
Vol:.(1234567890)

Int J  Syst  Assur  Eng  Manag (December 2023) 14(6):2218–2234
https://doi.org/10.1007/s13198-023-02055-3

1 3

ORIGINAL ARTICLE

A reward‑based performability modelling of a fault‑tolerant 
safety–critical system

Shakeel Ahamad1  · Ratneshwer Gupta1 

Received: 19 April 2023 / Revised: 22 June 2023 / Accepted: 19 July 2023 / Published online: 3 August 2023 
© The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and 
The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2023

Abstract Nowadays, various computer system carries 
out critical functions. The failure of these systems leads to 
unacceptable loss. Such systems are called Safety–Critical 
Systems (SCS). The Performance and Reliability of SCS 
should be high. So, the combined study of performance and 
reliability (called Performability) is an important issue. The 
testing of the system is also used to improve its performance. 
However, some issues might not be addressed in the testing 
procedure. Formal verification is used for developing secure 
software. In most of the research work, performability is 
obtained by operational systems or fail repair systems. Some 
studies have considered the fail-repair, including fault-tol-
erant systems. Safety–critical systems generally have fault-
tolerant mechanisms to minimize the severity of the failure. 
This paper studies the safety–critical system’s performabil-
ity using the continuous-time Markov chain (CTMC) with 
a reward called the Markov reward model (MRM), keep-
ing in mind the fail-repair, fault-tolerant characteristics of 
the systems. The various parameters of the performability 
have been analyzed. For mathematical calculation, python 
language is used. The case study illustrates the proposed 
approach.

Keywords Markov model · Markov reward model · 
Performability · Safety–Critical systems · Performance and 
reliability · Multi-states systems

1 Introduction

Many modern computers play a significant role in carrying 
out critical functionality. Failure of these systems leads to a 
massive loss of money, time, environment, and human life 
(John 2002). The SCSs are used in various domains like 
medical systems, finance systems, nuclear power plants, avi-
ation, etc. (Pietrantuono and Russo 2013). The SCS include 
software and hardware, the essential factors in managing the 
high-level performance and reliability of the system. Per-
formance and reliability are antagonists in nature (Tokuno 
and Yamada 2009). The combined study of reliability and 
performance is called performability (Mo et al. 2018). The 
performability analysis depends on various parameters that 
affect the reliability and performance of the system. During 
the analysis, one must formally understand the interrelation-
ship of different parameters and their possible effects. So, 
the combined study of performance and reliability is essen-
tial to optimize the overall quality.

The quality assurance of such a system is essential for 
safety–critical systems. Quality is the umbrella term which 
is used in the various domain. The meaning of the quality in 
the software is a fitness of purpose. That explains the soft-
ware system is working according to the Software system 
requirement (SRS). Fitness of the purpose is not only that 
represents the quality. There are various other parameters 
that show the quality of the system, like portability, main-
tainability, reusability, reliability, performance etc.

The safety–critical systems generally consist of vari-
ous components. The failure of some parts does not lead 
to the collapse of the entire system (Singh et al. 2012). So, 
the safety–critical system works with the degraded system 
quality. So, the system has various operational states other 
than the extreme states (completely failed or operational). 
Such types of systems can be modelled using stochastic 
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modelling. There are various stochastic models like the 
Petri net, Markov model, etc. These stochastic models effi-
ciently handle performance and dependability-related issues 
(Gokhale et al. 2004). Markov model is of various types, 
i.e., discrete-time Markov model, continuous-time Markov 
model, semi-Markov, and hidden Markov model, based 
on the system orientation and design. The Markov reward 
method extends the Markov chain(Kwon and Agha 2007). 
The reward can be any effect (loss, cost, penalty), and it can 
be positive or negative.

Most researchers have used the Continuous-time Markov 
chain and Discrete-time Markov chain without reward to 
find the reliability or availability(Goel and Okumoto 1979; 
Trivedi et al. 2003; Wang 2004). The combined study of 
the performance and reliability needs more attention for the 
safety–critical system (Viktorova et al. 2018). This paper 
presents the continuous-time Markov reward model with the 
reward for the systems’ performability analysis. In MRM, 
the reward matrices are changed according to the parameter 
under measurement. The accumulated reward on the particu-
lar state shows the measured parameter value. So, the dif-
ferent type of reward matrix for the different performability 
measure has been derived. The proposed methodology for 
the performability parameter analysis has been illustrated 
using the case study.

The paper is organized as follows: The related work has 
presented in Sect. 2. A brief introduction of the Markov 
chain with reward is given in Sect. 3. The performability 
parameters used for measuring performability are listed in 
Sect. 4. Section 5 presents the methodology for the Markov 
reward modelling for calculating the performability param-
eters. The step taken for calculating the system’s perform-
ability is given in Sect. 6. Section 7 illustrates the case study 
to demonstrate performability measurement. Finally, Sect. 8 
presents the future work and concludes the paper.

2  Related work

In the current scenario, various systems carry out criti-
cal functionality. So, the system’s proper functioning 
mostly depends on the software, as the software is prone 
to errors and malfunctioning. There is a need to analyze 
the safety–critical system for the non-functional parameter 
properly. Reliability and performance are the most critical 
quality requirement of the system. The improvement  of any 
one parameter may not be sufficient, e.g., in a fire alarm, If 
the system is highly reliable but has deficient performance. 
That leads to severe damage to the resource because the 
alarm signal is not timely. The same problem is also faced if 
high performance and reliability are low. So, the combined 
study of performance and reliability is significant and chal-
lenging for the researchers.

There is a large amount of research to find, predict, and 
estimate performance and reliability. Earlier, probability 
distributions are used considering the system’s only binary 
state (up, down). But in recent times, the system is more 
complex and multitasking. So, the system has various other 
states than up and down states. That means if some compo-
nent fails, it does not mean that the system completely fails. 
But the system work with degraded quality. Recently, the 
multistate stochastic model has determined performance and 
dependability parameters.

In the paper (Viktorova et al. 2018), a complex system is 
used to study performance, reliability, and performability. 
In this model, only the reliability-related parameter of the 
system is calculated. The distributed computer system’s reli-
ability and the number of failures are studied by Jin-Long 
Wang (Wang 2004) using the discrete Markov chain. The 
program’s reliability runs on the particular terminal, and the 
overall system reliability is calculated. The directed graph is 
used to represent the distributed system that is taken for the 
case study. The two reliability parameters are used to calcu-
late the system’s reliability. One is Markov-chain distributed 
program reliability (MDPR) which calculates the reliability 
of the particular program of the distributed system. The sec-
ond is Markov-chain distributed system reliability (MDSR), 
representing overall system reliability.

Lisnianski also derives the system’s reliability with dif-
ferent capacities and demands. This paper finds the consoli-
dated performance, but there is a lack of information about 
how much time is spent on different levels. The general 
approach is suggested to compute commonly used reliabil-
ity measures(Lisnianski 2007). The general Markov reward 
model has been built according to the approach so that the 
corresponding reward matrix determination can calculate 
different reliability measures. The performability model for 
the wireless network is presented in the paper (Trivedi et al. 
2003). The Erlang loss model creates composite and hier-
archical Markov chains to derive loss formulas for a system 
with channel failures. The theory of queuing is used to create 
these formulas. For the blocking probability in a loss system 
(i.e., no waiting room in the system, that mean number of 
servers is equal to the number of customers), use the Erlang-
B formula. For the wait probability in a delay system, use the 
Erlang-C formula. A reversible Markov process can be used 
to simulate a network of queues, as in the multidimensional 
Erlang-B formula for the blocking probability in a loss sys-
tem with several classes of calls and various server occupa-
tions. In (Goel and Okumoto 1979) papers, a Markovian 
model has been presented for software error failures that are 
not removed, e.g., imperfect debugging. A compositional 
method for estimating the software reliability of the multi-
threads program is developed in the paper (Kwon and Agha 
2007). The reliability is calculated based on the reliability 
of the individual component and the transition among them. 
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Only accurate data can be used to extract information for 
Condition-Based Maintenance (CBM), which is based on 
sensors(Martins et al. 2023).

Many approaches are used for the performability analysis 
of critical safety systems. But the stochastic method is effi-
cient for measuring, predicting, and estimating the perform-
ability of the complex system. Various researchers used the 
Markov model for the individual parameter (reliability avail-
ability calculation). This paper presents an approach based 
on the combined study of reliability and performance using 
the Markov reward model. The major contribution of this 
research work is to analyze the performance and reliability of 
the software systems combined manner that perform the criti-
cal functionality. This study also helps in reducing the prob-
ability of a failure system and helps in taking decisions for 
enhancing performability. Because the Performability analysis 
is performed in the early stage of the system development, so, 
decisions can easily be incorporated into the systems.

3  Markov chain/process with reward

Markov chain is the stochastic model that shows all the pos-
sible events of the system (Norris 1998). Markov process 
has transitions and states. The states represent the possible 
system condition. The transition represents the events that 
carry the system from one state to another. The state’s transi-
tion from one state to another depends on the current state. 
The state transition history to reach the present state does 
not affect the next transition. This property is known as the 
memoryless property (Mikosch and Kallenberg 1998). The 
Markov process’s state space is the set of all possible states. 
The transition matrix shows the probability of the transi-
tion. The sum of the probability of each row is equal to one. 
There are two types of the Markov chain based on time, viz. 
discrete-time Markov chain (DTMC) and continuous-time 
Markov chain (CTMC). A statistical method known as a hid-
den Markov model (HMM) proceeds through a number of 
states that are ’hidden’ from the observer (Sotelo et al. 2023).

The Markov chain can efficiently represent a real-world 
multistate stochastic problem (Bas 2019) if the time spent on 
the state (sojourn time) does not follow the exponential dis-
tribution. Then this Markov chain is called the semi-Markov 
chain. One interesting fact is that knowledge must not decide 
which state to enter next, although it remembers how long 
the current state has lasted. The stochastic model can be used 
for collective and individual performance and reliability.

The Markov reward method extends the Markov 
chain(Kwon and Agha 2007). The reward can be any effect, 
e.g., loss, cost, penalty, etc. A reward can be positive or neg-
ative. Using the reward in the Markov model for the analysis 
is called the Markov reward model (MRM). In the MRM, 
there is a reward associated with each state. The reward 

variable shows the stated reward up to the time t. Using the 
Markov models with reward to measure the performability 
parameters is more efficient than without reward.

4  A markov model representation of a system 
under study

The Markov model for a system has states and transitions 
among the states. The transition among the state is based 
on some rate parameters (failure rate and repair rate)(Karlin 
and M. Taylor 1975). A system and its different states are 
designed to demonstrate the failure and repair scenario with 
the help of the Markov model. A circle denotes the states of 
the system, and arrows denote the transition path between 
states, as illustrated in Fig. 1. Only the failure transitions are 
used for the reliability-related measure, while failure and 
repair transitions are used for the availability and perfor-
mance measurement. Let suppose � is the failure rate and 
the � is the repair rate for the system. X(t), t ≥ 0 represents 
the system’s state at t. The quality measurement of a system 
depends on the quality of its sub-systems. So, the system’s 
quality can function of the states at time t (Mo et al. 2018). 
This case assumes that the system has a dual redundant fault-
tolerant system. State p shows the primary component, r 
state shows the redundant, and b state shows the backup 
state. A state diagram of a system is drawn below to show 
the system’s different failure and repair scenarios.

Here,
μp: the Repair rate of the primary component.
μr: the Repair rate of the redundant component.
μb: the Repair rate of the backup component.
λr: The failure rate of the primary component.
λr: The failure rate of the redundant component.
λb: The failure rate of the backup component.
The transition from state i to j takes place at some transi-

tion rates. In this study, two transition rates have been con-
sidered, i.e., failure rate � and repair rate � . These rates can 
also be represented using the Matrix.

Λ =
[
ai,j

]
 , Λ is the n ∗ n Matrix and ai,i = −

∑
j,j≠i ai,j

For the Continuous-Time Markov Chain, the diagonal ele-
ment of the matric is the sum of the rest row elements with 
a minus sign. A specific cost is accumulated for each state 
while staying and transitioning to another state.

W =
[
wij

]
 n*n.

The reward matric depends on the quality parameter 
under measurement. The reward ( wii) is the state’s reward 
when there is no transition to the same state. The reward 
( wij) denotes the reward for the transition from i to j state. If 
all the rewards are assigned zero, the MRM is the same as 
the ordinary Markov chain. The total reward accumulated up 
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to time t under the initial conditions represents the param-
eters. The transition intensities do not depend on the time 
t. That means remaining constant for the homogeneous 
Markov processes.

The next step is calculating the accumulated reward for 
the state i using the Howard differential equation (A. How-
ard 1960).

Here,
Vi(t) Denote the accumulated reward at time t at state i.
wii is the reward for state i
wij is the transition reward from state i to j
The transition and reward matrices are created to calcu-

late the performability parameters. The set of differential 
equations is written based on Eq. 1.

5  The performability measures used for the study

For the performability analysis, various parameters have 
been defined in the study of a given system. Generally, per-
formability is defined as a combination of performance and 
dependability (Mo et al. 2018). Dependability has the four-
parameter viz reliability, availability, safety, and security. 

(1)
Vi(t)

dt
= wii +

n∑
j=1,j≠i

aijwij +

n∑
j=1

aijVj(t), i = 1...… ..n

This paper has taken two dependability parameters (Reli-
ability and Availability). Table 1 shows the study’s perform-
ability parameters used in this paper.

The activity block diagram is given in Fig.  2. That 
describes the process of the performability analysis.

6  Design and development of the proposed 
performability model

For a system designed in Sect. 3 (Fig. 1), a methodology for 
performability measurement has been proposed in different 
steps. The model is depicted through the activity diagram, 
as shown in Fig. 2. Further, the steps are explained in the 
following subsections. Different dependability and perfor-
mance measures are used to obtain performability. We used 
the reward process for different transitions mentioned in the 
respective reward matrices.

6.1  Reliability

For reliability, the first step is to define the system’s reward 
and transition matrix. Besides, we consider the failed state as 
an absorbing state, so we delete all arcs in the Markov graph 
leading from the failed state to the working state (Viktorova 
et al. 2018). The elements of the reward matrix are as.

Fig. 1  State diagram of a 
system with backup and redun-
dancy
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For the reward matrix rii =
{

1,∀i = jandi ∈ operational

0, otherwise

The reward matrix, according to the discussion

Table 1  The performability parameters and their definitions

Performability measure Definition

Reliability The probability that a system will produce correct outputs up to time t. (Wang et al. 2017)
 Mean reliability The ratio of operation time to the total time represents mean reliability
 Mean No of failure Number of times the system enters into the failure state in time T(Wang 2004)

Availability The probability that the system will operate satisfactorily at a given point in time 
t.(Heddaya and Helal 1996)

 Mean availability Available time is divided by total time. (Lisnianski 2007)
 Steady-State Availability The availability does not change with time. (Viktorova et al. 2018)

Performance The amount of work accomplished in time t.(Eshragh and Kargahi 2013)
 Available Throughput What is the available throughput during the operation time? (Viktorova et al. 2018)
 Various Performance Level time Various performance outputs like High, Medium, Low, and fail

Performability A combined study of Performance and Dependability (Smith et al. 1988)

Fig. 2  Activity diagram for the 
performability using continu-
ous-time Markov chain with 
reward



2223Int J  Syst  Assur  Eng  Manag (December 2023) 14(6):2218–2234 

1 3

For the safety–critical system, reliability should be very 
high. We consider that if at least two components working is 
considered acceptable, another failed state. So, the updated 
transition matrix is as follows.

The differential equation for the total accumulated reward 
is written down according to Eq. 1.

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
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0
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0

0
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(2)

dV1(t)

dt
= 1 −

(
�p + �r + �b

)
V1(t) + �pV2(t) + �rV3(t) + �bV4(t)

dV2(t)

dt
= 1 −

(
�r + �b

)
V2(t) + �rV5(t) + �bV6(t)

dV3(t)

dt
= 1 −

(
�p + �b

)
V3(t) + �pV5(t) + �bV7(t)

dV4(t)

dt
= 1 −

(
�p + �r

)
V4(t) + �pV6(t) + �rV7(t)

dV5(t)

dt
= −

(
�b
)
V5(t) + �bV8(t)

dV6(t)

dt
= −

(
�r
)
V6(t) + �rV8(t)

dV7(t)

dt
= −

(
�p
)
V7(t) + �pV8(t)

dV8(t)

dt
= 0

For solving the differential equation, each state’s accumu-
lated reward obtains. At the initial time, we consider that all 
component is working. So, the accumulated reward at state 
1 shows the system’s Reliability (Kwon and Agha 2007).

6.2  Mean number of failures

For the Mean Number of failures, elements of the reward 
matrix are put as one if there is a transition from the opera-
tional state to the failure state. The failed state is con-
sidered the absorbing state (Viktorova et al. 2018). The 
differential equation is derived from Eq. (1).

6.3  Availability

Availability is defined as the system is operational at a 
time instant t. To calculate availability, we must calcu-
late the average accumulated time spent in the operational 
states during the time interval (0, t) (Lisnianski 2007). The 
repair rate is also included in the transition matrix.

For the reward matrix rii =
{

1, ∀i = jandi ∈ operational

0, otherwise

The reward matrix is given below for the availability 
calculation.

The transition matrix of the proposed Markov system
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The following differential equations were obtained 
using Eq. 1. That shows the accumulated reward for the 
availability of each state.

Solving the above differential equation shows the avail-
ability of the system. After solving equations, accumulated 
reward (Vi(t)) is obtained for each state. We consider that all 
the components are working at the initial time, so the  V1(t) 
shows the average availability of the system (Viktorova et al. 
2018). The average availability is obtained by dividing the 
total accumulated reward by the time.

The system is considered running for a long time for 
steady-state availability. At steady-state, system reliability 
does not change with time. So, the change rate of the differ-
ential equation is zero. So, the left-hand side of the differen-
tial Eqs. 3 should be set as zero to calculate the availability 
at the steady state.

6.4  Performance

First, the performance issue of the systems is described. 
Let’s suppose a system has different levels of performance   
l =

{
l1, l2, l3 … li …… ln

}
   where the performance level 

( li) is the level of performance of the system at state i . 
{Li(t) ≥ 0, Li(t) ∈ lj}  (Goševa-Popstojanova and Trivedi 
2000). It is a stochastic process that shows the performance 
level of the at state i at time t  . Let’s suppose the Q is the 
quality associated with each state of the system. The state 
change with the time quality associated with the condition 
also changed (Goel and Okumoto 1979). So, the quality 
is the function of the S(t) (achieved state at time t), i.e., 
Q(S(t)) = Qcr(t) Or Qcr(t) = wi The  Qcr(t) is the current 
value of the quality at state (Toledano et al. 2016), or we can 
say it is a reward at state i . So, the performance level and the 
demand performance can be represented by the stochastic 
processes shown in Fig. 3.

(3)

dV1(t)

dt
= 1 −

(
�p + �r + �b

)
V1(t) + �pV2(t) + �rV3(t) + �bV4(t)

dV2(t)

dt
= 1 + �pV1(t) −

(
�r + �b + �p

)
V2(t) + �rV5(t) + �bV6(t)

dV3(t)

dt
= 1 + �rV1(t) −

(
�p + �b + �r

)
V3(t) + �pV5(t) + �bV7(t)

dV4(t)

dt
= 1 + �bV1(t) −

(
�p + �r + �p

)
V4(t) + �pV6(t) + �rV7(t)

dV5(t)

dt
= �rV2(t) + �pV3(t) −

(
�b + �r + �p

)
V5(t) + �bV8(t)

dV6(t)

dt
= �bV2(t) + �pV4(t) −

(
�r + �b + �p

)
V6(t) + �rV8(t)

dV7(t)

dt
= �bV3(t) + �rV4(t) −

(
�p + �b + �r

)
V7(t) + �pV8(t)

dV8(t)

dt
= �bV5(t) + �rV6(t) + �pV7(t) −

(
�b + �r + �p

)
(V8(t)

Suppose we want to represent the weight for each state 
and change of weight from state i to j. The Matrix W can 
define that.

W = [wi,j] n*n,
The reward ( wi,j) is the effect on the system in terms of 

quality arising from the transition from state i to j . Transition 
state i to i i.e wi,i = wi . Suppose we consider the three per-
formance levels: low, medium, and high. Another stochastic 
process Di(t) ≥ 0 shows the demand performance level at 
statei . For each state, there are two possibilities regarding 
whether demand may satisfy or not (Temraz and El-Dmcese 
2011). The whole state space can be divided into two dis-
joint sets based on the condition. Demand satisfy states are 
the acceptable states, and that state not fulfilling the demand 
is categorized as a failed state. The acceptability function for 
the state is the function of the level of performance and the 
demand (Temraz and El-Dmcese 2011).

In Homogeneous Markov processes, the failure and repair 
rates remain independent of time t (Strielkina et al. 2018). 
Let’s take the throughput as the demanded throughput as 
the performance parameter. The demand throughputs  (D1, 
 D2, and  D3) and provided throughputs by the system  (T1,  T2, 
and  T3) are shown in Fig. 3. Demand and capacity stochastic 
matrices are merged to get the combined transition matrix 
shown in Fig. 4.

The following transition matrix is created based on the 
generating and demand capacity transition matrices. The 

Q
{
Li(t),Di(t)

}
=

{
Li(t),−Di(t),

{
Li(t) − Di(t)

}
≥ 0

0, else

Fig. 3  stochastic processes showing throughput level and demand 
throughput of the system
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transition rate assignment is done according to the rule in 
the paper (Lisnianski 2007). In this, only the horizontal and 
vertical transition is considered. The diagonal transition is 
ignored for the simplicity of calculating the transition rate.

For calculating, we have defined the reward for each 
state. The acceptable states have the reward one. The 
unacceptable state and transition have the reward of zero. 
All the rewards associated with each state are determined 
using Eq. 1. Usually, the state with the greatest capacity 
level and minimum demand is considered as an initial state 
(Temraz and El-Dmcese 2011).

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
�
y1
�

b2,1
b3,1
a2,1
0

0

a3,1
0

0

b1,2
−
�
y2
�

b3,2
0

a2,1
0

0

a3,1
0

b1,3
b2,3

−
�
y3
�

0

0

a2,1
0

0

a3,1

a1,2
0

0

−
�
y4
�

b2,1
b3,1
a3,2
0

0

0

a1,2
0

b1,2
−
�
y5
�

b3,1
0

a3,2
0

0

0

0

b1,3
b2,3

−
�
y6
�

0

0

a3,2

a1,3
0

0

a2,3
0

0

−
�
y7
�

b2,1
b3,1

0 0

a1,3 0

0 a1,3
0 0

a2,3 0

0 a2,3
b1,2 b1,3

−
�
y8
�

b3,2

b2,3
−
�
y9
�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

availablethroughput = pr{∅(t) ≥ 0}

A similar approach can be used for the response time 

and other performance parameters. Calculating the reward 
determines how much the system remains at the particular 
performance level. The reward related to the state with the 
required throughput or more is defined as 1, otherwise 0.

6.5  Performability

For critical safety systems, performability is very impor-
tant to ensure that the system’s quality is according to 
specification (Eshragh and Kargahi 2013). In this paper, 

averageavailablethroughputTH(T) =
∑ Vi(T)

T

Fig. 4  stochastic process showing the demand and capacity of the system
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performability only considers the reliability and perfor-
mance of the system. Sections 6.1 and 6.2 measure the sys-
tem’s reliability, while subSect. 6.3 measures the combined 
performance and availability. The parameters measured in 
the above subsection show performability of the system. 
The combined parameter is named the available throughput. 
Another important performability measure is calculated to 
show the different performance levels of time spent during 
operations.

To explain how this methodology is beneficial. We must 
understand that the safety–critical system with high reli-
ability and low performance or low reliability and high 
performance has no worthwhile performing the critical 
functionality. Because performance describes the system’s 
responsiveness, and reliability shows how accurately the sys-
tem produces the result. So, the performance and reliability 
should be combined to get the optimal solution for software 
reliability and performance. Second thing, Software security 
has a direct impact on both its reliability and performance. 
For example, security lapses may result in downtime, permit 
the entry of viruses that turn off essential functions, or give 
criminals access to your data. However, overly complicated 
security mechanisms can cause the system to lag and prevent 
integrations with other programs.

7  Case study

For the illustration of the proposed methodology in this 
work, The case study presented by (Kalaiarasi et al. 2017) is 
taken for study. The Markov chain graph is shown in Fig. 1. 
If at least two components out of three-component are in 
operational mode, then the system is considered opera-
tional; otherwise, the system is in a failed state. The system 
under study has three components; there are eight possible 

states. There are four operational states, and four are failed 
states. So, the state set is categorized as the set of failed and 
operational states. Figure 5 shows all-possible states of the 
system.

Assumptions 

• A system with components is presented using CTMC, 
where states show operational and state transition indi-
cates the movement to the other states.

• Component failure and repair rates are statistically inde-
pendent and exponentially distributed.

• Link failures and repairs trigger transitions from one state 
into another.

• At most, one component can fail or repair at a particular 
time.

• All the components are working perfectly at the initial 
time.

The transition rate triggers the transition from one 
state to another. There are two types of transition rated 
failure rate and repair rate. The system has finite state 
spaces = {0, 1, 2, 3,…… ., 7} . The homogeneous CTMC 
( X(t), t ≥ 0 ) describes the stochastic nature. Transition rate 
matrix Λ

After identifying operational and failed states, the 
Markov transition diagram of the system with non-repair-
able capability was generated in Fig. 6, removing all the 
repair rate transitions from Fig. 1. If the two components 
are upstate, the state is considered the operational state; 
otherwise, fail state. So, the number of operational states 
is 4, and the number of failed states is 4. There is an 8*8 
transition matrix Λ should be created. The failure rate 
�1 = 0.03 + 0.002 ∗ t , �2 = 0.03 + 0.001 ∗ yand�3 = 0.01 , 
the repair rate�1 = 0.1 , �2 = 0.1 And �3 = 0.05 (Wang 

Fig. 5  All possible states of the 
system under consideration
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2004). the first two failure rates are time-dependent. That 
means the failure of the component increases the time 
passes.

7.1  Mean Number of failures during the time interval 
(0, T)

The aim of calculating the mean number of failures is to 
put the trend of the system failure. The failure trend pre-
diction is the challenge. This measure helps the fault toler-
ance technique make proactive action to manage the failure 
(Kalaiarasi et al. 2017). By putting all the failure and repair 
rates, the accumulated reward obtained in each state is given 
in Table 1. At the initial time system have all the component 
upstate. So, column zero shows the Mean no. of failure dur-
ing the time (0, T) (Lisnianski 2007). Table 2 shows the 
mean number of failures during the time interval.

As the table shows, the mean number of failures is zero 
at time instance zero. As time increases, the number of fail-
ures also increases. This measure helps the system manager 
understand the system failure trend. That may allow the sys-
tem manager to determine how much time the system goes 
to the failure stage. The graph representing the mean no of 
failures is given in Fig. 7.

7.2  Reliability

In the multistate system, the components have many objects. 
The mutual interaction influences the reliability of the sys-
tem. Only Failure rates are considered for the reliability 
measurement (Lisnianski 2007). The set of Eq. 2 is used for 
the calculation of the reliability. Rewards related to all the 
operational states are considered 1, and all the failed states 

{CF}  {0} {1} {2} {3} {12} {13} {23} {123}
 States 1 2 3 4 5 6 7 8 

{0} 1     0 0 0 0 

{1} 2   0 0   0 0 

{2} 3  0  0  0  0 

{3} 4  0 0  0   0 

{12} 5 0   0  0 0  

{13} 6 0  0  0  0  

{23} 7 0 0   0 0   

{123} 8 0 0 0 0     

Fig. 6  transaction matric of the system

Table 2  Table showing the 
Mean no. of failure

Time 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0
1 0.001459 0.037887 0.038353 0.058307 0.003613 0.003683 0.003689 0.000294
2 0.00568 0.072226 0.073969 0.113623 0.013121 0.013612 0.013656 0.002077
3 0.012445 0.103882 0.107567 0.166475 0.026934 0.028406 0.028525 0.006219
4 0.021561 0.13356 0.139733 0.217311 0.043899 0.047001 0.047234 0.013123
5 0.032853 0.161824 0.17094 0.266507 0.063186 0.068584 0.06896 0.022894
6 0.046169 0.189133 0.201569 0.31438 0.084209 0.092531 0.093073 0.035457
7 0.061373 0.215855 0.231922 0.361197 0.106556 0.118367 0.119091 0.050637
8 0.078343 0.242287 0.262241 0.40718 0.129948 0.145729 0.146647 0.068206
9 0.096975 0.268668 0.292716 0.452516 0.154198 0.174341 0.17546 0.087922
10 0.117175 0.29519 0.323494 0.497358 0.179189 0.203995 0.205319 0.109548
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and transitions are considered 0. The accumulated reward is 
given in Table 3 up to the time t.

Column zero shows the system’s reliability because, at 
the initial time, all the components are working. That is rep-
resented by the state 0 (Temraz and El-Dmcese 2011). The 
reliability of state 1, state 2, and state 3 are less than state 1. 
These states are more prone to transit into the failure state. 
The reliability graph is shown in Fig. 8. As time passes, the 
reliability decreases exponentially. The system reaches zero 
after 140 years.

Although the reliability also greatly depends on the vari-
ous characteristics of the systems. Software or specialized 
hardware monitoring can improve the overall system reli-
ability. To improve the reliability of various faults, toler-
ate feature is added to the safety–critical system. In this 
case, the availability measures show the overall availability 
of the system. During the operation time, several failures 
and repairs occur. The fault-tolerance features can elimi-
nate or reduce service disruption whenever the equipment 

fails by providing alternate routing and restoring lost 
connections(Wang 2004).

7.3  Availability

The time the system remains operational for the availabil-
ity analysis is calculated. The system transition matrix 
has repair and failure transitions (Khvatskin and Frenkel 
2017). The reward matrix and transition matrix are defined 
in subsection 5.2. Using the set of differential Eq. 3 used 
for the calculation. Table 4 shows the accumulated reward 
for each state that shows the amount of time spent.

The system’s initial state V1(t) shows that all the compo-
nents are working. Using the differential Eqs. 3, we obtain 
the average accumulated time spent on the working state 
(Lisnianski and Frenkel 2009). As time passes, the avail-
ability decreases, as shown in Fig. 9. At the steady-state, 
availability is 0.90. Similarly, the availability of state 2 is 
less than one as state 2 is more prone to failure.

Fig. 7  Accumulated number of failures

Table 3  Table showing the 
reliability

Time 1 2 3 4 5 6 7 8 Reliability

0 0 0 0 0 0 0 0 0 0
1 0.999097 0.97027 0.969949 0.969628 0 0 0 0 0.999097
2 1.992771 1.882186 1.879717 1.877252 0 0 0 0 0.996385
3 2.975628 2.737461 2.729453 2.721474 0 0 0 0 0.991876
4 3.942402 3.537867 3.519646 3.50154 0 0 0 0 0.9856
5 4.888047 4.285229 4.251099 4.217301 0 0 0 0 0.977609
6 5.807821 4.981415 4.924901 4.869175 0 0 0 0 0.96797
7 6.69735 5.628319 5.542404 5.458106 0 0 0 0 0.956764
8 7.552686 6.227862 6.105189 5.985508 0 0 0 0 0.944086
9 8.370347 6.781975 6.615041 6.453217 0 0 0 0 0.930039
10 9.14735 7.292595 7.073922 6.863438 0 0 0 0 0.914735

Fig. 8  Reliability of the system
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7.4  Performance

The performance has various parameters, but the average 
available throughput and time spent on the different per-
formance levels are considered. These are discussed in the 
following subsections.

7.4.1  Average available throughput

Subsection 5.3 presents a system with three different generat-
ing and demand capacities. The stochastic process represents 
demand and capacity, as shown in Fig. 3. For calculating the 
available throughput, these two stochastic processes are com-
bined into a single stochastic process Fig. 4. The resulting pro-
cess has nine states. Their failure and repair rates are given. If 
the demand is less than the generating capacity for any state, 
it is considered the acceptable state or else failed state. The 
numerical base data is taken from paper (Lisnianski 2007). 
We extended all two transitions to three transitions. Below is 
the transition matrix for the demanded throughput, generating 
throughput, and combined transition matrix.

The combined stochastic transition matrix C is based 
on Matrix a and Matrix b.

aij =

⎡⎢⎢⎣

−500 100 400

200 −1000 800

1 10 −11

⎤⎥⎥⎦

bij =

⎡⎢⎢⎣

−540 156 391

900 −1110 210

1000 110 −11

⎤⎥⎥⎦

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1047 156 391 100 0 0 400 0 0

900 −1610 210 0 100 0 0 400 0

1000 110 −1610 0 0 100 0 0 400

200 0 0 −1547 156 391 800 0 0

0 200 0 900 −2110 210 0 800 0

0 0 200 1000 110 −2110 0 0 800

1 0 0 10 0 0 −1302 900 391

0 1 0 0 10 0 900 −1121 210

0 0 1 0 0 10 1000 110 −1121

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 4  Table showing the availability

Time 1 2 3 4 5 6 7 8 Availability

0 0 0 0 0 0 0 0 0 0
1 0.999523 0.981732 0.981437 0.971542 0.092209 0.069508 0.069487 0.005911 0.999523
2 1.996356 1.932991 1.930902 1.891896 0.341583 0.258554 0.258256 0.042066 0.998178
3 2.988272 2.861206 2.854938 2.768729 0.714756 0.542809 0.541442 0.126701 0.996091
4 3.973497 3.771982 3.758741 3.608601 1.186446 0.903338 0.89942 0.268893 0.993374
5 4.950662 4.669526 4.646424 4.417118 1.737507 1.325439 1.316747 0.471731 0.990132
6 5.918755 5.556986 5.521246 5.199069 2.353437 1.797712 1.781299 0.734533 0.986459
7 6.877071 6.436711 6.385801 5.958557 3.023235 2.311327 2.283581 1.054381 0.982439
8 7.825174 7.310458 7.242173 6.699105 3.738551 2.85945 2.816171 1.427151 0.978147
9 8.762853 8.179552 8.092061 7.423755 4.493029 3.436797 3.373284 1.848202 0.97365
10 9.690099 9.045012 8.936882 8.135152 5.281827 4.039285 3.950421 2.312814 0.96901

Fig. 9  The availability of the system vs. Time
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The throughput generating levels are L = {70, 89, 
100} and the demand throughput level are D = {80, 85, 
90}(Lisnianski 2007). When these values are put into 

the transition matrix represented in subSect.  6.3. The 
state where the demand satisfies (acceptable states) are 
4,5,7,8,9, and failed states are 1,2,3,6.

To find the average availability throughput A(T) 
according to the introduced approach. we should present 
the reward matrix w. By using differential Eq. 1, the nine-
differential equation generated. The initial state is where 
demand is minimum and generating capacity is high. So, 
the initial state in our case is state 7. So, state 7 shows 
the available throughput of the system. Table 5 shows 
the accumulated reward of the states for the available 
throughput.

The table revealed that the available throughput is 
approximately 0.9917 as time passes. The throughput 
decreases slightly in Fig. 10. The range of the y-axis is 
(0.991745, 0.991775). The values of the y-axis are con-
verted into the normalized form. The available throughput 
remained unchanged after 20 years.

Table 5  Average available throughput

Time 1 2 3 4 5 6 7 8 9 Available Th

0 0 0 0 0 0 0 0 0 0
1 0.989783 0.990154 0.989751 0.991234 0.9913 0.99083 0.991772 0.991773 0.991769 0.991772
2 1.981537 1.981907 1.981504 1.982988 1.983053 1.982584 1.983525 1.983527 1.983523 0.991763
3 2.97329 2.973661 2.973258 2.974742 2.974807 2.974337 2.975279 2.97528 2.975276 0.99176
4 3.965044 3.965415 3.965012 3.966495 3.966561 3.966091 3.967033 3.967034 3.96703 0.991758
5 4.956798 4.957168 4.956765 4.958249 4.958314 4.957844 4.958786 4.958788 4.958784 0.991757
6 5.948551 5.948922 5.948519 5.950003 5.950068 5.949598 5.95054 5.950541 5.950537 0.991757
7 6.940305 6.940676 6.940273 6.941756 6.941822 6.941352 6.942294 6.942295 6.942291 0.991756
8 7.932058 7.932429 7.932026 7.93351 7.933575 7.933105 7.934047 7.934048 7.934045 0.991756
9 8.923812 8.924183 8.92378 8.925263 8.925329 8.924859 8.925801 8.925802 8.925798 0.991756
10 9.915566 9.915936 9.915533 9.917017 9.917083 9.916613 9.917555 9.917556 9.917552 0.991755

Fig. 10  Average available throughput

Table 6  High-Performance time spent in percentage

Time 1 2 3 4 5 6 7 8 9 Highest Th

0 0 0 0 0 0 0 0 0 0 0
1 0.627488 0.627503 0.627334 0.627962 0.627736 0.627749 0.629015 0.628321 0.628373 0.629015
2 1.256248 1.256264 1.256095 1.256723 1.256496 1.25651 1.257776 1.257082 1.257134 0.628888
3 1.885009 1.885024 1.884856 1.885484 1.885257 1.88527 1.886537 1.885843 1.885895 0.628846
4 2.51377 2.513785 2.513617 2.514244 2.514018 2.514031 2.515297 2.514604 2.514656 0.628824
5 3.142531 3.142546 3.142377 3.143005 3.142779 3.142792 3.144058 3.143364 3.143416 0.628812
6 3.771291 3.771307 3.771138 3.771766 3.771539 3.771553 3.772819 3.772125 3.772177 0.628803
7 4.400052 4.400067 4.399899 4.400527 4.4003 4.400313 4.40158 4.400886 4.400938 0.628797
8 5.028813 5.028828 5.02866 5.029287 5.029061 5.029074 5.030341 5.029647 5.029699 0.628793
9 5.657574 5.657589 5.65742 5.658048 5.657822 5.657835 5.659101 5.658407 5.65846 0.628789
10 6.286334 6.28635 6.286181 6.286809 6.286582 6.286596 6.287862 6.287168 6.28722 0.628786
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7.4.2  Time spent different performance levels

The complex system work on different performance 
level. How much time the system works in the different 
working states is also an important measure to show the 

performability of the safety–critical system (Januzaj et al. 
2009). In this section, the system is classified into the 
four-performance level, i.e. (high, medium, low, and fail). 
The high-performance level state is state 7. The Medium 

Table 7  Medium Performance Level (PL) time spent in percentage

Time 1 2 3 4 5 6 7 8 9 Medium Th

0 0 0 0 0 0 0 0 0 0 0
1 0.361095 0.361432 0.361217 0.36202 0.361867 0.361837 0.361573 0.362264 0.362212 0.361573
2 0.722902 0.723239 0.723024 0.723827 0.723675 0.723645 0.72338 0.724072 0.724019 0.36169
3 1.08471 1.085046 1.084831 1.085635 1.085482 1.085452 1.085187 1.085879 1.085827 0.361729
4 1.446517 1.446853 1.446639 1.447442 1.447289 1.447259 1.446995 1.447686 1.447634 0.361749
5 1.808324 1.808661 1.808446 1.809249 1.809096 1.809067 1.808802 1.809494 1.809441 0.36176
6 2.170131 2.170468 2.170253 2.171057 2.170904 2.170874 2.170609 2.171301 2.171249 0.361768
7 2.531939 2.532275 2.532061 2.532864 2.532711 2.532681 2.532417 2.533108 2.533056 0.361774
8 2.893746 2.894083 2.893868 2.894671 2.894518 2.894488 2.894224 2.894916 2.894863 0.361778
9 3.255553 3.25589 3.255675 3.256479 3.256326 3.256296 3.256031 3.256723 3.25667 0.361781
10 3.617361 3.617697 3.617483 3.618286 3.618133 3.618103 3.617839 3.61853 3.618478 0.361784

Table 8  Low-Performance time spent in percentage

Time 1 2 3 4 5 6 7 8 9 Low Th

0 0 0 0 0 0 0 0 0 0 0
1 0.001201 0.001219 0.0012 0.001252 0.001697 0.001244 0.001184 0.001187 0.001184 0.001184
2 0.002386 0.002405 0.002385 0.002438 0.002883 0.002429 0.002369 0.002373 0.002369 0.001185
3 0.003572 0.00359 0.003571 0.003623 0.004068 0.003615 0.003555 0.003559 0.003555 0.001185
4 0.004757 0.004776 0.004756 0.004809 0.005254 0.004801 0.004741 0.004744 0.00474 0.001185
5 0.005943 0.005962 0.005942 0.005994 0.006439 0.005986 0.005926 0.00593 0.005926 0.001185
6 0.007128 0.007147 0.007127 0.00718 0.007625 0.007172 0.007112 0.007115 0.007112 0.001185
7 0.008314 0.008333 0.008313 0.008366 0.00881 0.008357 0.008297 0.008301 0.008297 0.001185
8 0.0095 0.009518 0.009499 0.009551 0.009996 0.009543 0.009483 0.009486 0.009483 0.001185
9 0.010685 0.010704 0.010684 0.010737 0.011182 0.010728 0.010668 0.010672 0.010668 0.001185
10 0.011871 0.011889 0.01187 0.011922 0.012367 0.011914 0.011854 0.011857 0.011854 0.001185

Table 9  Failed time spent in percentage

Time 1 2 3 4 5 6 7 8 9 Failed Time

0 0 0 0 0 0 0 0 0 0 0
1 0.010217 0.009846 0.010249 0.008766 0.0087 0.00917 0.008228 0.008227 0.008231 0.008228
2 0.018463 0.018093 0.018496 0.017012 0.016947 0.017416 0.016475 0.016473 0.016477 0.008237
3 0.02671 0.026339 0.026742 0.025258 0.025193 0.025663 0.024721 0.02472 0.024724 0.00824
4 0.034956 0.034585 0.034988 0.033505 0.033439 0.033909 0.032967 0.032966 0.03297 0.008242
5 0.043202 0.042832 0.043235 0.041751 0.041686 0.042156 0.041214 0.041212 0.041216 0.008243
6 0.051449 0.051078 0.051481 0.049997 0.049932 0.050402 0.04946 0.049459 0.049463 0.008243
7 0.059695 0.059324 0.059727 0.058244 0.058178 0.058648 0.057706 0.057705 0.057709 0.008244
8 0.067942 0.067571 0.067974 0.06649 0.066425 0.066895 0.065953 0.065952 0.065955 0.008244
9 0.076188 0.075817 0.07622 0.074737 0.074671 0.075141 0.074199 0.074198 0.074202 0.008244
10 0.084434 0.084064 0.084467 0.082983 0.082917 0.083387 0.082445 0.082444 0.082448 0.008245
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performance states are 4,8,9. The low-performance state 
is state 5. State 1,2,3,6 represent the failure states of the 
system.

To calculate the high performance, we have to assign 
a reward w77 = 1 rest of the reward should be zero. The 
high-performance reward is shown in Table 6. For the 
medium performance level reward w44 = w88 = w99 = 1 . 
The accumulated reward for the low-performance level is 
given in Table 7. For the low-performance level reward of 
state w55 = 1 . The accumulated low reward is represented 
in Table 8. Similarly, for the failure time that the system 
spent, the reward for the failed states should be assigned 
1, i.e., w11 = w22 = w33 = w55 = 1 . The accumulated failed 
reward for the state is given in Table 9.

For calculating the percentage time spent on the dif-
ferent, the total accumulated reward is divided by time t. 
Table 6 shows the high-performance percentage time spent 
at the initial time is 0.629015. As time passes, the high-
performance probability decreases. After some time, this 
reached to steady-state, as shown in Fig. 11. Similarly, the 

time spent between medium, low, and failed states is also 
given in Tables 6, 7, and 8.

The throughput availability in the medium is 0.3617 
(approximately), low performance (0.001185), and at the 
failed state, 0.00824 (approximately). The sum of all the 
performance level probability equals one at each time. E.g., 
at time instance1, the sum of the probability of all the levels 
(0.629015 + 0.361573 + 0.001184 + 0.008228 = 1) is 1.

The high, medium and low-performance levels show the 
system is operational. These performance levels show the 
system’s availability calculated in subSect. 7.4.1. the failed 
state availability shows the system’s unavailability during 
the operation.

The corresponding line graph for the different perfor-
mance level probability is given the Fig. 11. Initially, the 
system is at a high-performance level. So, the high-perfor-
mance graph in Fig. 11 shows the decrease in the probability. 
The other performance level at the initial time is zero. So, 
as time increases, the probability of the performance level 
increases with time. After some time, all the performance 
levels reached a steady state. The performability measures 

Fig. 11  The obtained different performance levels spent time
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in this study show that the system is performing with high 
availability and throughput during the operational time. The 
primary purpose of this study is that a safety–critical system 
should accomplish a task within the deadline.

8  Limitations and possible scalability 
of the proposed approach

In investigations of predictability, Markov models are fre-
quently used. For instance, Markov models empirically 
predict future fields from the present and past. It has been 
argued that utilizing Markov models to assess climate sen-
sitivity can help solve some issues arising in time series 
research due to sampling errors. Markov models are widely 
used. However, they cannot be developed from determin-
istic, dynamical models in a precise way. This raises the 
question of when Markov models are suitable for model-
ling dynamical systems. The exponential expansion in the 
number of states with rising system complexity is one of 
the Markov model’s drawbacks. It makes applying Markov-
based state model generation for complex systems more dif-
ficult and increases computational resource consumption. 
This paper introduces a method for decomposing the target 
system into independent sub-systems and adopting system-
level failure rates of the sub-systems estimated individually 
by the developed formulas. The method is based on decom-
posing the target system into independent sub-systems. A 
straightforward model of the target system can be created 
using the failure rates of the sub-systems.

9  Conclusion and future work

Safety Critical Systems should have high performance and 
reliability. If the system’s reliability improves by adding 
some mechanism, it affects its performance and vice-versa. 
So, the combined study of performance and reliability 
(called performability) is essential and produces significant 
knowledge to improve the overall system quality. A com-
bined study of performance and reliability is done based 
on the continuous-time Markov chain with rewards in this 
paper. The performability analysis is done based on the defi-
nition of the performability. The major part considered for 
performability analysis is dependability and performance. 
From the dependability, reliability and availability attrib-
utes are taken. For reliability, the mean number of failures 
was calculated. For the performance, the overall available 
throughput of the system is calculated. Further, time spent 
by the system during the operation at the different perfor-
mance levels has been measured.

Future research can be dedicated to developing a more 
general dependability model for the safety–critical system. 
If state holding time does not follow the exponential distri-
bution, the system cannot be modelled using the ordinary 
Markov chain. In practice, various systems do not hold the 
exponential distribution rule. This problem requires a more 
sophisticated modelling tool. This issue can be modelled 
using semi-Markov modelling. One more research dimen-
sion can be immersed as the automatic performability 
modelling using the suitable action based on the reward. 
Reinforced learning is the basic technique that can help to 
address this challenge. In reinforcement learning, the system 
can make a suitable decision based on the system require-
ment based on the reward.
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