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Abstract  Practitioners who are working with mixture 
experiments often found that the existing mixture designs 
fail to provide the mixture combinations in a true sense. 
This problem can be overcomed by using the concept of 
uniform designs with mixture experiments. Uniform designs 
aim at scattering the points uniformly in the experimental 
region. Uniform mixture design can be applied in the fields 
like material science, chemical engineering, food science, 
agriculture and in many other areas where the composition 
of the mixtures is required to obtain response/outcome. In 
this paper, an attempt has been made to construct uniform 
mixture designs for s component mixtures using the uni-
form design in s-dimensional spherical region. A trans-
formation is proposed for constructing uniform designs in 
s-dimensional spherical region by using the existing designs 
in 2-dimensional spherical region. The uniformity of the 
constructed designs is measured by distance-based approach 
and the uniformity of the mixture designs is measured by 
DM

2
-discrepancy.

Keywords  Uniform design · Spherical region · 
Experimental region · Mixture design

1  Introduction

Mixture experiments involve mixing of different ingredients 
to form end products. In these experiments, the response 
depends on the proportions of the ingredients present in 
the mixture and not on the total amount of the mixture. 
For example, the cleaning power of a detergent which is 
formed by mixing Alcohol Ethoxylate, Alkyl Ethoxy Sul-
phate, Amine Oxide, Carboxymethyl Cellulose (CMC), 
Citric Acid, Cyclodextrin, Diethyl Ester Dimethyl Ammo-
nium Chloride, Ethanol, Hydrogen Peroxide, Percarbonate, 
Sodium carbonate, Sodium Hypochlorite, Zinc Phthalocya-
nine Sulphonate (ZPS) depends on the proportions of these 
ingredients in the detergent.

Quenouille (1953) led the foundation of a mixture experi-
ments. For a mixture with s components or ingredients, if xi 
represents the proportion of the ith component in the mix-
ture, then

with 
∑s

i=1
xi = x1 + x2 +…+ xs = 1

The factor space for the s component mixture is the (s − 1) 
dimensional simplex Ss−1 given by

The term simplex design was first used by Claring-
bold (1955) during his study on joint action of hormones. 
Scheffé (1958, 1963) introduced simplex lattice and sim-
plex centroid designs with corresponding associated mod-
els. Mixture experiments have wide applications in dif-
ferent fields. Bezerra et al. (2020) used mixture design in 
chemometric for optimization of any stage of an analytical 

(1)0 ≤ xi ≤ 1, i = 1, 2, … , s

Ss−1 =
{
x =

(
x1, x2,… , xs

)
∶
∑s

i=1
xi = 1, xi ≥ 0

}
.
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method. Zhou et al. (2007) used mixture designs to design 
the formulation of pure cultures in Tibetan Kefir. Bahram 
Parvar et al. (2015) discussed application of simplex cen-
troid design to optimize stabilizer combinations for ice 
cream manufacture. For more details on mixture experi-
ments see Cornell (2011).

In many pharmaceuticals and petrochemicals industries 
there is a need of large number of design points that are 
scattered uniformly over the experimental region. Fang 
(1980) and Wang and Fang (1981) were the first to intro-
duce uniform design based on Quasi Monte Carlo method 
and Number-Theoretic net (NT-net) method. Uniform 
design is obtained by using the concept of U-type design 
based on NT-net design. The NT-net design is obtained 
by using good lattice point (glp) generator. There are sev-
eral other methods defined in literature for obtaining NT-
net design. However, glp method is used because of its 
economic computation and good performance (Hua and 
Wang (1981) and Shaw (1988)). Zhou and Xu (2015) have 
also mentioned that the design obtained by using the glp 
generator possesses low discrepancy. The glp method was 
proposed by Korobov (1959a, 1959b) and was further dis-
cussed by Hua and Wang (1981), Fang and Wang (1994). 
Fang and Wang (1994) and Borkowski and Piepel (2009) 
introduced distance-based criteria to measure the uniform-
ity of a design. Ning et. al. (2011) gave DM2-discrepancy 
to measure the uniformity of a mixture design.

Often experimenter is not interested in mixture com-
binations in entire simplex rather, the interest lies in a 
smaller subregion inside the simplex (see Cornell 2011, pp 
108). One such region can be spherical region. In response 
surface methodology, extensive research exists for designs 
in spherical regions. In Box-Behnken designs (Box and 
Behnken (1960)) and hybrid designs of Roquemore (1976) 
spherical region is considered. Talke and Borkowski 
(2016) proposed a method for the generation of the uni-
form design in 2-and 3-dimensional spherical regions. Lai 
et al. (2021) used coordinate descent method to construct 
uniform designs over continuous domain in computer 
experiments. Uniform mixture designs can be useful for 
dealing with multi response problem (see Menchaca-Men-
dez et al. (2022)).

Now question arises, is it possible to construct uni-
form mixture designs in higher dimensional space using 
the designs in lower dimensional spherical region. In 
this paper, a method is proposed for obtaining the uni-
form designs in s-dimensional spherical region using the 
design in 2-dimensional spherical region given by Talke 
and Borkowski (2016). The discrepancy of the constructed 
designs is measured using three distance-based criteria. 
The constructed designs are then transformed into mixture 

designs using the transformation proposed for this pur-
pose. The uniformity of the mixture designs is computed 
by D M2-discrepancy and the design with minimum value 
is selected.

The paper is organized as follows. In Sect. 2, various 
measures of uniformity are described. In Sect. 3, a method is 
proposed for obtaining the design in s- dimensional spherical 
region from the designs in 2-dimensional spherical region. 
Section 4 proposes a transformation to obtain mixture designs 
from the designs in spherical region. Section 5 outlines the 
conclusion of the paper.

2 � Uniformity criteria

Fang (1980) and Wang and Fang (1981) were the first to 
apply the idea of Number-theoretic methods (NTM) to 
experimental designs. Number-theoretic method or Quasi 
Monte Carlo method is a combination of number-theory 
and numerical analysis and has a variety of applications in 
statistics. Discrepancy is a measure of uniformity which 
provides a way of construction of uniform design. Fang 
and Wang (1994) introduced the root mean square distance 
(RMSD) to measure the uniformity of mixtures designs. 
Borkowski and Piepel (2009) introduced criteria based on 
average distance (AD) and maximum distance (MD).

Generally Monte Carlo sampling method is used to 
compute these values. In this method two sets a training 
set and a sampling set are taken and the design points 
of these sets are obtained using Number-Theoretic net 
(NT-net). From the given training set, a sampling set with 
smaller number of runs is obtained and the value of uni-
formity measure of the sampling set is evaluated based on 
the training set. However, in this article, different sampling 
sets are generated based on different glp generator and the 
training set is separately generated by an appropriate glp 
generator which is selected arbitrarily. The criteria values 
of different sampling sets are evaluated using the train-
ing set. For higher dimensional spherical region, there is 
no discrepancy measures are available in the literature. 
Therefore, the distance-based approach is preferred for 
measuring uniformity.

Suppose D =
{
xj =

(
xj1, xj2,… , xjs

)
;j = 1, 2,… , n

}
 rep-

resents a sampling set i.e. a design with s components and n 
runs for which the distance based uniformity measures are to 
be computed and T =

{
tk =

(
tk1, tk2,… , tks

)
, k = 1, 2,… ,N

}
 

represent a training set consisting of N (> n) runs and s compo-
nents. Then D and T matrices of order n × s and N × s respec-
tively, where
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Let d2
s

(
xj, tk

)
 denote the Euclidean distance between the 

points xj and tk scaled between 0 and 1, then

and the three distance-based criteria are defined as follows:

1)	 RMSD(D) =

�
∑N

k=1
min1≤ j≤nd

2
s (xj,tk)

N

2)	 AD(D) =
1

N

∑N

k=1
min1≤ j≤ nds

�
xj, tk

�

3)	 MD(D) = max1≤ k≤N

(
min1≤ j≤ nds

(
xj, tk

))

The above mentioned distance-based measures can also 
be applied for mixture experiments where 

∑s

i=1
xji = 1 and 

∑s

i=1
tki = 1 to measure the uniformity of the design.

When the number of runs is small, the uniformity of a 
mixture design can be measured using the DM2-discrep-
ancy which is generalization of star discrepancy (Ning et al. 
2011). Star discrepancy given by Weyl (1916) is a basic and 
simplest measure of uniformity. Ning et al. (2011) gave the 
following analytical expression to compute the DM2-dis-
crepancy value of a design Pn with n runs defined over the 
s-dimensional simplex Ts.

where {0, 1}s−1 =
{(

t1, t2,… , ts−1
)
∶ ti = 0 or 1

}
.

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x11
x21
.
.
.
xn1

x12 … …
x22 … …

. . .

. . .

. . .
xn2 … …

…

x1s
x2s
.
.
.
xns

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

t11
t21
.
.
.
tN1

t12 … …
t22 … …

. . .

. . .

. . .
tN2 … …

…

t1s
t2s
.
.
.
tNs

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

d2
s

(
xj, tk

)
=
∑s

i=1

(
xji − tki

)2

DM2
(

Pn
)

] =

(
√

s
(s − 1)!

)1∕2⎧
⎪

⎨

⎪

⎩

Cn,s −
2(s − 1)!

n

n
∑

i=1

∑

(�2 ,…,�s)�[0,1]s−1
a� .

(

xi1
)�1 .

s
∏

j=2
x�jij

+ 1
n2

n
∑

i=1.k=1

(

max

(

1 −
s

∑

j=2
max

(

xij, xkj
)

, 0

))s−1⎫
⎪

⎬

⎪

⎭

1∕2

.

Cn,s = ((s − 1)!)32s−1∕(2(s − 1)!)
∏s−2

k=0
(2s + k − 1),

Xiao et al. (2023) applied wighted centered L2-discrep-
ancy for obtaining the sequentially weighted uniform design.

3 � Uniform design in the s‑dimensional spherical 
region.

An s-dimensional spherical region of radius r centred at 
y0 =

(
y01, y02,… , y0s

)
 is given by

If y0 = (0, 0,… , 0) and r = 1 , then it represents the 
standard spherical region and is given by

Design in s-dimensional spherical region is the set of 
points which lie inside or on the spherical region (2).

Talke and Borkowski (2016) proposed a method to 
obtain uniform design in 2-dimensional spherical region. 
The design points are first obtained in C2 = [0, 1]2 . Sup-
pose 

{(
ri, �i

)
;i = 1, 2,… , n.

}
 is the design in C2 , then the 

design in two-dimensional spherical region is given by 
{(zi1, zi2); i = 1, 2,… , n} with

which are uniformly scattered in B2 =
{(

zi1, zi2

)
∶

z2
i1
+ z2

i2
≤ 1;i = 1, 2, 3,… , n

}
.

Theorem  1.1:   Let 
{(

zi1, zi2
)
;i = 1, 2,… , n

}
 be an 

n-point design in 2-dimensional spherical region B2 . 
For the s-dimensional spherical region, the design 
D =

{(
yi1, yi2,… , yis

)
;i = 1, 2,… , n

}
 can be obtained by 

using the transformation given below:

a� = (s − 1)!∕
(

2(s − 1) −
∑

�i
)

!

and �1 = 2(s − 1) −
∑s

2
�j

(2)
Ssn
(

y0
)

=
{

(

y1, y2,… , ys
)

:
(

y1 − y01
)2 +

(

y2 − y02
)2

+…+
(

ys − y0s
)2 ≤ r2

}

Ss
n
=
{(

y1, y2,… , ys
)
∶
(
y1
)2

+
(
y2
)2

+…+
(
ys
)2

≤ 1

}

(3)zi1 =
√
riCos

�
2��i

�
, zi2 =

√
riSin

�
2��i

�

yi1 =

√

√

√

√

√

√

z2i1
(

s
2

) , yi2 =

√

√

√

√

√

√

2z2i1
(

s
2

) +
z2i2

(

s
2

) ,… ,

yi(s−1) =

√

√

√

√

√

√

(s − 1)z2i1
(

s
2

) +
(s − 2)z2i2
(

s
2

) ,
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The number of design points n is to be taken more than 
the parameters in the model to be fitted. For example, for the 
Scheffé (1958) quadratic model with s component n should 

be more than s +
(

s

2

)

.

Proof:  Consider the design z =
{(

zi1, zi2
)
;i = 1, 2,… , n

}
 

in 2-dimensional spherical region as.

so that z2
i1
+ z2

i2
= ri.

where 
{(

ri, �i
)
;i = 1, 2,… , n

}
 is an NT-net design in unit 

hypercube dimensions obtained by a generator 
(
1, h1

)
.

Consider the following vector of dimension (1 × s) , given 
by

Define yij =
√

Cjz
2

i1
+ djz

2

i2
;j = 1, 2,… , s;i = 1, 2,… , n.

with yi1 =
����
�

z2
i1

⎛
⎜
⎜
⎝

s

2

⎞
⎟
⎟
⎠

, yi2 =

����
�

2z2
i1

⎛
⎜
⎜
⎝

s

2

⎞
⎟
⎟
⎠

+
z2
i2

⎛
⎜
⎜
⎝

s

2

⎞
⎟
⎟
⎠

,… ,

Then

yis =

√√√√√
√

(s − 1)z2
i1(

s

2

) ;i = 1, 2,… , n.

zi1 =
√
ri cos

�
�i

�
, zi2 =

√
ri sin

�
�i

�

C =
1

(
s

2

) (1, 2,… , s − 1, 0) and d =
1

(
s

2

) (0, 1, 2,… , s − 1).

yi(s−1) =

√√√√√
√

(s − 1)z2
i1(

s

2

) +
(s − 2)z2

i2(
s

2

) , yis =

√√√√√
√

(s − 1)z2
i2(

s

2

) ;i = 1, 2,… , n.

(

yi1
)2 +

(

yi2
)2 +…+

(

yi(s−1)
)2 +

(

yis
)2

=
z2i1

(

s
2

) +
2z2i1 + z2i2
(

s
2

) +…+

+
(s − 1)z2i1 + (s − 2)z2i2

(

s
2

) +
(s − 1)z2i2
(

s
2

)

= z2i1 + z2i2 = ri;i = 1, 2, 3,… , n.

D is the required n-point design in s-dimensional spheri-
cal region given in (2). The particular cases for s = 3, 4, and 
5 are given in the following theorems.

Theorem  1.2:  Let 
{(

zi1, zi2
)
;i = 1, 2,… , n

}
 be the 

n-point design in 2-dimensional spherical region B2 , 
then for the 3-dimensional spherical region, the design 
D =

{(
yi1, yi2, yi3

)
;i = 1, 2,… , n

}
 can be obtained by using 

the transformation given below:

Theorem  1.3:  Let 
{(

zi1, zi2
)
;i = 1, 2,… , n

}
 be the 

n-point design in 2-dimensional spherical region B2 , 
then for the 4-dimensional spherical region, the design 
D =

{(
yi1, yi2, yi3, yi4

)
;i = 1, 2,… , n

}
 can be obtained by 

using the transformation given below:

Theorem  1.4:  Let 
{(

zi1, zi2
)
;i = 1, 2,… , n

}
 be the 

n-point design in 2-dimensional spherical region B2 , 
then for the 5-dimensional spherical region, the design 
D =

{(
yi1, yi2, yi3, yi4, yi5

)
;i = 1, 2,… , n

}
 can be obtained 

by using the transformation given below:

yi1 =

√
z2
i1

3
, yi2 =

√
2z2

i1

3
+

z2
i2

3
, yi3 =

√
2z2

i2

3
;i = 1, 2,… , n.

yi1 =

√

z2i1
6
, yi2 =

√

2z2i1
6

+
z2i2
6

, yi3 =

√

3z2i1
6

+
2z2i2
6

, yi4 =

√

3z2i2
6

;i = 1, 2,… , n.

yi1 =

√

z2i1
10

, yi2 =

√

2z2i1
10

+
z2i2
10

,

yi3 =

√

3z2i1
10

+
2z2i2
10

, yi4 =

√

4z2i1
10

+
3z2i2
10

, yi5 =

√
4z2

i2

10
;i = 1, 2,… , n.

Table 1   List of glp generators 
of design in [0, 1]2

(1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (1, 9) (1, 10) (2, 3)

(2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2, 10) (3, 4) (3, 5) (3, 6)

(3, 7) (3, 8) (3, 9) (3, 10) (4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10)

(5, 6) (5, 7) (5, 8) (5, 9) (5, 10) (6, 7) (6, 8) (6, 9) (6, 10) (7, 8)

(7, 9) (7, 10) (8, 9) (8, 10) (9, 10)
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3.1 � Illustrations:

Let us consider the case of 3-, 4-, and 5-dimensional 
spherical regions.

3.1.1 � Case 1: 3‑dimensional spherical region

Consider a design in 2-dimensional spherical region with 
11 design points.

For n = 11 , the initial candidate generating vector is 
H11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the list of generators 
are given in Table 1.

From the list of all the possible generators given in 
Table 1, the designs in 2- dimensional spherical regions 
are obtained and are transformed into the designs in 

3-dimensional spherical region using Theorem 1.2. The 
values of three distance-based measures are computed for 
all the constructed designs which are given in Table 2. 
These values are computed on the basis of 8000 evaluation 
points by using the generator (1, 7).

From the Table 2, it can be observed that the criteria values 
of the designs obtained by generators (1, 4), (2, 8), (4, 5), (5, 9) 
and (8, 10) are same and lowest among all possible design.

3.1.2 � Case 2: 4‑dimensional spherical region

Consider a design in 2-dimensional spherical region with 18 
design points.

For n = 18 , the initial candidate generating vector H18 is 
given by

H18 = {1, 5, 7, 11, 13, 17}

Table 2   RMSD, AD, and 
MD values of the designs in 
3-dimensional spherical region 
with 11 design points

Generator RMSD AD MD Generator RMSD AD MD

(1, 2) 0.11796 0.10557 0.29338 (3, 10) 0.11624 0.10532 0.25783
(1, 3) 0.12031 0.10838 0.26872 (4, 5) 0.10920 0.09979 0.22993
(1, 4) 0.10920 0.09979 0.22993 (4, 6) 0.11624 0.10532 0.25783
(1, 5) 0.14769 0.12688 0.34689 (4, 7) 0.11478 0.10447 0.24933
(1, 6) 0.13788 0.12052 0.33146 (4, 8) 0.11796 0.10557 0.29338
(1, 7) 0.11624 0.10532 0.25783 (4, 9) 0.14769 0.12688 0.34689
(1, 8) 0.13502 0.11700 0.36166 (4, 10) 0.13502 0.11700 0.36166
(1, 9) 0.11465 0.10427 0.25737 (5, 6) 0.11478 0.10447 0.24933
(1, 10) 0.11478 0.10447 0.24933 (5, 7) 0.13502 0.11700 0.36166
(2, 3) 0.11624 0.10532 0.25783 (5, 8) 0.13788 0.12052 0.33146
(2, 4) 0.11796 0.10557 0.29338 (5, 9) 0.10920 0.09979 0.22993
(2, 5) 0.13502 0.11700 0.36166 (5, 10) 0.11796 0.10557 0.29338
(2, 6) 0.12031 0.10838 0.26872 (6, 7) 0.12031 0.10838 0.26872
(2, 7) 0.11465 0.10427 0.25737 (6, 8) 0.14769 0.12688 0.34689
(2, 8) 0.10920 0.09979 0.22993 (6, 9) 0.11624 0.10532 0.25783
(2, 9) 0.11478 0.10447 0.24933 (6, 10) 0.11465 0.10427 0.25737
(2, 10) 0.14769 0.12688 0.34689 (7, 8) 0.11465 0.10427 0.25737
(3, 4) 0.14769 0.12688 0.34689 (7, 9) 0.13788 0.12052 0.33146
(3, 5) 0.11465 0.10427 0.25737 (7, 10) 0.12031 0.10838 0.26872
(3, 6) 0.11796 0.10557 0.29338 (8, 9) 0.13502 0.11700 0.36166
(3, 7) 0.13788 0.12052 0.33146 (8, 10) 0.10920 0.09979 0.22993
(3, 8) 0.11478 0.10447 0.24933 (9, 10) 0.13788 0.12052 0.33146
(3, 9) 0.12031 0.10838 0.26872

Table 3   List of glp generators 
of the design in [0, 1]2 with 18 
design points

(1, 5) (1, 7) (1, 11) (1, 13) (1, 17) (5, 7) (5, 11) (5, 13)

(5, 17) (7, 11) (7, 13) (7, 17) (11, 13) (11, 17) (13, 17)
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Different generating vectors for constructing uniform 
designs in 4-dimensional spherical region are given in Table 3.

From the list of all the possible generators given in Table 3, 
the designs in 2- dimensional spherical regions are obtained 
and the designs are transformed into the design in 4-dimen-
sional spherical region using the Theorem 1.3. The crite-
ria value of the design in 4-dimensional spherical region is 
obtained and is given in Table 4. For computing the criteria 
values a design obtained by using the generator (1, 13) is con-
sidered and the criteria values are computed on the basis of 
10,000 evaluation points.

From the Table 4, it can be observed that the designs 
obtained using the generators (1, 7), (5, 17), (7, 13) have low-
est RMSD and AD value and the designs with generators 
(1, 11), (11, 13), (13, 17) have lowest MD value.

3.1.3 � Case 3: 5‑dimensional spherical region

Consider the design in 5-dimensional spherical regions using 
the design in 2- dimensional spherical region with n = 21 
design points.

For n = 21 , the initial candidate generating vector H21 is 
given by

Different generating vectors for constructing uniform 
designs in 5-dimensional spherical region are given in 
Table 5. For computing the criteria values a design obtained 
by using the generator (7, 13) is considered and the crite-
ria values are computed on the basis of 12,000 evaluation 
points.

From the list of all possible generators, the designs in 
2-dimensional spherical regions are obtained and the designs 
are transformed into the design in 5-dimensional spherical 
region using the Theorem 1.4. The criteria value of the 
design in 5- dimensional spherical region is given in Table 6.

From the Table  6, it can be observed that 
the  des igns  obta ined  us ing  the  genera tors 
(1, 17), (2, 13), (4, 5), (8, 10), (11, 19), (16, 20) have the low-
est RMSD and AD values and the design with generator 
(1, 2), (2, 4), (5, 10), (8, 16), (10, 20) have the same lowest 
MD value.

If the generator giving minimum value of RMSD and 
AD is different from the generator giving minimum value 
of MD, then this generator may be considered as optimal 
generator whereas if the generator giving the smallest value 
of AD is also different from the generator giving minimum 
value of RMSD, then the generator for RMSD is considered 
as optimal generator as RMSD is least affected by variation 
of points near the boundary. However, in mixture space this 
might not be true. Therefore, the designs in mixture space 
are generated by considering all the generators chosen on 
the basis of RMSD, AD, and MD values. The method for 
obtaining mixture design from the designs in s-dimensional 
spherical region is described in the next section.

4 � Method of obtaining mixture design using 
the design in the spherical region

Suppose that 
{(

yi1, yi2,… , yis
)
;i = 1, 2,… , n

}
 represents 

a design in the s-dimensional spherical region. Then the 

H21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

Table 4   RMSD, AD, and MD values of the designs in 4-dimensional 
spherical region with 18 design points

Generator RMSD AD MD

(1, 5) 0.07912 0.07222 0.18321
(1, 7) 0.07874 0.07190 0.19531
(1, 11) 0.07902 0.07209 0.17177
(1, 13) 0.08115 0.07373 0.18043
(1. 17) 0.08666 0.07727 0.21855
(5, 7) 0.07912 0.07222 0.18321
(5, 11) 0.08115 0.07373 0.18043
(5, 13) 0.08666 0.07727 0.21855
(5, 17) 0.07874 0.07190 0.19531
(7, 11) 0.08666 0.07727 0.21855
(7, 13) 0.07874 0.07190 0.19531
(7, 17) 0.07912 0.07222 0.18321
(11, 13) 0.07902 0.07209 0.17177
(11, 17) 0.08115 0.07373 0.18043
(13, 17) 0.07902 0.07209 0.17177

Table 5   List of glp generator 
of the design in [0, 1]2 with 21 
design points

(1, 2) (1, 4) (1, 5) (1, 8) (1, 10) (1, 11) (1, 13) (1, 16) (1, 17) (1, 19) (1, 20)

(2, 4) (2, 5) (2, 8) (2, 10) (2, 11) (2, 13) (2, 16) (2, 17) (2, 19) (2, 20) (4, 5)
(4, 8) (4, 10) (4, 11) (4, 13) (4, 16) (4, 17) (4, 19) (4, 20) (5, 8) (5, 10) (5, 11)
(5, 13) (5, 16) (5, 17) (5, 19) (5, 20) (8, 10) (8, 11) (8, 13) (8, 16) (8, 17) (8, 19)
(8, 20) (10, 11) (10, 13) (10, 16) (10, 17) (10, 19) (10, 20) (11, 13) (11, 16) (11, 17) (11, 19)
(11, 20) (13, 16) (13, 17) (13, 19) (13, 20) (16, 17) (16, 19) (16, 20) (17, 19) (17, 20) (19, 20)
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mixture design 
{(

xi1, xi2,… , xis
)
;i = 1, 2,… , n

}
 which 

satisfies Eq. (1) can be obtained by using the following 
transformation

(4)xij =
tij

∑s

j=1
tij
;i = 1, 2, 3,… , n;j = 1, 2,… s.

where ti1 = yi1, tij =
��
�
yij −

∑j

k=1

yik

j

��
�
;j = 2, 3,… , s.

In this case, the design is constructed by considering 
the absolute deviation of the design points from the central 
points. From all the possible designs, the design with mini-
mum value of DM2-discrepancy is chosen.

Example 1:  Consider 11 run designs in 3-dimen-
sional spherical region obtained in Sect. 3. It is observed 
that the designs obtained by using the generator 
(1, 4), (2, 8), (4, 5), (5, 9) and (8, 10) are best in terms of 
uniformity. Using these designs, the mixture designs are 
obtained by using the transformation (5). The DM2 value of 
the mixture designs is computed and is given in Table 7 with 
corresponding generators.

Table 6   RMSD, AD, and 
MD values of the designs in 
5-dimensional spherical region 
with 21 design points

Generator RMSD AD MD Generator RMSD AD MD

(1, 2) 0.06846 0.06182 0.15540 (5, 13) 0.11256 0.09444 0.29766
(1, 4) 0.06702 0.06068 0.17675 (5, 16) 0.07874 0.06899 0.22093
(1, 5) 0.09482 0.07931 0.26853 (5, 17) 0.08376 0.07257 0.23859
(1, 8) 0.06791 0.06138 0.16852 (5, 19) 0.06791 0.06138 0.16852
(1, 10) 0.11763 0.09735 0.30830 (5, 20) 0.06702 0.06068 0.17675
(1, 11) 0.11256 0.09444 0.29766 (8, 10) 0.06617 0.06035 0.15914
(1, 13) 0.07063 0.06302 0.18441 (8, 11) 0.06702 0.06068 0.17675
(1, 16) 0.08376 0.07257 0.23859 (8, 13) 0.07874 0.06899 0.22093
(1, 17) 0.06617 0.06035 0.15914 (8, 16) 0.06846 0.06182 0.15540
(1, 19) 0.06784 0.06136 0.15907 (8, 17) 0.11763 0.09735 0.30830
(1, 20) 0.07874 0.06899 0.22093 (8, 19) 0.09482 0.07931 0.26853
(2, 4) 0.06846 0.06182 0.15540 (8, 20) 0.07063 0.06302 0.18441
(2, 5) 0.07063 0.06302 0.18441 (10, 11) 0.07874 0.06899 0.22093
(2, 8) 0.06702 0.06068 0.17675 (10, 13) 0.08376 0.07257 0.23859
(2, 10) 0.09482 0.07931 0.26853 (10, 16) 0.11763 0.09735 0.30830
(2, 11) 0.08376 0.07257 0.23859 (10, 17) 0.06791 0.06138 0.16852
(2, 13) 0.06617 0.06035 0.15914 (10, 19) 0.06702 0.06068 0.17675
(2, 16) 0.06791 0.06138 0.16852 (10, 20) 0.06846 0.06182 0.15540
(2, 17) 0.06784 0.06136 0.15907 (11, 13) 0.09482 0.07931 0.26853
(2, 19) 0.07874 0.06899 0.22093 (11, 16) 0.11256 0.09444 0.29766
(2, 20) 0.11763 0.09735 0.30830 (11, 17) 0.07063 0.06302 0.18441
(4, 5) 0.06617 0.06035 0.15914 (11, 19) 0.06617 0.06035 0.15914
(4, 8) 0.06846 0.06182 0.15540 (11, 20) 0.06784 0.06136 0.15907
(4, 10) 0.07063 0.06302 0.18441 (13, 16) 0.06784 0.06136 0.15907
(4, 11) 0.06791 0.06138 0.16852 (13, 17) 0.11256 0.09444 0.29766
(4, 13) 0.06784 0.06136 0.15907 (13, 19) 0.08376 0.07257 0.23859
(4, 16) 0.06702 0.06068 0.17675 (13, 20) 0.06791 0.06138 0.16852
(4, 17) 0.07874 0.06899 0.22093 (16, 17) 0.09482 0.07931 0.26853
(4, 19) 0.11763 0.09735 0.30830 (16, 19) 0.07063 0.06302 0.18441
(4, 20) 0.09482 0.07931 0.26853 (16, 20) 0.06617 0.06035 0.15914
(5, 8) 0.11763 0.09735 0.30830 (17, 19) 0.11256 0.09444 0.29766
(5, 10) 0.06846 0.06182 0.15540 (17, 20) 0.08376 0.07257 0.23859
(5, 11) 0.06784 0.06136 0.15907 (19, 20) 0.11256 0.09444 0.29766

Table 7   DM
2
 values of the 3 

component mixture design with 
11 design points

Generator DM
2

(1, 4) 0.15574
(2, 8) 0.14428
(4, 5) 0.08475
(5, 9) 0.11966
(8, 10) 0.00649
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From the Table 7, it can be observed that the DM2 value 
of the design obtained by using the generator (8, 10) is low-
est. The uniform mixture design and corresponding uniform 
design in 3-dimensional spherical region based on generator 
(8, 10) are given in Table 8.

Table 8   Design in 
3-dimensional spherical region 
with corresponding uniform 
mixture design obtained using 
generator (8, 10)

Design y
1

y
2

y
3

x
1

x
2

x
3

1 0.3122 0.5699 0.5095 0.2243 0.4095 0.3662
2 0.0526 0.3730 0.5169 0.7004 0.0333 0.2663
3 0.0886 0.2309 0.2743 0.6194 0.2471 0.1335
4 0.4514 0.7012 0.4102 0.1753 0.7428 0.0819
5 0.4438 0.6276 0.0000 0.1042 0.3666 0.5292
6 0.2740 0.4256 0.2490 0.3319 0.2417 0.4264
7 0.0511 0.1333 0.1583 0.4325 0.3034 0.2640
8 0.0722 0.5126 0.7104 0.3295 0.2134 0.4572
9 0.2673 0.4880 0.4363 0.2527 0.4567 0.2906
10 0.2641 0.3814 0.1097 0.2104 0.1305 0.6591
11 0.5412 0.7817 0.2247 0.2528 0.5754 0.1718

Table 9   DM
2
 values of the 4 

component mixture design with 
18 design points

Generator DM
2

(1, 7) 0.084797
(1, 11) 0.085953
(5, 17) 0.040883
(7, 13) 0.036592
(11, 13) 0.014330
(13, 17) 0.041532

Table 10   Design in 
4-dimensional spherical region 
with corresponding uniform 
mixture design obtained using 
generator (11, 13)

Design y
1

y
2

y
3

y
4

x
1

x
2

x
3

x
4

1 0.10660 0.32950 0.45370 0.50750 0.07632 0.23583 0.32467 0.36318
2 0.15590 0.23810 0.29850 0.15590 0.40262 0.13735 0.05742 0.40262
3 0.23550 0.43560 0.56920 0.48620 0.16094 0.17621 0.40139 0.26146
4 0.16940 0.31330 0.40940 0.34960 0.56623 0.04561 0.30212 0.08603
5 0.05890 0.09000 0.11280 0.05890 0.27703 0.23749 0.20846 0.27703
6 0.11160 0.34490 0.47480 0.53110 0.27426 0.08129 0.27930 0.36515
7 0.20100 0.28650 0.35180 0.06140 0.21562 0.01178 0.18548 0.58712
8 0.00000 0.37880 0.53580 0.65620 0.30224 0.08473 0.24502 0.36801
9 0.27630 0.39370 0.48350 0.08440 0.04088 0.18652 0.36021 0.41239
10 0.04030 0.12460 0.17150 0.19180 0.40409 0.26257 0.18376 0.14959
11 0.29460 0.45010 0.56420 0.29460 0.00654 0.36270 0.62421 0.00654
12 0.14510 0.26830 0.35060 0.29940 0.61081 0.09018 0.25755 0.04146
13 0.25120 0.46470 0.60720 0.51860 0.07020 0.22066 0.41493 0.29421
14 0.25690 0.39230 0.49180 0.25690 0.13290 0.23283 0.50137 0.13290
15 0.05200 0.16080 0.22140 0.24760 0.48388 0.26908 0.14946 0.09759
16 0.34820 0.49620 0.60930 0.10630 0.06112 0.26072 0.41318 0.26498
17 0.00000 0.24530 0.34690 0.42490 0.56976 0.10383 0.08916 0.23725
18 0.39640 0.56500 0.69370 0.12110 0.09632 0.27991 0.42015 0.20362

Table 11   DM
2
 values of the 5 

component mixture design with 
21 design points

Generator DM
2

(1, 2) 0.01965
(1, 17) 0.01914
(2, 4) 0.02377
(2, 13) 0.02402
(4, 5) 0.02749
(5, 10) 0.03469
(8, 10) 0.02746
(8, 16) 0.02823
(10, 20) 0.02999
(11, 19) 0.03032
(16, 20) 0.03073
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Example 2:  Consider 18 run designs in 4-dimensional 
spherical region obtained in Sect. 3. The designs obtained by 
using the generator (1, 7), (5, 17), and (7, 13) are best in terms 
of uniformity. Using these designs, the mixture designs are 
obtained by using the transformation (5). The DM2 value of 
the mixture designs is computed and is given in Table 9 with 
corresponding generator.

From the Table 9, it can be observed that the DM2 value 
of the design obtained by using the generator (11, 13) is low-
est. The uniform mixture design and the corresponding uni-
form design in the 4-dimensional spherical region based on 
generator (11, 13) are given in Table 10.

Example 3:  Consider 21 run designs in 5-dimensional 
spherical region obtained in Sect. 3. The designs obtained by 
using the generator (1, 17), (2, 13), (4, 5), (8, 10), (11, 19), and 
(16, 20) are best in terms of uniformity. Using these designs, 
the mixture designs are obtained by using the transformation 
(5). The DM2 value of the mixture designs is computed and 
is given in Table 11 along with corresponding generators.

From the Table 11, it can be observed that the DM2 value 
of the design obtained by using the generator (1, 17) is low-
est. The uniform mixture design and the corresponding 
uniform design in 5-dimensional spherical region based on 
generator (1, 17) are given in Table 12.

5 � Conclusion

Mixture experimental design is a powerful tool that can be 
used in quality control and product formulation. The space 
filling property of the uniform design makes it suitable for 
generating uniformly scattered design points for the mixture 
experiments. In present scenario, the uniform mixture design 
has come up as a useful statistical tool that can improve the 
overall performance and quality of the product by generating 
the design points that are uniformly scattered in the experi-
mental region. Different experimental region can produce 
different mixture combinations, resulting in different final 
product. In this paper, spherical region is considered and 
the design in s-dimensional spherical region is obtained by 
considering the existing design in 2-dimensional spheri-
cal region. A transformation to construct uniform mixture 
design is also proposed in this paper. The proposed method 
is useful in the sense that it only need the design in 2-dimen-
sional spherical regions to construct the desired mixture 
designs in higher dimensional region. Designs for 3, 4, and 
5 component mixtures are constructed and the value of DM2

-discrepancy is calculated. It is observed that the mixture 
designs based on the designs in spherical region with low-
est ‘MD’ value possess maximum uniformity in the simplex 
region. Thus, the uniformity is preserved when proposed 
transformation is used for obtaining the mixture design from 
the design in spherical region.

Table 12   Uniform design in 
5-dimensional spherical region 
and the corresponding uniform 
mixture design with generator 
(1, 17)

Design y
1

y
2

y
3

y
4

y
5

x
1

x
2

x
3

x
4

x
5

1 0.0109 0.0500 0.0699 0.0852 0.0951 0.0349 0.1607 0.2246 0.2739 0.3059
2 0.0698 0.1096 0.1384 0.1622 0.0952 0.1108 0.1237 0.2934 0.4334 0.0388
3 0.0902 0.1415 0.1787 0.2094 0.1229 0.0780 0.1392 0.2963 0.4260 0.0605
4 0.0287 0.1323 0.1848 0.2254 0.2517 0.2360 0.0243 0.1564 0.2586 0.3247
5 0.1448 0.2059 0.2526 0.2920 0.0436 0.0205 0.1580 0.2631 0.3516 0.2069
6 0.0809 0.1809 0.2428 0.2918 0.2803 0.1453 0.0684 0.2005 0.3052 0.2807
7 0.1097 0.2073 0.2719 0.3239 0.2751 0.1073 0.0946 0.2281 0.3355 0.2347
8 0.1806 0.2614 0.3226 0.3738 0.1114 0.0156 0.1744 0.2945 0.3952 0.1203
9 0.0150 0.2017 0.2849 0.3488 0.4012 0.2452 0.0302 0.1529 0.2471 0.3245
10 0.1916 0.2863 0.3566 0.4153 0.1846 0.0004 0.1927 0.3363 0.4558 0.0148
11 0.1639 0.2773 0.3562 0.4206 0.3042 0.0649 0.1279 0.2621 0.3715 0.1737
12 0.0855 0.2491 0.3418 0.4142 0.4357 0.1730 0.0532 0.1813 0.2814 0.3111
13 0.2440 0.3450 0.4226 0.4880 0.0000 0.0312 0.1506 0.2421 0.3193 0.2568
14 0.0926 0.2699 0.3703 0.4488 0.4720 0.1680 0.0560 0.1828 0.2819 0.3113
15 0.1926 0.3258 0.4186 0.4942 0.3575 0.0597 0.1305 0.2630 0.3711 0.1757
16 0.2448 0.3657 0.4556 0.5304 0.2358 0.0033 0.1944 0.3365 0.4548 0.0109
17 0.0209 0.2811 0.3970 0.4860 0.5590 0.2386 0.0337 0.1550 0.2481 0.3246
18 0.2759 0.3993 0.4927 0.5710 0.1702 0.0244 0.1788 0.2956 0.3935 0.1077
19 0.1851 0.3498 0.4587 0.5464 0.4641 0.0936 0.1020 0.2313 0.3354 0.2377
20 0.1524 0.3407 0.4571 0.5494 0.5278 0.1304 0.0766 0.2046 0.3060 0.2823
21 0.3090 0.4394 0.5392 0.6231 0.0931 0.0322 0.1645 0.2657 0.3509 0.1866
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