
Vol.:(0123456789)1 3

Int J Syst Assur Eng Manag (December 2023) 14(6):2345–2353
https://doi.org/10.1007/s13198-023-02081-1

ORIGINAL ARTICLE

Concurrent fault localization using ANN

Debolina Ghosh1 · Jay Prakash Singh2 ·
Jagannath Singh3

Received: 4 November 2022 / Revised: 3 July 2023 / Accepted: 25 July 2023 / Published online: 19 September 2023
© The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and
The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2023

Abstract The software is becoming more capable of pro-
viding better solutions to our day-to-day activities. In order
to increase performance, concurrent programs are always
preferred. But the concurrency produces obstacles to differ-
ent phases of software development, including testing and
debugging. Finding faults in a concurrent program is always
a challenging task due to the presence of many threads over-
lapping each other, problems in sharing memories, etc. In
this paper, we have proposed a Back propagation neural net-
work (BPNN) to generate ranks for each class of a given pro-
gram. These ranks indicate the probability of a fault being
present in each class. The model is trained using test case
coverage data, and it is tested using virtual test cases. In all
three case studies, the fault localization technique assigned
the highest rank to the classes where the actual faults were
implanted. By using BPNN and training the model with test
case coverage data, the technique shows promising results in
identifying the classes where faults are likely to occur. This
can greatly aid in the testing and debugging processes of
concurrent programs, improving their overall performance.

Keywords Fault localization · Artificial neural network ·
Back propagation · Concurrent programs · Concurrent fault
localization · Benchmark programs

1 Introduction

Software fault localization is the process of identifying the
specific location or locations in the source code of a software
program where a fault or error is likely to have occurred.
This process is an important step in software debugging, as
it helps developers narrow down the root cause of a prob-
lem and fix it more efficiently. Localizing faults is a more
tedious task than testing (Chauhan 2010). Traditional fault
localization techniques, as found in the literature, perform
well for sequential programs. Traditional fault localization
techniques are commonly used in software development
and debugging to identify the location of faults in software
programs. These techniques do not rely on advanced statisti-
cal analysis or machine learning algorithms but rather use
heuristics or manual methods to identify suspicious code
locations (Zakari et al. 2020; Shaikh et al. 2023). A few
modern techniques have been introduced to improve the per-
formance of testing techniques (Shaikh et al. 2021, 2022,
2021; Almomani et al. 2015).

Spectrum-based fault localization (SBFL) is a widely
used technique for identifying the location of faults in soft-
ware programs (Sarhan and Beszédes 2022; Jafarzadeh et al.
2022). It is based on the idea that the behavior of a faulty
program during execution, as reflected in the outcomes of
test cases, is different from the behavior of a correct pro-
gram. Spectrum-based fault localization techniques use
information about the outcomes of program executions, such
as passing or failing test cases, to identify suspicious code
locations that are likely to contain the fault. The performance

 * Debolina Ghosh
 debolina442@gmail.com

 Jay Prakash Singh
 jaykiit.research@gmail.com

 Jagannath Singh
 jagannath.singhfcs@kiit.ac.in
1 Department of Information Technology, Manipal University

Jaipur, Jaipur, Rajasthan, India
2 Department of Computer Science and Engineering, Manipal

University Jaipur, Jaipur, Rajasthan, India
3 School of Computer Engineering, KIIT Deemed to be

University, Bhubaneswar, Odisha, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-023-02081-1&domain=pdf
http://orcid.org/0000-0003-3169-2065

2346 Int J Syst Assur Eng Manag (December 2023) 14(6):2345–2353

1 3

of existing fault localization techniques is not satisfactory for
concurrent programs (Shaikh et al. 2020).

In concurrent programs, identifying the location of bugs
or faults is more difficult as the faults occur during rum time
(Bianchi et al. 2017). Fault detection in concurrent programs
can be a challenging task due to the inherent complexity of
concurrent execution. Concurrent programs are designed to
run multiple threads or processes concurrently, often sharing
resources and interacting with each other, which can lead to
various types of faults or errors. Though the Spectrum-based
Fault Localization (SBFL) technique can work for finding
concurrent faults, the results are not satisfying (Ghosh and
Singh 2020). Hence, there is a need for a new fault localiza-
tion technique that can locate the faults or bugs present in
concurrent programs.

In this paper, we have focused on identifying the faults
present in concurrent program. Due to the uncertainty pre-
sent in the concurrent program such as atomicity violations,
thread interleaving, memory access patterns, etc., identifying
the faults at the statement level of the concurrent program
is very challenging. Therefore, we have tried to consider
the function or branch level in our proposed approach to
locating the fault in the program. In our approach, We have
considered one test case at a time for the given concurrent
program, then find the result of the test case i.e., pass or
fail, and the function or branch coverage information against
that particular test case. These information are considered
as inputs for the back-propagation neural network. After
tuning, the model generates a suspiciousness score for each
branch or function. The branch or function with a higher
suspiciousness score is more likely to be faulty. Hence, the
proposed technique helps the programmer to find the faulty
branch so that only the statements of the faulty branch need
to be examined.

The other sections of this paper are organised as follows:
In Sect. 2, we discuss some basic concepts that are required
to understand the proposed technique. Closely related works
are described in Sect. 3. Section 4, represents our proposed
technique, and implementation details are presented in
Sect. 5. Finally, Sect. 7 concludes the paper.

2 Basic concepts

In this section, we explain the basics of Concurrency, faults
in concurrent programs, and a brief idea of an artificial neu-
ral network and its advantages in fault localization.

2.1 Concurrency in programming

Concurrency in programming refers to the ability of
a program to execute multiple tasks simultaneously, or
concurrently, rather than sequentially (Roscoe 1998).

It allows a program to make progress on multiple tasks
at the same time, even on a single processor system, by
interleaving the execution of tasks. Concurrency is an
important concept in modern programming as it enables
efficient utilization of system resources, improves per-
formance, and enhances responsiveness in concurrent or
parallel environments. Concurrency introduces challenges
such as race conditions, deadlocks, and synchronization
issues that need to be carefully managed to ensure the
correct behavior of concurrent programs. Techniques like
locks, semaphores, and atomic operations can be used to
synchronize access to shared resources and prevent data
races. Properly designed concurrent programs can signifi-
cantly improve performance and responsiveness, leading
to more efficient and scalable software systems (Singh and
Mohapatra 2018).

2.1.1 Advantages of concurrency

1. Now a days, CPU’s are multi-core. Any single-threaded
program utilises only one core. So it doesn’t affect CPU
performance. But multi-threaded program use multiple
cores of the CPU, so the performance of CPU utilization
increases.

2. Multi-threaded programs allow a series of program to
run concurrently. Hence, it increases the response speed
of the program.

2.1.2 Disadvantages of concurrency

1. Concurrent program increase context switching, which
has adverse effects on CPU execution.

2. Multi-threaded program may cause deadlock and starva-
tion.

3. Concurrent programs may limit resources after execu-
tion.

2.2 Concurrency issues in software testing

Concurrency can introduce several challenges in software
testing, as the concurrent execution of multiple tasks can
impact the behavior and correctness of a software system.
Faults or bugs in concurrent programs can occur during the
thread interleaving in run-time (Angus et al. 1990). Faults
in concurrent programs not only occur during normal sce-
narios of computation but also due to thread interleaving,
concurrent data access, and shared memory access. Hence,
finding the faults present in a concurrent program is a more
challenging task compared to sequential programs (Tu et al.
2019).

2347Int J Syst Assur Eng Manag (December 2023) 14(6):2345–2353

1 3

2.3 Artificial neural network

An artificial neural network (ANN) is a type of computa-
tional model that is inspired by the structure and function
of the human brain (Yegnanarayana 2009). It is a type of
machine learning algorithm that is used for tasks such as
pattern recognition, classification, regression, and optimiza-
tion. ANNs are a key component of deep learning, which is a
subset of machine learning that focuses on neural networks
with multiple hidden layers, enabling them to learn com-
plex representations of data. ANNs continue to be an active
area of research, with ongoing efforts to improve their per-
formance, interpretability, and robustness for various real-
world applications. ANNs consist of interconnected nodes or

neurons organized in layers that receive input data, process
it through activation functions, and produce output predic-
tions. An ANN specifically uses a learning algorithm that
trains the dataset and modifies the weight of each neuron
based on the error rate between actual and target output.
After the model is trained, it can predict the new set of data
(Guillod et al. 2020).

2.3.1 Back propagation neural network

Backpropagation, short for “backward propagation of
errors," is a widely used supervised learning algorithm used
in artificial neural networks (ANNs) for training the network
to make accurate predictions (Singh and Sahoo 2011). It is
a method used to adjust the weights of connections between
neurons in an ANN during the training process. Proper tun-
ing of the networks decreases the rate of error and, hence,
increases the reliability of the model. Figure 1 shows the
working principle of the back propagation technique.

3 Literature review

In this section, we review some of the fault localization
techniques present in the literature. We have reviewed
some works related to the application of Machine learning
for software fault localization and some works related to
fault localization techniques in concurrent programs. A few
related research works are presented in Table 1.

You et al. (2013) focused on the importance of the
weights of failing and passing test cases to the similarity Fig. 1 Back propagation

Table 1 Literature survey

Author Methodology Results

You et al. (2013) Modify the weights of failing and passing test cases Modified weight values of failing test cases to are able to
locate the faults more accurately

Chakraborty et al. (2018) EnSpec: a new code entropy to spectrum based tech-
nique

makes the fault localization more robust and effective

Wong et al. (2011) Radial basis function (RBF) based fault localization
technique

The output of the network shows the suspiciousness of
the each statement

Zheng et al. (2016) Deep learning based fault localization technique Results shows that only 10% statements need to be
examine to find the buggy statement

Al Qasem and Akour (2019) Fault prediction technique on the basis of Multi-layer
perceptrons (MLPs) and Convolutional Neural Net-
work (CNN)

Result shows that CNN outperforms the MLP

Park et al. (2010) New dynamic fault localization technique Falcon The tool generates the suspicious score of each data-
access pattern

Park et al. (2015) An unified fault localization tool UNICORN Generates ranks of most important non-deadlock bugs
Koca et al. (2013) Tool SCRUF which uses Spectrum-Based fault locali-

zation technique to find concurrency bugs
Calculate the suspicious score of each pattern in concur-

rent program
Alves et al. (2017) Technique that finds the concurrent faults by using

bounded model checking and code transformation
process

The result shows that the tool can able to locate 84%
faults present in the benchmark programs

2348 Int J Syst Assur Eng Manag (December 2023) 14(6):2345–2353

1 3

coefficients in fault localization. They have used modified
similarity coefficients and analyzed how failing test cases
can have a greater contribution than passing test cases. Their
study shows that modifying the weight values of failing test
cases to similarity coefficients is able to locate the faults
more accurately. Wong et al. (2016) provided a brief study
on different fault localization techniques. According to their
analysis, static and dynamic slicing techniques were popular
from 2004 to 2007. But, since 2008, spectrum-based tech-
niques have become more popular, as they have made a big
contribution to automated fault localization. Their study also
shows that different evaluation metrics such as EXAM score,
T-Score, P-Score, N-Score, etc can be applied to identify the
accurate faulty statement.

Chakraborty et al. (2018) proposed a new fault locali-
zation approach called EnSpec i.e., they have introduced a
new code entropy to the spectrum-based technique. The code
entropy is related to the faulty lines executed by the failing
test cases. Hence, it makes fault localization more robust and
effective. Kim et al. (2016) applied 32 different spectrum-
based formulas, and based on the results, they clustered the
similar categories into three different groups. To avoid the
limitations of each group, a test case optimization technique
is implemented. This technique increases the performance
of the fault localization technique.

Wong et al. (2011) proposed a Radial Basis Function
(RBF) based fault localization technique. The network is
trained with coverage information and the results of the
test cases. The output of the network shows the suspicious-
ness of each statement. They have also implemented differ-
ent benchmark programs to evaluate the accuracy of their
proposed technique. Zheng et al. (2016) proposed a deep
learning based fault localization technique. The statement
coverage information and the results of the test cases are
used as input for the network. The output shows the suspi-
ciousness of each statement. They have implemented differ-
ent benchmark programs, and the results show that only 10%
statements need to be examined to find the buggy statement.

Al Qasem and Akour (2019) proposed a software fault
prediction technique on the basis of Multi-layer perceptrons
(MLPs) and Convolutional Neural Network (CNN). They
have compared the MLP and CNN, and the result shows
that CNN outperforms the MLP. They have experimented
with NASA datasets to check the accuracy of the proposed
technique. Asadollah et al. (2016) provided a brief study
based on concurrency and non-concurrency bugs. Their
study shows that the concurrent bugs are different in terms
of severity and fixing time. The study helps to develop
debugging and testing related tools for concurrent software.

Park et al. (2010) developed a new dynamic fault locali-
zation technique, Falcon. The tool focuses on the data-
access pattern among thread interleaving in concurrent
programs. The tool generates a suspicious score for each

data access pattern. Park et al. (2015) proposed a unified
fault localization tool, UNICORN. It is an automated pat-
tern detection based tool for finding non-deadlock concur-
rency bugs. It monitors the memory access patterns and
generates a suspicious score for each pattern. Based on
the score, it generates ranks of the most important non-
deadlock bugs.

Koca et al. (2013) developed the tool SCRUF which uses
Spectrum-Based fault localization techniques to find concur-
rency bugs. The tool instruments the different versions of the
program that run on a particular thread interleaving pattern.
Then it applies the SBFL technique to calculate the suspi-
cious score of each pattern. Alves et al. (2017) proposed
a technique that finds concurrent faults by using bounded
model checking and code transformation process. The tech-
nique is implemented in Concurrent C programs or POSIX
programs. The result shows that the tool can locate 84%
of the faults present in the benchmark programs. Yu et al.
(2016) presented testability testing for concurrent programs.
A testability model was prepared by using test suite metrics
and static metrics to predict the testability of concurrent
programs.

Movassagh et al. (2021) presented an article to improve
the precision of the perceptron neural network as well as
train the neural network utilising meta-heuristic methods.
The primary objective of this presentation is to extract as
much useful information as possible from the UCI data in
order to improve accuracy. In this research, the authors used
meta-heuristic methods, to identify better NN coefficients.
Alzubi et al. (2022) presented a novel strategy for detect-
ing Android malware using machine learning. The Support
Vector Machine (SVM) classifier and the Harris Hawks
Optimisation (HHO) algorithm are the two components that
make up the technique that has been suggested. To be more
explicit, the function of the HHO method is to optimise the
hyperparameters of the SVM classifier, while the SVM is
responsible for doing the classification of malware based
on the model that was determined to be the best fit, as well
as producing the best possible result for how the features
should be weighted.

4 Proposed approach

Locating faults in concurrent programs is more challeng-
ing than finding faults in sequential program. In concurrent
programs, examining the source code at the statement level
is not possible, as the execution sequence in concurrent pro-
gram depends on thread interleaving during runtime. In this
section, we discuss our proposed approach for identifying
the faults present at branch or class level in concurrent pro-
gram based on back propagation neural networks.

2349Int J Syst Assur Eng Manag (December 2023) 14(6):2345–2353

1 3

4.1 Sample experiment

In this section we have taken one concurrent program as
an example program for evaluating the accuracy of the
proposed approach. For concurrent programs, we consider
branch coverage of each class due to thread interleaving
during runtime. We have considered a multithreaded pro-
gram as a sample program. The program consists of two
classes, presented in Figs. 2 and 3. In Fig. 2 ThreadClass
executes the code for the thread and prints the number till
the specified number is reached, starting from 10. It incre-
ments the counter, whereas MainThread creates a thread
class instance and starts the thread as shown in Fig. 3.

Table 2 presents the coverage matrix for an example
program, where the number of rows equals the number of
test cases and the number of columns equals the number of
classes or branches. The last column denotes the results of
each test case, i.e., either pass or fail. The value of each row
indicates the frequency of execution for a specific class or
branch in the corresponding test case. Now, each class is
covered by the test cases, either pass or fail. As example,
MainThread is covered by two failed test cases, i.e., T1 and
T6. A single row presents the coverage information for a
particular test case, as shown in Table 2.

Now, we consider a set of virtual test cases v
1
....v

n
 as

shown in Table 3. The speciality of a virtual test case is
that it executes only one statement, which in reality is not
possible, so it is called a virtual test case. Each row of this
matrix is fed to the backpropagation network, and the model
gives the suspiciousness score of each corresponding class
or method as output.

4.2 Framework overview

Figure 4 represents the block diagram of the proposed fault
localization technique.

Firstly, we generate the test cases for the concurrent pro-
gram under test. We have considered a test suit to 6 test
cases. Next, we find function or branch coverage and the
result of the test cases, i.e., pass or fail after executing all
the test cases.

Next, a backpropagation network is created with two input
neurons, one output layer, and one hidden layer. Each class
or branch works as input for the network. As our example

c l a s s ThreadClass extends Thread {
pr i va t e i n t number ;
// c l a s s con s t ruc to r
pub l i c ThreadClass (i n t number) {

t h i s . number = number ;
}

// run method => execut ion code
// f o r thread

pub l i c void run () {
i n t counter = 0 ;
i n t numInt = 0 ;
// p r i n t s the number t i l l s p e c i f i e d

//number i s reached , s t a r t i n g from 10
do {

numInt = (i n t) (counter + 10) ;
System . out . p r i n t l n (t h i s . getName ()

+ ” p r i n t s ” + numInt) ;
counter++;

} whi le (numInt == number) ;
// Bug whi le (numInt != number) ;

System . out . p r i n t l n (” Correct ! ” + th i s . getName () +
” pr in ted ” + counter + ” times . ”) ;

}
}

Fig. 2 Example program

pub l i c c l a s s MainThread {
pub l i c s t a t i c void main (St r ing [] a rgs) {

System . out . p r i n t l n (” S ta r t i ng thread 1 . . . ”) ;
// c r e a t e a thread c l a s s i n s t ance
Thread thread 1 = new ThreadClass (1 6) ;
// s t a r t the thread thread 1
thread 1 . s t a r t () ;
t ry {

//wait f o r thread 1 to d i e
thread 1 . j o i n () ;

} catch (Inter ruptedExcept ion e) {
System . out . p r i n t l n (”Thread in t e r rup t ed . ”) ;

}
System . out . p r i n t l n (” S ta r t i ng thread 2 . . . ”) ;

Thread thread 2 = new ThreadClass (6) ;
// s t a r t thread 2
thread 2 . s t a r t () ;
System . out . p r i n t l n (”main () i s ending . . . ”) ;

}
}

Fig. 3 Example program

Table 2 Branch coverage of each test cases for sample program

Test cases MainThread ThreadClass Test-
case
result

T1 1 1 F
T2 1 2 P
T3 1 2 P
T4 1 2 P
T5 1 2 P
T6 1 1 F

Table 3 Virtual Testcases
v
1

1 0 . 0
v
2

0 1 . 0
.
.
.
v
n

0 . 0 1

2350 Int J Syst Assur Eng Manag (December 2023) 14(6):2345–2353

1 3

program consists of two classes, we have two input layers.
The collected coverage data and test case results are collec-
tively used as input for the back-propagation network. The
network is trained with collected coverage data. The first
input for our example program is 1, 1 with 0 as the expected
output. Fail test cases are represented as 0, and pass test
cases are represented as 1. If the actual output is not matched
with the expected output, then the weight of the network is
modified, and the updated weight is considered for the next
input. Hence, to train the network, the weight is continuously
updated until the error is minimum, i.e., approx 0.001.

After training the Back-propagation network, the test data
or virtual test cases are fed to the network. The generated
output gives a suspiciousness score for each branch or func-
tion. Based on the suspiciousness score, the rank of each
branch or function is generated. The branch with a higher
suspicious score and a lower rank is more faulty.

In the example program, we found the suspiciousness
score of two classes, i.e., MainThread and TreadClass as
presented in Table 4. The suspiciousness score of Thread-
Class is higher than that of MainTread. Hence, we can say
that ThreadClass contains a faulty statement.

5 Implementation and result analysis

In this section, we present the implementation details of the
proposed framework for finding the faults present in con-
current program. We discuss the detailed case studies con-
sidered for the experiment. Finally, we compare our fault
localization approach with other closely related fault locali-
zation techniques.

5.1 Experimental setup

To execute the proposed approach, we have used a Linux
based system with 32 GB of RAM and a 3 GHz Intel (R) i5
processor. An Eclipse IDE with JDK version 12 is used to
develop an automated fault localization technique for con-
current programs.

5.2 Case study

In this section, we have used three Java open source bench-
mark programs to evaluate the accuracy of the proposed
technique. The benchmark programs are downloaded
from the SIR repository (Do et al. 2005). The programs
are Account, Piper and Producer_Consumer having 66, 74
and 99 LOCs, respectively. The detailed information on
the benchmark programs is presented in Table 5. We have
introduced faults manually in each benchmark programs to
check the accuracy of the proposed approach. Firstly, we
have seeded a fault in Account class in our first case study,
i.e., Account program. Likewise, we have introduced a fault
manually to the Piper class and the Buffer class in the sec-
ond and third case studies, i.e., the Piper program and Pro-
ducer_Consumer program respectively.

5.3 Result analysis

In this section, we present the experimental results of the
proposed approach. The suspiciousness scores of each class
for each benchmark program are presented in Tables 6, 7
and 8.

Fig. 4 Block diagram of proposed approach

Table 4 Suspiciousness score MainThread ThreadClass

0.19 0.53

Table 5 Detail information of Benchmark Programs

Programs LOCs Classes Types of concurrency

Account 66 3 Deadlock, race
Piper 74 4 Deadlock
Producer_Consumer 99 8 Race

2351Int J Syst Assur Eng Manag (December 2023) 14(6):2345–2353

1 3

From Table 6 and Fig. 5, we find that the suspiciousness
score of the account class is the highest. As mentioned in
Sect. 5.2, we have seeded a fault in the Account class, and
from the result, we can verify that the Account class contains
the fault. Likewise, for the Piper program, from Table 7 and
Fig. 6, we can confirm that the class Piper has the highest
probability of containing faults, as faults were seeded manu-
ally into the Piper class initially. From Table 8 and Fig. 7,
we can verify that the buffer class has the most suspicious
score of being a faulty statement, and the HaltException
class stands in second.

From the result analysis, we can say that the proposed
model gives satisfactory results in fault finding. To verify the
accuracy of our model, we have initially introduced faults in
a class of each benchmark program, and after training, the
model generates the highest suspiciousness score for that
particular class. Hence, the programmer needs to examine
only the suspected class to locate the fault that occurred
during concurrency. So, the proposed approach makes the
debugging process easier and saves time in finding faults in
concurrent programs.

5.4 Comparison with related work

We have compared our proposed technique with the widely
used spectrum-based metric, D-Star. We have executed
our benchmark programs with D-Star. As a result, we find
D-Star generates a suspiciousness score of 4.8 for all three

Table 6 Suspiciousness
score of each class of account
program

Class Score Rank

Main 0.22 3
ManageAccount 0.34 2
Account 0.66 1

Fig. 5 Score of account programs

Table 7 Suspiciousness score of each class of piper program

Class Score Rank

IBM_AirlinesṖroducer 0.27 3
Piper 0.57 1
IBM_Airlines.Consumer 0.31 2
IBM_Airlines 0.24 4

Fig. 6 Score of piper programs

Table 8 Suspiciousness score of each class of Producer_Consumer
program

Class Score Rank

Producer 0.17 7
Attribute 0.23 6
HaltException 0.42 2
Buffer 0.59 1
ProducerConsumer 0.35 3
AttrData 0.24 5
Consumer 0.28 4

Fig. 7 Score of Producer_Consumer programs

2352 Int J Syst Assur Eng Manag (December 2023) 14(6):2345–2353

1 3

classes for our first case study, i.e., the Account program,
as shown in Table 9. Hence, it is very difficult to find the
exact faulty class, whereas our proposed approach assigns
rank 1 to the Account class, which contains the actual
fault.

In the same way, D-star generates a suspicious score of
5.2 for all four classes for the second case study, i.e., Piper
program, as presented in Table 10. But, the proposed tech-
nique assigns rank 1 to the faulty class Piper. Similarly, for
our third case study, D-Star generates an 8.3 suspiciousness
score for the Buffer class, Consumer class, HaltException
class and Produce_consumer class and 0 for the rest of the
classes. But, the proposed technique is able to identify the
faulty class, i.e., Buffer and assign rank as 1. Hence, we can
say that our proposed technique gives a more accurate result
compared to the widely used D-Star technique.

6 Threats to validity

Here, we present some of the limitations of our tool-

1. In this work, we have considered Back-propagation tech-
nique to find concurrent faults that occur during program
execution. The efficiency of the proposed technique
needs to be evaluated for advanced machine learning
models.

2. We have experimented with each concurrent program
having 3 to 7 classes. For large-scale concurrent pro-
grams, the efficiency of the proposed technique needs
to be evaluated.

7 Conclusion

In this paper, a fault localization technique is specifically
designed for concurrent programs. Locating faults at the
statement level in concurrent programs is challenging,
therefore, we focus on identifying faulty classes using a
back-propagation technique. The technique involves train-
ing a model using coverage data obtained from executing
test cases. The model is then fine-tuned, and it generates
suspiciousness scores for each class as its output. Classes
with higher suspiciousness scores are more likely to contain
faults. This approach narrows down the search space for the
programmer, allowing them to focus their examination on
the suspicious classes to identify the faulty class. The results
from the case studies conducted in the paper demonstrate
the effectiveness of the proposed technique. In the first case
study, the programmer only needs to examine 33% of the
code to find the fault. Similarly, for the second and third
case studies, the examination effort is significantly reduced
to 0.25% and 0.12% of the code, respectively. In the future,
we plan to apply the proposed technique to large real-world
programs, which will further validate its effectiveness. Addi-
tionally, we intend to explore advanced machine learning
techniques or deep learning models to enhance the accuracy
of the fault localization tool.

Funding There was no outside funding or grants received that
assisted in this study.

Declarations

Conflict of interest The authors affirm that they have no conflicts
of interest and have addressed all ethical concerns, including those in-
volving human or animal engagement. Such consent is not relevant.

References

Al Qasem O, Akour M (2019) Software fault prediction using deep
learning algorithms. Int J Open Source Softw Process (IJOSSP),
IGI Global 10(4):1–19

Almomani O, Al-Shugran M, Alzubi JA, Alzubi OA (2015) Perfor-
mance evaluation of position-based routing protocols using differ-
ent mobility models in manet. Int J Comput Appl 119(3)

Alves EHdS, Cordeiro LC, Eddie Filho BdL (2017) A method to local-
ize faults in concurrent c programs. In: J Syst Softw Elsevier vol
132, pp 336–352

Alzubi OA, Alzubi JA, Al-Zoubi AM, Hassonah MA, Kose U (2022)
An efficient malware detection approach with feature weighting
based on harris hawks optimization. Cluster Comput 1–19

Angus IG, Fox GC, Kim JS, Walker DW (1990) Solving problems on
concurrent processors, vol 2. Prentice-Hall, Inc., New York

Asadollah SA, Sundmark D, Eldh S, Hansson H, Enoiu EP (2016) A
study of concurrency bugs in an open source software. In: IFIP

Table 9 Account program

Class D-Star score Proposed
approach
score

Account 4.8 0.22
Main 4.8 0.34
ManageAccount 4.8 0.66

Table 10 Piper program

Class D-Star score Proposed
approach
score

IBM_Airlines 5.2 0.27
Piper 5.2 0.57
IBM_Airlines.Consumer 5.2 0.31
IBM_Airlines 5.2 0.24

2353Int J Syst Assur Eng Manag (December 2023) 14(6):2345–2353

1 3

International conference on open source systems, pp 16–31.
Springer

Bianchi FA, Margara A, Pezzè M (2017) A survey of recent trends in
testing concurrent software systems. IEEE Trans Softw Eng IEEE
44(8):747–783

Chakraborty S, Li Y, Irvine M, Saha R, Ray B (2018) Entropy guided
spectrum based bug localization using statistical language model.
arXiv preprint arXiv: 1802. 06947

Chauhan N (2010) Software testing: principles and practices. Oxford
University Press, Oxford

Do H, Elbaum SG, Rothermel G (2005) Supporting controlled experi-
mentation with testing techniques: an infrastructure and its poten-
tial impact. Empirical Softw Eng Int J 10(4):405–435

Ghosh D, Singh J (2020) Spectrum-based fault localization for con-
current programs. In: 2020 international conference on computer
science, engineering and applications (ICCSEA), pp 1–5. IEEE

Guillod T, Papamanolis P, Kolar JW (2020) Artificial neural network
(ann) based fast and accurate inductor modeling and design. IEEE
Open J Power Electron IEEE 1:284–299

Jafarzadeh N, Jalili A, Alzubi JA, Rezaee K, Liu Y, Gheisari M, Sad-
eghi Bigham B, Javadpour A (2022) A novel buffering fault-tol-
erance approach for network on chip (noc). IET Circ Dev Syst

Kim J, Park J, Lee E (2016) A new spectrum-based fault localization
with the technique of test case optimization. J Inf Sci Eng Citeseer
32(1):177–196

Koca F, Sözer H, Abreu R (2013) Spectrum-based fault localization for
diagnosing concurrency faults. In: IFIP international conference
on testing software and systems, pp 239–254. Springer

Movassagh AA, Alzubi JA, Gheisari M, Rahimi M, Mohan S, Abbasi
AA, Nabipour N (2021) Artificial neural networks training algo-
rithm integrating invasive weed optimization with differential
evolutionary model. J Ambient Intell Hum Comput 1–9

Park S, Vuduc R, Harrold MJ (2015) Unicorn: a unified approach
for localizing non-deadlock concurrency bugs. Softw Test Verif
Reliab Wiley Online Library 25(3):167–190

Park S, Vuduc RW, Harrold MJ (2010) Falcon: fault localization in
concurrent programs. In: Proceedings of the 32nd ACM/IEEE
international conference on software engineering, Volume 1,
pp 245–254. ACM/IEEE international conference on software
engineering

Roscoe B (1998) The theory and practice of concurrency
Sarhan QI, Beszédes Á (2022) A survey of challenges in spec-

trum-based software fault localization. IEEE Access, IEEE
10:10618–10639

Shaikh MS, Ansari MM, Jatoi MA, Arain ZA, Qader AA (2020) Analy-
sis of underground cable fault techniques using matlab simulation.
Sukkur IBA J Comput Math Sci 4(1):1–10

Shaikh MS, Hua C, Jatoi MA, Ansari MM, Qader AA (2021) Param-
eter estimation of ac transmission line considering different bun-
dle conductors using flux linkage technique. IEEE Can J Electr
Comput Eng 44(3):313–320

Shaikh MS, Hua C, Jatoi MA, Ansari MM, Qader AA (2021) Applica-
tion of grey wolf optimisation algorithm in parameter calculation

of overhead transmission line system. IET Sci Meas Technol
15(2):218–231

Shaikh MS, Hua C, Hassan M, Raj S, Jatoi MA, Ansari MM (2022)
Optimal parameter estimation of overhead transmission line con-
sidering different bundle conductors with the uncertainty of load
modeling. Opt Control Appl Methods 43(3):652–666

Shaikh MS, Raj S, Babu R, Kumar S, Sagrolikar K (2023) A hybrid
moth-flame algorithm with particle swarm optimization with
application in power transmission and distribution. Decision Anal
J 6:100182

Singh J, Mohapatra DP (2018) Dynamic slicing of concurrent aspectj
programs: an explicit context-sensitive approach. Softw Practice
Exp Wiley Online Library 48(1):233–260

Singh J, Sahoo B (2011) Software effort estimation with different arti-
ficial neural network. Foundation of Computer Science, USA

Tu T, Liu X, Song L, Zhang Y (2019) Understanding real-world con-
currency bugs in go. In: Proceedings of the twenty-fourth inter-
national conference on architectural support for programming
languages and operating systems, pp 865–878. ACM

Wong WE, Debroy V, Golden R, Xu X, Thuraisingham B (2011) Effec-
tive software fault localization using an rbf neural network. IEEE
Trans Reliab 61(1):149–169

Wong WE, Gao R, Li Y, Abreu R, Wotawa F (2016) A survey on
software fault localization. IEEE Trans Softw Eng IEEE
42(8):707–740

Yegnanarayana B (2009) Artificial neural networks. PHI Learning Pvt.
Ltd, New Delhi

You Y-S, Huang C-Y, Peng K-L, Hsu C-J (2013) Evaluation and analy-
sis of spectrum-based fault localization with modified similarity
coefficients for software debugging. In: 2013 IEEE 37th annual
computer software and applications conference, pp 180–189.
IEEE

Yu T, Wen W, Han X, Hayes JH (2016) Predicting testability of con-
current programs. In: 2016 IEEE international conference on
software testing, verification and validation (ICST), pp 168–179.
IEEE

Zakari A, Lee SP, Abreu R, Ahmed BH, Rasheed RA (2020) Multiple
fault localization of software programs: a systematic literature
review. Inf Softw Technol Elsevier 124:106312

Zheng W, Hu D, Wang J (2016) Fault localization analysis based on
deep neural network. In: Mathematical problems in engineering,
Hindawi 2016

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1802.06947

	Concurrent fault localization using ANN
	Abstract
	1 Introduction
	2 Basic concepts
	2.1 Concurrency in programming
	2.1.1 Advantages of concurrency
	2.1.2 Disadvantages of concurrency

	2.2 Concurrency issues in software testing
	2.3 Artificial neural network
	2.3.1 Back propagation neural network

	3 Literature review
	4 Proposed approach
	4.1 Sample experiment
	4.2 Framework overview

	5 Implementation and result analysis
	5.1 Experimental setup
	5.2 Case study
	5.3 Result analysis
	5.4 Comparison with related work

	6 Threats to validity
	7 Conclusion
	References

