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Abstract The software is becoming more capable of pro-
viding better solutions to our day-to-day activities. In order 
to increase performance, concurrent programs are always 
preferred. But the concurrency produces obstacles to differ-
ent phases of software development, including testing and 
debugging. Finding faults in a concurrent program is always 
a challenging task due to the presence of many threads over-
lapping each other, problems in sharing memories, etc. In 
this paper, we have proposed a Back propagation neural net-
work (BPNN) to generate ranks for each class of a given pro-
gram. These ranks indicate the probability of a fault being 
present in each class. The model is trained using test case 
coverage data, and it is tested using virtual test cases. In all 
three case studies, the fault localization technique assigned 
the highest rank to the classes where the actual faults were 
implanted. By using BPNN and training the model with test 
case coverage data, the technique shows promising results in 
identifying the classes where faults are likely to occur. This 
can greatly aid in the testing and debugging processes of 
concurrent programs, improving their overall performance.

Keywords Fault localization · Artificial neural network · 
Back propagation · Concurrent programs · Concurrent fault 
localization · Benchmark programs

1 Introduction

Software fault localization is the process of identifying the 
specific location or locations in the source code of a software 
program where a fault or error is likely to have occurred. 
This process is an important step in software debugging, as 
it helps developers narrow down the root cause of a prob-
lem and fix it more efficiently. Localizing faults is a more 
tedious task than testing (Chauhan 2010). Traditional fault 
localization techniques, as found in the literature, perform 
well for sequential programs. Traditional fault localization 
techniques are commonly used in software development 
and debugging to identify the location of faults in software 
programs. These techniques do not rely on advanced statisti-
cal analysis or machine learning algorithms but rather use 
heuristics or manual methods to identify suspicious code 
locations (Zakari et al. 2020; Shaikh et al. 2023). A few 
modern techniques have been introduced to improve the per-
formance of testing techniques (Shaikh et al. 2021, 2022, 
2021; Almomani et al. 2015).

Spectrum-based fault localization (SBFL) is a widely 
used technique for identifying the location of faults in soft-
ware programs (Sarhan and Beszédes 2022; Jafarzadeh et al. 
2022). It is based on the idea that the behavior of a faulty 
program during execution, as reflected in the outcomes of 
test cases, is different from the behavior of a correct pro-
gram. Spectrum-based fault localization techniques use 
information about the outcomes of program executions, such 
as passing or failing test cases, to identify suspicious code 
locations that are likely to contain the fault. The performance 
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of existing fault localization techniques is not satisfactory for 
concurrent programs (Shaikh et al. 2020).

In concurrent programs, identifying the location of bugs 
or faults is more difficult as the faults occur during rum time 
(Bianchi et al. 2017). Fault detection in concurrent programs 
can be a challenging task due to the inherent complexity of 
concurrent execution. Concurrent programs are designed to 
run multiple threads or processes concurrently, often sharing 
resources and interacting with each other, which can lead to 
various types of faults or errors. Though the Spectrum-based 
Fault Localization (SBFL) technique can work for finding 
concurrent faults, the results are not satisfying (Ghosh and 
Singh 2020). Hence, there is a need for a new fault localiza-
tion technique that can locate the faults or bugs present in 
concurrent programs.

In this paper, we have focused on identifying the faults 
present in concurrent program. Due to the uncertainty pre-
sent in the concurrent program such as atomicity violations, 
thread interleaving, memory access patterns, etc., identifying 
the faults at the statement level of the concurrent program 
is very challenging. Therefore, we have tried to consider 
the function or branch level in our proposed approach to 
locating the fault in the program. In our approach, We have 
considered one test case at a time for the given concurrent 
program, then find the result of the test case i.e., pass or 
fail, and the function or branch coverage information against 
that particular test case. These information are considered 
as inputs for the back-propagation neural network. After 
tuning, the model generates a suspiciousness score for each 
branch or function. The branch or function with a higher 
suspiciousness score is more likely to be faulty. Hence, the 
proposed technique helps the programmer to find the faulty 
branch so that only the statements of the faulty branch need 
to be examined.

The other sections of this paper are organised as follows: 
In Sect. 2, we discuss some basic concepts that are required 
to understand the proposed technique. Closely related works 
are described in Sect. 3. Section 4, represents our proposed 
technique, and implementation details are presented in 
Sect. 5. Finally, Sect. 7 concludes the paper.

2  Basic concepts

In this section, we explain the basics of Concurrency, faults 
in concurrent programs, and a brief idea of an artificial neu-
ral network and its advantages in fault localization.

2.1  Concurrency in programming

Concurrency in programming refers to the ability of 
a program to execute multiple tasks simultaneously, or 
concurrently, rather than sequentially (Roscoe 1998). 

It allows a program to make progress on multiple tasks 
at the same time, even on a single processor system, by 
interleaving the execution of tasks. Concurrency is an 
important concept in modern programming as it enables 
efficient utilization of system resources, improves per-
formance, and enhances responsiveness in concurrent or 
parallel environments. Concurrency introduces challenges 
such as race conditions, deadlocks, and synchronization 
issues that need to be carefully managed to ensure the 
correct behavior of concurrent programs. Techniques like 
locks, semaphores, and atomic operations can be used to 
synchronize access to shared resources and prevent data 
races. Properly designed concurrent programs can signifi-
cantly improve performance and responsiveness, leading 
to more efficient and scalable software systems (Singh and 
Mohapatra 2018).

2.1.1  Advantages of concurrency

1. Now a days, CPU’s are multi-core. Any single-threaded 
program utilises only one core. So it doesn’t affect CPU 
performance. But multi-threaded program use multiple 
cores of the CPU, so the performance of CPU utilization 
increases.

2. Multi-threaded programs allow a series of program to 
run concurrently. Hence, it increases the response speed 
of the program.

2.1.2  Disadvantages of concurrency

1. Concurrent program increase context switching, which 
has adverse effects on CPU execution.

2. Multi-threaded program may cause deadlock and starva-
tion.

3. Concurrent programs may limit resources after execu-
tion.

2.2  Concurrency issues in software testing

Concurrency can introduce several challenges in software 
testing, as the concurrent execution of multiple tasks can 
impact the behavior and correctness of a software system. 
Faults or bugs in concurrent programs can occur during the 
thread interleaving in run-time (Angus et al. 1990). Faults 
in concurrent programs not only occur during normal sce-
narios of computation but also due to thread interleaving, 
concurrent data access, and shared memory access. Hence, 
finding the faults present in a concurrent program is a more 
challenging task compared to sequential programs (Tu et al. 
2019).
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2.3  Artificial neural network

An artificial neural network (ANN) is a type of computa-
tional model that is inspired by the structure and function 
of the human brain (Yegnanarayana 2009). It is a type of 
machine learning algorithm that is used for tasks such as 
pattern recognition, classification, regression, and optimiza-
tion. ANNs are a key component of deep learning, which is a 
subset of machine learning that focuses on neural networks 
with multiple hidden layers, enabling them to learn com-
plex representations of data. ANNs continue to be an active 
area of research, with ongoing efforts to improve their per-
formance, interpretability, and robustness for various real-
world applications. ANNs consist of interconnected nodes or 

neurons organized in layers that receive input data, process 
it through activation functions, and produce output predic-
tions. An ANN specifically uses a learning algorithm that 
trains the dataset and modifies the weight of each neuron 
based on the error rate between actual and target output. 
After the model is trained, it can predict the new set of data 
(Guillod et al. 2020).

2.3.1  Back propagation neural network

Backpropagation, short for “backward propagation of 
errors," is a widely used supervised learning algorithm used 
in artificial neural networks (ANNs) for training the network 
to make accurate predictions (Singh and Sahoo 2011). It is 
a method used to adjust the weights of connections between 
neurons in an ANN during the training process. Proper tun-
ing of the networks decreases the rate of error and, hence, 
increases the reliability of the model. Figure 1 shows the 
working principle of the back propagation technique.

3  Literature review

In this section, we review some of the fault localization 
techniques present in the literature. We have reviewed 
some works related to the application of Machine learning 
for software fault localization and some works related to 
fault localization techniques in concurrent programs. A few 
related research works are presented in Table 1.

You et  al. (2013) focused on the importance of the 
weights of failing and passing test cases to the similarity Fig. 1  Back propagation

Table 1  Literature survey

Author Methodology Results

You et al. (2013) Modify the weights of failing and passing test cases Modified weight values of failing test cases to are able to 
locate the faults more accurately

Chakraborty et al. (2018) EnSpec: a new code entropy to spectrum based tech-
nique

makes the fault localization more robust and effective

Wong et al. (2011) Radial basis function (RBF) based fault localization 
technique

The output of the network shows the suspiciousness of 
the each statement

Zheng et al. (2016) Deep learning based fault localization technique Results shows that only 10% statements need to be 
examine to find the buggy statement

Al Qasem and Akour (2019) Fault prediction technique on the basis of Multi-layer 
perceptrons (MLPs) and Convolutional Neural Net-
work (CNN)

Result shows that CNN outperforms the MLP

Park et al. (2010) New dynamic fault localization technique Falcon The tool generates the suspicious score of each data-
access pattern

Park et al. (2015) An unified fault localization tool UNICORN Generates ranks of most important non-deadlock bugs
Koca et al. (2013) Tool SCRUF which uses Spectrum-Based fault locali-

zation technique to find concurrency bugs
Calculate the suspicious score of each pattern in concur-

rent program
Alves et al. (2017) Technique that finds the concurrent faults by using 

bounded model checking and code transformation 
process

The result shows that the tool can able to locate 84% 
faults present in the benchmark programs
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coefficients in fault localization. They have used modified 
similarity coefficients and analyzed how failing test cases 
can have a greater contribution than passing test cases. Their 
study shows that modifying the weight values of failing test 
cases to similarity coefficients is able to locate the faults 
more accurately. Wong et al. (2016) provided a brief study 
on different fault localization techniques. According to their 
analysis, static and dynamic slicing techniques were popular 
from 2004 to 2007. But, since 2008, spectrum-based tech-
niques have become more popular, as they have made a big 
contribution to automated fault localization. Their study also 
shows that different evaluation metrics such as EXAM score, 
T-Score, P-Score, N-Score, etc can be applied to identify the 
accurate faulty statement.

Chakraborty et al. (2018) proposed a new fault locali-
zation approach called EnSpec i.e., they have introduced a 
new code entropy to the spectrum-based technique. The code 
entropy is related to the faulty lines executed by the failing 
test cases. Hence, it makes fault localization more robust and 
effective. Kim et al. (2016) applied 32 different spectrum-
based formulas, and based on the results, they clustered the 
similar categories into three different groups. To avoid the 
limitations of each group, a test case optimization technique 
is implemented. This technique increases the performance 
of the fault localization technique.

Wong et al. (2011) proposed a Radial Basis Function 
(RBF) based fault localization technique. The network is 
trained with coverage information and the results of the 
test cases. The output of the network shows the suspicious-
ness of each statement. They have also implemented differ-
ent benchmark programs to evaluate the accuracy of their 
proposed technique. Zheng et al. (2016) proposed a deep 
learning based fault localization technique. The statement 
coverage information and the results of the test cases are 
used as input for the network. The output shows the suspi-
ciousness of each statement. They have implemented differ-
ent benchmark programs, and the results show that only 10% 
statements need to be examined to find the buggy statement.

Al Qasem and Akour (2019) proposed a software fault 
prediction technique on the basis of Multi-layer perceptrons 
(MLPs) and Convolutional Neural Network (CNN). They 
have compared the MLP and CNN, and the result shows 
that CNN outperforms the MLP. They have experimented 
with NASA datasets to check the accuracy of the proposed 
technique. Asadollah et al. (2016) provided a brief study 
based on concurrency and non-concurrency bugs. Their 
study shows that the concurrent bugs are different in terms 
of severity and fixing time. The study helps to develop 
debugging and testing related tools for concurrent software.

Park et al. (2010) developed a new dynamic fault locali-
zation technique, Falcon. The tool focuses on the data-
access pattern among thread interleaving in concurrent 
programs. The tool generates a suspicious score for each 

data access pattern. Park et al. (2015) proposed a unified 
fault localization tool, UNICORN. It is an automated pat-
tern detection based tool for finding non-deadlock concur-
rency bugs. It monitors the memory access patterns and 
generates a suspicious score for each pattern. Based on 
the score, it generates ranks of the most important non-
deadlock bugs.

Koca et al. (2013) developed the tool SCRUF which uses 
Spectrum-Based fault localization techniques to find concur-
rency bugs. The tool instruments the different versions of the 
program that run on a particular thread interleaving pattern. 
Then it applies the SBFL technique to calculate the suspi-
cious score of each pattern. Alves et al. (2017) proposed 
a technique that finds concurrent faults by using bounded 
model checking and code transformation process. The tech-
nique is implemented in Concurrent C programs or POSIX 
programs. The result shows that the tool can locate 84% 
of the faults present in the benchmark programs. Yu et al. 
(2016) presented testability testing for concurrent programs. 
A testability model was prepared by using test suite metrics 
and static metrics to predict the testability of concurrent 
programs.

Movassagh et al. (2021) presented an article to improve 
the precision of the perceptron neural network as well as 
train the neural network utilising meta-heuristic methods. 
The primary objective of this presentation is to extract as 
much useful information as possible from the UCI data in 
order to improve accuracy. In this research, the authors used 
meta-heuristic methods, to identify better NN coefficients. 
Alzubi et al. (2022) presented a novel strategy for detect-
ing Android malware using machine learning. The Support 
Vector Machine (SVM) classifier and the Harris Hawks 
Optimisation (HHO) algorithm are the two components that 
make up the technique that has been suggested. To be more 
explicit, the function of the HHO method is to optimise the 
hyperparameters of the SVM classifier, while the SVM is 
responsible for doing the classification of malware based 
on the model that was determined to be the best fit, as well 
as producing the best possible result for how the features 
should be weighted.

4  Proposed approach

Locating faults in concurrent programs is more challeng-
ing than finding faults in sequential program. In concurrent 
programs, examining the source code at the statement level 
is not possible, as the execution sequence in concurrent pro-
gram depends on thread interleaving during runtime. In this 
section, we discuss our proposed approach for identifying 
the faults present at branch or class level in concurrent pro-
gram based on back propagation neural networks.
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4.1  Sample experiment

In this section we have taken one concurrent program as 
an example program for evaluating the accuracy of the 
proposed approach. For concurrent programs, we consider 
branch coverage of each class due to thread interleaving 
during runtime. We have considered a multithreaded pro-
gram as a sample program. The program consists of two 
classes, presented in Figs. 2 and 3. In Fig. 2 ThreadClass 
executes the code for the thread and prints the number till 
the specified number is reached, starting from 10. It incre-
ments the counter, whereas MainThread creates a thread 
class instance and starts the thread as shown in Fig. 3.

Table 2 presents the coverage matrix for an example 
program, where the number of rows equals the number of 
test cases and the number of columns equals the number of 
classes or branches. The last column denotes the results of 
each test case, i.e., either pass or fail. The value of each row 
indicates the frequency of execution for a specific class or 
branch in the corresponding test case. Now, each class is 
covered by the test cases, either pass or fail. As example, 
MainThread is covered by two failed test cases, i.e., T1 and 
T6. A single row presents the coverage information for a 
particular test case, as shown in Table 2.

Now, we consider a set of virtual test cases v
1
....v

n
 as 

shown in Table 3. The speciality of a virtual test case is 
that it executes only one statement, which in reality is not 
possible, so it is called a virtual test case. Each row of this 
matrix is fed to the backpropagation network, and the model 
gives the suspiciousness score of each corresponding class 
or method as output.

4.2  Framework overview

Figure 4 represents the block diagram of the proposed fault 
localization technique.

Firstly, we generate the test cases for the concurrent pro-
gram under test. We have considered a test suit to 6 test 
cases. Next, we find function or branch coverage and the 
result of the test cases, i.e., pass or fail after executing all 
the test cases.

Next, a backpropagation network is created with two input 
neurons, one output layer, and one hidden layer. Each class 
or branch works as input for the network. As our example 

c l a s s ThreadClass extends Thread {
pr i va t e i n t number ;
// c l a s s con s t ruc to r
pub l i c ThreadClass ( i n t number ) {

t h i s . number = number ;
}

// run method => execut ion code
// f o r thread

pub l i c void run ( ) {
i n t counter = 0 ;
i n t numInt = 0 ;
// p r i n t s the number t i l l s p e c i f i e d

//number i s reached , s t a r t i n g from 10
do {

numInt = ( i n t ) ( counter + 10 ) ;
System . out . p r i n t l n ( t h i s . getName ( )

+ ” p r i n t s ” + numInt ) ;
counter++;

} whi le ( numInt == number ) ;
// Bug whi le ( numInt != number ) ;

System . out . p r i n t l n (” Correct ! ” + th i s . getName ( ) +
” pr in ted ” + counter + ” times . ” ) ;

}
}

Fig. 2  Example program

pub l i c c l a s s MainThread {
pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {

System . out . p r i n t l n (” S ta r t i ng thread 1 . . . ” ) ;
// c r e a t e a thread c l a s s i n s t ance
Thread thread 1 = new ThreadClass ( 1 6 ) ;
// s t a r t the thread thread 1
thread 1 . s t a r t ( ) ;
t ry {

//wait f o r thread 1 to d i e
thread 1 . j o i n ( ) ;

} catch ( Inter ruptedExcept ion e ) {
System . out . p r i n t l n (”Thread in t e r rup t ed . ” ) ;

}
System . out . p r i n t l n (” S ta r t i ng thread 2 . . . ” ) ;

Thread thread 2 = new ThreadClass ( 6 ) ;
// s t a r t thread 2
thread 2 . s t a r t ( ) ;
System . out . p r i n t l n (”main ( ) i s ending . . . ” ) ;

}
}

Fig. 3  Example program

Table 2  Branch coverage of each test cases for sample program

Test cases MainThread ThreadClass Test-
case 
result

T1 1 1 F
T2 1 2 P
T3 1 2 P
T4 1 2 P
T5 1 2 P
T6 1 1 F

Table 3  Virtual Testcases
v
1

1 0 . 0
v
2

0 1 . 0
. . . . .
. . . . .
. . . . .
v
n

0 . 0 1
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program consists of two classes, we have two input layers. 
The collected coverage data and test case results are collec-
tively used as input for the back-propagation network. The 
network is trained with collected coverage data. The first 
input for our example program is 1, 1 with 0 as the expected 
output. Fail test cases are represented as 0, and pass test 
cases are represented as 1. If the actual output is not matched 
with the expected output, then the weight of the network is 
modified, and the updated weight is considered for the next 
input. Hence, to train the network, the weight is continuously 
updated until the error is minimum, i.e., approx 0.001.

After training the Back-propagation network, the test data 
or virtual test cases are fed to the network. The generated 
output gives a suspiciousness score for each branch or func-
tion. Based on the suspiciousness score, the rank of each 
branch or function is generated. The branch with a higher 
suspicious score and a lower rank is more faulty.

In the example program, we found the suspiciousness 
score of two classes, i.e., MainThread and TreadClass as 
presented in Table 4. The suspiciousness score of Thread-
Class is higher than that of MainTread. Hence, we can say 
that ThreadClass contains a faulty statement.

5  Implementation and result analysis

In this section, we present the implementation details of the 
proposed framework for finding the faults present in con-
current program. We discuss the detailed case studies con-
sidered for the experiment. Finally, we compare our fault 
localization approach with other closely related fault locali-
zation techniques.

5.1  Experimental setup

To execute the proposed approach, we have used a Linux 
based system with 32 GB of RAM and a 3 GHz Intel (R) i5 
processor. An Eclipse IDE with JDK version 12 is used to 
develop an automated fault localization technique for con-
current programs.

5.2  Case study

In this section, we have used three Java open source bench-
mark programs to evaluate the accuracy of the proposed 
technique. The benchmark programs are downloaded 
from the SIR repository (Do et al. 2005). The programs 
are Account, Piper and Producer_Consumer having 66, 74 
and 99 LOCs, respectively. The detailed information on 
the benchmark programs is presented in Table 5. We have 
introduced faults manually in each benchmark programs to 
check the accuracy of the proposed approach. Firstly, we 
have seeded a fault in Account class in our first case study, 
i.e., Account program. Likewise, we have introduced a fault 
manually to the Piper class and the Buffer class in the sec-
ond and third case studies, i.e., the Piper program and Pro-
ducer_Consumer program respectively.

5.3  Result analysis

In this section, we present the experimental results of the 
proposed approach. The suspiciousness scores of each class 
for each benchmark program are presented in Tables 6, 7 
and 8.

Fig. 4  Block diagram of proposed approach

Table 4  Suspiciousness score MainThread ThreadClass

0.19 0.53

Table 5  Detail information of Benchmark Programs

Programs LOCs Classes Types of concurrency

Account 66 3 Deadlock, race
Piper 74 4 Deadlock
Producer_Consumer 99 8 Race
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From Table 6 and Fig. 5, we find that the suspiciousness 
score of the account class is the highest. As mentioned in 
Sect. 5.2, we have seeded a fault in the Account class, and 
from the result, we can verify that the Account class contains 
the fault. Likewise, for the Piper program, from Table 7 and 
Fig. 6, we can confirm that the class Piper has the highest 
probability of containing faults, as faults were seeded manu-
ally into the Piper class initially. From Table 8 and Fig. 7, 
we can verify that the buffer class has the most suspicious 
score of being a faulty statement, and the HaltException 
class stands in second.

From the result analysis, we can say that the proposed 
model gives satisfactory results in fault finding. To verify the 
accuracy of our model, we have initially introduced faults in 
a class of each benchmark program, and after training, the 
model generates the highest suspiciousness score for that 
particular class. Hence, the programmer needs to examine 
only the suspected class to locate the fault that occurred 
during concurrency. So, the proposed approach makes the 
debugging process easier and saves time in finding faults in 
concurrent programs.

5.4  Comparison with related work

We have compared our proposed technique with the widely 
used spectrum-based metric, D-Star. We have executed 
our benchmark programs with D-Star. As a result, we find 
D-Star generates a suspiciousness score of 4.8 for all three 

Table 6  Suspiciousness 
score of each class of account 
program

Class Score Rank

Main 0.22 3
ManageAccount 0.34 2
Account 0.66 1

Fig. 5  Score of account programs

Table 7  Suspiciousness score of each class of piper program

Class Score Rank

IBM_AirlinesṖroducer 0.27 3
Piper 0.57 1
IBM_Airlines.Consumer 0.31 2
IBM_Airlines 0.24 4

Fig. 6  Score of piper programs

Table 8  Suspiciousness score of each class of Producer_Consumer 
program

Class Score Rank

Producer 0.17 7
Attribute 0.23 6
HaltException 0.42 2
Buffer 0.59 1
ProducerConsumer 0.35 3
AttrData 0.24 5
Consumer 0.28 4

Fig. 7  Score of Producer_Consumer programs
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classes for our first case study, i.e., the Account program, 
as shown in Table 9. Hence, it is very difficult to find the 
exact faulty class, whereas our proposed approach assigns 
rank 1 to the Account class, which contains the actual 
fault.

In the same way, D-star generates a suspicious score of 
5.2 for all four classes for the second case study, i.e., Piper 
program, as presented in Table 10. But, the proposed tech-
nique assigns rank 1 to the faulty class Piper. Similarly, for 
our third case study, D-Star generates an 8.3 suspiciousness 
score for the Buffer class, Consumer class, HaltException 
class and Produce_consumer class and 0 for the rest of the 
classes. But, the proposed technique is able to identify the 
faulty class, i.e., Buffer and assign rank as 1. Hence, we can 
say that our proposed technique gives a more accurate result 
compared to the widely used D-Star technique.

6  Threats to validity

Here, we present some of the limitations of our tool- 

1. In this work, we have considered Back-propagation tech-
nique to find concurrent faults that occur during program 
execution. The efficiency of the proposed technique 
needs to be evaluated for advanced machine learning 
models.

2. We have experimented with each concurrent program 
having 3 to 7 classes. For large-scale concurrent pro-
grams, the efficiency of the proposed technique needs 
to be evaluated.

7  Conclusion

In this paper, a fault localization technique is specifically 
designed for concurrent programs. Locating faults at the 
statement level in concurrent programs is challenging, 
therefore, we focus on identifying faulty classes using a 
back-propagation technique. The technique involves train-
ing a model using coverage data obtained from executing 
test cases. The model is then fine-tuned, and it generates 
suspiciousness scores for each class as its output. Classes 
with higher suspiciousness scores are more likely to contain 
faults. This approach narrows down the search space for the 
programmer, allowing them to focus their examination on 
the suspicious classes to identify the faulty class. The results 
from the case studies conducted in the paper demonstrate 
the effectiveness of the proposed technique. In the first case 
study, the programmer only needs to examine 33% of the 
code to find the fault. Similarly, for the second and third 
case studies, the examination effort is significantly reduced 
to 0.25% and 0.12% of the code, respectively. In the future, 
we plan to apply the proposed technique to large real-world 
programs, which will further validate its effectiveness. Addi-
tionally, we intend to explore advanced machine learning 
techniques or deep learning models to enhance the accuracy 
of the fault localization tool.
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