting genetic algorithm (NSGA-II) to the 
multiobjective problem of minimizing a setpoint tracking 
performance index and another disturbance rejection per-
formance index is shown in Fig. 3. It can be seen from the 
optimal Pareto front in Fig. 3 and responses in Fig. 4 that are 
tuning for good setpoint tracking degrades disturbance rejec-
tion, whereas tuning for fast disturbance rejection results 
in poor setpoint tracking. Therefore, they are usually tuned 
to fit for either setpoint tracking or disturbance rejection, 
depending on the purpose of long-term use.

As seen in Fig. 5 with a choice of N, the NPID control-
ler has three tuning parameters tuning parameters KKp, 
Ti(= Ti∕�) and Td(= Td∕�) functions of L(= L∕�) . Finding 

(10)
Y(s)

U(s)
=

Ke−Ls

s + 1

tuning formulas for the FOPTD process model provides 
the smallest overshoot, fastest rise time, or quickest set-
tling time leads to optimization problems. Applying a GA 
to these optimization problems is one of the most chal-
lenging steps and requires the design of objective func-
tions. In order to combine all of these objectives, we use 
a single performance index in terms of the integral of the 
absolute value of the error (IAE) as

where y(t�) is the output of the dimensionless system.

3.2  Optimum parameters

The average of 20 repeated calculations was performed 
for each value over the ranges of 0.01 to 1 and 1 to 3 of 
L/τ and over the ranges of 5 to 30 of N to obtain a set of 
optimal parameters that minimize IAE and was plotted 
in Fig. 6 for setpoint tracking and Fig. 7 for disturbance 
rejection, respectively. The points marked ‘◯’ in the fig-
ures denote the averaged results.

(11)IAE = ∫
∞

0

∣ ys(t
�) − y(t�) ∣ dt�
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Fig. 5  Dimensionless NPID control system



2474 Int J  Syst  Assur  Eng  Manag (December 2023) 14(6):2470–2484

1 3

3.3  Tuning rule formulas

With the optimally calculated values, the following empiri-
cal formulas of the form used in O’Dwyer (2006), Zhuang 
and Atherton (1993) were adopted as the models of the curve 
fitting.

(12)
Kp = a1

(L
�

)b1
,
Ti
�

= a2 + b2
(L
�

)

and
Td
�

= a3
(L
�

)b3
for setpoint tracking

By using the least squares method, the parameters of 
these formulas over the given ranges of L/τ and N were 
obtained for setpoint tracking and disturbance rejection 
and listed in Tables 1, 2, 3, 4, respectively.

Figures 8–9 show the 3D surfaces of the interpolated 
tuning rules combining Table 1 with Table 2, and Table 3 
with Table 4, respectively. The figures imply that there are 
differences to some extent for N, but not large.

(13)
Kp = a1

(L
�

)b1
,
Ti
�

= a2
(L
�

)b2

and
Td
�

= a3
(L
�

)b3
for disturbance rejection

Fig. 6  Optimal parameter 
values for setpoint tracking
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Fig. 7  Optimal parameter val-
ues for disturbance rejection

Table 1  NPID controller tuning rules for setpoint tracking 
(0.01 ≤ L/τ < 1)

N Dimensionless parameters

KKp Ti /τ Td /τ

5
0.9581

(

L

�

)−0.9141
0.6790 + 0.1889

L

� 0.2948

(

L

�

)0.8749

10
1.0103

(

L

�

)−0.9035
0.6845 + 0.1686

L

� 0.3141

(

L

�

)0.8540

20
1.0246

(

L

�

)−0.9065
0.6854 + 0.1714

L

� 0.3305

(

L

�

)0.8352

30
1.0360

(

L

�

)−0.9058
0.6886 + 0.1601

L

� 0.3294

(

L

�

)0.7878

Table 2  NPID controller tuning rules for setpoint tracking 
(1 ≤ L/τ < 3)

N Dimensionless parameters

KKp Ti /τ Td /τ

5
1.0625

(

L

�

)−0.4857
0.5593 + 0.2867

L

� 0.3105

(

L

�

)0.8029

10
1.0901

(

L

�

)−0.4830
0.5743 + 0.2931

L

� 0.3229

(

L

�

)0.7971

20
1.1161

(

L

�

)−0.4903
0.5699 + 0.2985

L

� 0.3442

(

L

�

)0.7846

30
1.1261

(

L

�

)−0.4849
0.5670 + 0.2987

L

� 0.3573

(

L

�

)0.7956
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4  Simulation results

The objective of simulation works on five processes includ-
ing a nonlinear CSTR process is to compare the responses 
of the proposed method with those of the PID controllers 
proposed by the Lopez setting (hereafter referred to as 
PID-Lopez) (Lopez and Murril 1967) and the CHR setting 

(hereafter referred to as PID-CHR) (Chien et al. 1972). In 
the case of the CSTR process, the response of the proposed 
method is compared with that of the adaptive controller pro-
posed by Chen and Peng ( 1999) (hereafter referred to as 
AC-Chen). N is set to 10 for the NPID controller.

4.1  Case 1: FOPTD processes

The transfer functions of the FOPTD processes are given by

The ratio L/τ of the time delay to the time constant in each 
process Gp1(s), Gp2(s), and Gp3(s) is 0.5, 1, and 2, respec-
tively. The controller settings for these three processes using 
the PID-Lopez method, the PID-CHR method and the pro-
posed method are summarized in Table 5. The responses 
for unit step changes in setpoint or disturbance using these 
settings are plotted in Figs. 10, 11, 12.

In order to assess the performance of the three methods 
quantitatively, rise time tr = t95–t5, overshoot Mp, 2% settling 
time ts, and the integral of absolute error IAE = ∫ ∞

0
|e(t)|dt 

were obtained for setpoint tracking and perturbance peak 
Mpeak, recovery time trcy and IAE for disturbance rejection. 
Mpeak denotes |ymax-ys| or |ymin-ys| and trcy does the time that 
it takes for y to recover within 2% of ys. It is evident in the 
figures that the responses are faster when using the NPID 
controller, without a significant increase of the overshoot 
and settling time. More precisely, compared with the other 
methods in Table 6, tr of the NPID controller is smaller 

(14)Gp1(s) =
e−5s

1 + 10s

(15)Gp2(s) =
e−10s

1 + 10s

(16)Gp3(s) =
e−20s

1 + 10s

Table 3  NPID controller tuning rules for disturbance rejection 
(0.01 ≤ L/τ < 1)

N Dimensionless parameters

KKp Ti /τ Td /τ

5
1.2472

(

L

�

)−0.9796

1.1409

(

L

�

)0.8224

0.4024

(

L

�

)0.9638

10
1.3239

(

L

�

)−0.9714
1.1091(

L

�
)0.8101

0.4304

(

L

�

)0.9578

20
1.4159

(

L

�

)−0.9322

1.0958

(

L

�

)0.8076

0.4362

(

L

�

)0.8821

30
1.3829

(

L

�

)−0.9718

1.1008

(

L

�

)0.8189

0.4806

(

L

�

)0.9489

Table 4  NPID controller tuning rules for disturbance rejection 
(1 ≤ L/τ < 3)

N Dimensionless parameters

KKp Ti /τ Td /τ

5
1.2612

(

L

�

)−0.6358

0.9673

(

L

�

)0.4300

0.3979

(

L

�

)0.6449

10
1.3396

(

L

�

)−0.6479

0.9654

(

L

�

)0.4455

0.4415

(

L

�

)0.6138

20
1.3681

(

L

�

)−0.6479

0.9662

(

L

�

)0.4515

0.4950

(

L

�

)0.5839

30
1.3891

(

L

�

)−0.6579

0.9580

(

L

�

)0.4659

0.5365

(

L

�

)0.5594

Fig. 8  Tuning rule surfaces for setpoint tracking: a KKp versus L/τ and N; b Ti/τ versus L/τ and N; c Td/τ versus L/τ and N 
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while IAE is least, and both Mp and ts are reasonable in 
the case of setpoint tracking. Both the PID-Lopez method 
and the proposed method give better closed-loop responses 
with smaller IAE and shorter trcy. In contrast, the PID-CHR 
method yields sluggish disturbance rejection performances 
with larger IAE and longer trcy.

4.2  Case 2: Fourth‑order process

Consider a 4th-order process used in Åström et al. (1998):

There are several parameter estimation techniques for 
approximating the 4th-order process to a FOPTD model 
(Skogestad 2004; Young 1981).The estimates of the FOPTD 
model are K = 0.36, τ = 12.28, and L = 5.20. These values 
were used for the settings of the PID controller and (17) was 
used for the NPID controller tuning and simulation. Control-
ler settings are summarized in Table 7. Figure 13 shows a 
comparison of the unit step responses of the PID and NPID 
control systems. It is seen in Fig. 13 that the response of the 

(17)Gp4(s) =
0.36(1 − s)e−s

(12s + 1)(3s + 1)(0.2s + 1)(0.05s + 1)

NPID controller is clearly better than those of the others. 
Tables 8 and  9 list the quantitative results obtained from 
simulation.   

4.3  Case 3: CSTR process

Consider a CSTR model used in Chen and Peng (1999). The 
mathematical model is given by

where x1 and x2 are the concentration C and the temperature 
T, respectively; y and u are the outlet temperature of the 
reactant and the temperature of cooling water, respectively; 
d1 and d2 disturbances; Da is the Damökhler number; H is 
the heat of reaction; β the heat transfer coefficient; γ = E ̸ RTf, 

(18a)ẋ1 = −x1 + Da(1 − x1) exp

(

x2

1 + x2∕𝛾

)

+ d1,

(18b)

ẋ2 = −(1 + 𝛽)x2 + HDa(1 − x1) exp

(

x2

1 + x2∕𝛾

)

+ 𝛽u + d2,

(18c)y = x2,

Fig. 9  Tuning rule surfaces for disturbance rejection: a KKp versus L/τ and N; b Ti/τ versus L/τ and N; c Td/τ versus L/τ and N 

Table 5  Settings for setpoint 
tracking and disturbance 
rejection on Processes 1–3

Process Tuning Method Setpoint tracking Disturbance rejection

Kp Ki Kd Kp Ki Kd

1 PID-Lopez 1.739 0.126 2.796 2.616 0.367 5.001
PID-CHR 1.900 0.136 4.465 2.400 0.240 5.040
NPID-Proposed 1.890 0.246 3.284 2.596 0.410 5.752

2 PID-Lopez 0.965 0.063 2.953 1.357 0.114 5.170
PID-CHR 0.950 0.068 4.465 1.200 0.060 5.040
NPID-Proposed 1.090 0.126 3.520 1.339 0.139 5.914

3 PID-Lopez 0.535 0.027 3.119 0.704 0.036 5.345
PID-CHR 0.475 0.034 4.465 0.600 0.015 5.040
NPID-Proposed 0.780 0.067 4.376 0.855 0.065 5.776
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E activation energy [cal/mol]; and R is the gas constant [cal/
mol–K]. x1, x2, u, and t are non–dimensionalized by

where Cf, Tf, Ff and C, T, F denote the concentration [mol/
m3], temperature [K], and flow  [m3/sec] at the inlet and 
outlet of the reactant, respectively. Tcf, Fcf and Tc, Fc are 
the temperature and flow at the inlet and outlet of cooling 
water, respectively. V is the volume of the CSTR  [m3]. The 
open-loop process has nominal values Da = 0.072, γ = 20, 
H = 8, and β = 0.3 (Chen and Peng 1999). With these nomi-
nal values, the process has two stable equilibrium points 
xa = [0.144, 0.886]T and xc = [0.765, 4.705]T, and one unsta-
ble equilibrium point xb = [0.447, 2.752]T.

In the case of an exothermic reaction, a coolant stream 
needs to be passed through the cooling jacket to remove 
the extra heat and maintain the reaction temperature. As the 
flow–changing valve operation as a control input for control-
ling the outlet temperature Tc of the jacket has a physical 

(19)x1 =
Cf − C

Cf

, x2 =
T − Tf

Tf
� , u =

Tc − Tf

Tf
� , t = t�

Ff

V
.

limit, the input saturation is limited between umin = -5 and 
umax = 5. In the case of the AC-Chen method, the parameters 
η = 0.2, m = 5, and sign(∂y/∂x) = 1 were used for the adaptive 
controller.

4.3.1  Setpoint tracking response

Since the CSTR process in (18) is highly nonlinear, the 
NPID controller was directly tuned using a GA while step 
setpoint signals were changed from 0.886 to 2.752 at t = 1 
and from 2.752 to 4.705 at t = 16 and vice versa, as shown 
in Fig. 14. This tuning results in the settings Kp = 91.056, 
Ki = 0.026 and Kd = 11.561 for setpoint tracking.

Again, it is seen that the response of the proposed method 
is better than that of the AC-Chen method. Table 5, which 
summarizes the quantitative results, also proves this.

4.3.2  Disturbance rejection response

The settings of the NPID controller were obtained in a simi-
lar manner while applying step disturbances d1 = 0.2, d2 = 0.2 

Fig. 10  Unit step responses of 
the three methods on Process 1: 
a setpoint b disturbance

0 10 20 30 40 50

(a)

t

0

0.5

1

1.5

y(
t)

PID-Lopez
PID-CHR
NPID-Proposed

0 10 20 30 40 50

1

1.25

1.5

y(
t)

PID-Lopez
PID-CHR
NPID-Proposed

(b)

t



2479Int J  Syst  Assur  Eng  Manag (December 2023) 14(6):2470–2484 

1 3

at t = 1 and then d1 = -0.2, d2 = -0.2 at t = 16 with constant 
ys of 2.752. The results are Kp = 64.997, Ki = 129.999 and 
Kd = 20.002 for disturbance rejection. The response of the 
proposed method is shown in Fig. 15, together with that of 
the AC-Chen method.

From Fig. 15 and Table 10, it is seen that Mpeak, trcy and 
IAE of the proposed method are better than those of the 
AC-Chen method.

4.3.3  Noise elimination response

In order to validate the robustness of the proposed method 
against noise, a Gaussian noise N(0,0.032) equivalent to 
about 15% of the change in the setpoint value was applied 
to the output stage. Figure 16 shows the responses of the 
two methods.

Comparing Fig. 16 with Fig. 14(a) without noise, the pro-
posed method shows a satisfactory response even in a noisy 
environment.

5  Conclusion

This paper has proposed an enhanced NPID controller 
to improve setpoint tracking or disturbance rejection 
responses and avoid possible Derivative Kick. The param-
eters of the NPID controller were expressed in terms of 
L/τ using the dimensionless approach. Repeated optimiza-
tions of 20 were performed for each value over the ranges 
of 0.01 to 1 and 1 to 3 of L/τ and over the ranges of 5 
to 30 of N to obtain the averaged parameter values that 
minimize the IAE criterion. By using the least-squares 
method with together the calculated values and the rule 
formulae, the new tuning rules have been obtained. A set 
of simulation works on the five processes have depicted 
that the proposed method demonstrated good tracking and 
disturbance performance and robustness against noise 
than the other methods. The proposed method worked 
well for particularly the higher-order process and the non-
linear process. In future works, the proposed rules can be 
applied to an auto-tuning approach.

Fig. 11  Unit step responses of 
the three methods on Process 2: 
a setpoint b disturbance
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Fig. 12  Unit step responses of 
the three methods on Process 3: 
a setpoint b disturbance
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Table 6  Performance 
comparison of the three 
methods on Processes 1–3

Process Tuning method Setpoint tracking Disturbance rejection

tr Mp ts IAE Mpeak trcy IAE

1 PID-Lopez 6.226 4.175 16.960 8.331 0.397 35.846 3.320
PID-CHR 5.514 4.219 28.688 8.533 0.407  > 50 6.242
NPID-Proposed 4.002 10.355 19.766 7.044 0.404 41.609 3.348

2 PID-Lopez 12.388 2.049 28.471 8.112 0.633 66.947 4.709
PID-CHR 13.127 6.031 68.887 8.813 0.633  > 100 11.551
NPID-Proposed 7.971 10.238 40.976 6.905 0.638 67.631 4.816

3 PID-Lopez 58.384 – 98.206 7.417 0.865 105.630 5.675
PID-CHR 30.503 9.475 125.706 7.498 0.865  > 250 16.919
NPID-Proposed 13.666 19.962 74.509 5.331 0.866 122.271 4.562
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Table 7  Controller settings for 
Process 4

Tuning method Setpoint tracking Disturbance rejection

Kp Ki Kd Kp Ki Kd

PID-Lopez 5.565 0.333 9.412 8.505 1.100 16.923
PID-CHR 3.936 0.321 10.233 6.232 0.499 13.610
NPID-Proposed 9.495 0.952 24.315 17.094 3.175 40.362

Fig. 13  Unit step responses of 
the three methods on Process 4: 
a setpoint b disturbance
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Table 8  Performance 
comparison of the three 
methods on Process 4

Tuning Method Setpoint tracking Disturbance rejection

tr Mp ts IAE Mpeak trcy IAE

PID-Lopez 12.783 – 34.951 8.345 0.091 38.241 1.159
PID-CHR 17.952 2.794 44.026 9.967 0.106 48.377 2.012
NPID-Proposed 3.712 6.088 15.216 4.859 0.068 33.436 0.486
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Table 9  Performance 
comparison of the two methods 
on the CSTR process

Setpoint Method ys = 0.886 → 2.752 ys = 2.752 → 4.705

tr Mp ts IAE tr Mp ts IAE

Up AC-Chen 1.053 13.167 3.386 1.373 0.606 32.050 2.392 1.397
NPID-Proposed 1.026 1.082 1.163 1.136 0.649 4.482 1.111 1.033

Down AC-Chen 0.807 9.371 2.976 1.098 0.983 3.324 2.079 1.200
NPID-Proposed 0.797 0.927 0.934 0.922 0.921 0 1.113 1.145

Fig. 14  Step responses 
of the two methods for 
changes in setpoint: a 
ys = 0.886 → 2.752 → 4.705, b 
ys = 4.705 → 2.752 → 0.886.
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