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Abstract  The performance of the Electrical Distribution 
System (EDS) depends on how efficiently it utilizes the dis-
tribution lines, provides power flow with minimum losses, 
and provides a better voltage profile to utilities. The Distri-
bution Static Synchronous Compensators (DSTATCOM) or 
Distribution Generation (DG) (like number of Photovoltaic 
Array (PVA) or number of Wind Turbine Generation Unit 
(WTGU)) play a major role in the EDS system to improve 
its performance. The right location and right size of DSTAT-
COM, or DG is a challenging problem for acquiring their 
maximum possible benefits to improve EDS performance. 
This paper proposes a constrained generalized multi-objec-
tive performance index (MOPI) objective function proposed 
with EDS performance indices. Improved Teaching Learn-
ing Based Optimization (ITLBO) is used by eliminating 

the convergence issue of basic Teaching Learning Based 
Optimization (TLBO) to solve the proposed objective func-
tion. DSTATCOM, PVAs, and WTGUs are considered for 
placement and sizing at different locations for EDS perfor-
mance improvement by optimizing the MOPI objective func-
tion with ITLBO. The optimal solution helps to minimize 
the power losses, enhance the consumer voltage profile and 
voltage stability, increase the line loadability margin, and 
reduce the burden of consumer loss allocation in EDS. The 
performance test is conducted on 33 node EDS and showed 
the efficiency of the proposed solutions using the MATLAB 
software.

Keywords  Electrical distribution system · Distribution 
static synchronous compensators · Photovoltaic array · 
Wind turbine generation unit

1  Introduction

EDS is the sub-part of the power system infrastructure that 
delivers electrical power from the high-voltage transmission 
network to the customers. EDS has a high R/X ratio 
compared with transmission systems. Due to this, high 
losses in EDS and intern may lead to voltage instability. 
In EDS feeders, almost 13% of generated electrical power 
is wasted due to power losses. Due to all these factors, 
EDS performance is degrading day by day. The economic 
and environmental benefits of renewable energy sources 
are increasing the penetration of renewable DG sources 
like PV, WTGU, and biomass into EDS. According to 
the International Energy Agency, energy from renewable 
sources will reach 37% by 2040. Between 2010 and 2016, 
the global installed solar and wind capacity rose from 40 to 
227 GW (Eia 2015). Along with DGs, EDS DSTATCOMs 
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allocation is more advantages such as branch loss reduction, 
customer node voltage profile improvement, power 
quality increase, load balancing, etc.. When compared to 
available traditional reactive power compensation methods, 
DSTATCOM has more advantages, including low cost, 
compact size, fewer power losses, high regulatory capacity, 
and less harmonic production. From a utility perspective, 
EDS performance improved in terms of reduced power loss, 
improved consumer node voltage profile, network upgrading, 
and reduced peak demand supply from the substation. The 
optimal allocation of DSTATCOM and DG in the EDS is a 
challenging topic for power system researchers.

Devi and Geethanjali (2014) proposed sizing for 
DSTATCOM and DG in the radial EDS. Simultaneous 
DSTATCOM and DG allocation is used to reduce EDS 
power loss using the Particle Swarm Optimization (PSO) 
algorithm. Sanam et al. (2016) utilized the Exhaustive 
Search Method (ESM) to reduce EDS losses and improve 
the EDS node voltage profile using DSTATCOM and DG 
optimum sizing at optimal EDS sites. Kanwar et al. (2015) 
used improved Cat Swarm Optimization (ICSO) method 
to obtain global search capabilities. It also optimizes 
DSTATCOM and DG placement in the EDS. Tolabi et al. 
(2015) used fuzzy logic and Ant Colony Optimization 
(ACO) to handle simultaneous network reconfiguration, 
DG and DSTATCOM allocation. This article aims 
to reduce power loss, improve the voltage profile, 
and load balance in the feeder. Chabok and Ashouri 
(2016) employed discrete imperialistic competition and 
Nelder-Mead Algorithms to allocate DSTATCOMs in 
DG’s existing EDS. Yuvaraj and Ravi (2018) proposed 
a bio-inspired Cuckoo Search Algorithm (CSA) method 
for combining DSTATCOM and DG in the EDS. CSA 
is used to identify the appropriate size of DSTATCOM 
and DGs. The objective function for minimizing power 
loss, reducing operating expenses, and increasing the 
voltage profile of the EDS was established by Devabalaji 
and Ravi (2016). The authors used the Loss Sensitivity 
Factor (LSF) to examine the location of DSTATCOM and 
DG, and the Bacterial Foraging Optimization Algorithm 
(BFOA) was proposed to compute the DSTATCOM 
and DG size. Yuvaraj and Ravi (2017) explore long-
term scheduling for DSTATCOM and DG in EDS. This 
function reduces power loss, improves VSI, and reduces 
Total Voltage Deviation (TVD) considering equality and 
inequality constraints. The Lightning Search Algorithm 
(LSA) was utilized to address the metaheuristic 
optimization problem for DSTATCOM and DG size. Iqbal 
et al. (2018) suggested improving the node voltage in 
active EDS by reducing power losses. Various DGs such 
as biomass, solar, and wind renewable energy sources 
are placed in the EDS to reduce losses. However, this 
approach has not injected any reactive power required 

by EDS, resulting in numerous nodes exhibiting a poor 
voltage profile. According to Essallah et  al. (2019), 
the appropriate location of DG depends on the load 
circumstances. The Sine Cosine Algorithm (SCA) with 
Chaos Map Theory for optimum multiple DG allocation 
technique for distribution systems was proposed by Selim 
et  al. (2020). Various authors (Abualigah and Diabat 
2021; Wang et al. 2021; Silva Santos et al. 2021;  Wang 
et al. 2020; Singh 2022; Kumar Ram et al. 2022; Padhi 
et al. 2020) discussed modern optimization algorithm 
methods where expert analysis was needed to handle the 
algorithm’s specific parameters. The literature review 
found minimal work on simultaneous placement and size 
of PVAs, WTGUs, and DSTATCOM to decrease power 
losses and improve the voltage profile in EDS. The paper 
aims to improve EDS performance based on different 
EDS performance indices. No author has observed voltage 
stability, consumer loss allocation, or line loadability 
margin in previous research literature.

The output power of PVA and WTGU renewable 
generation sources mainly depends upon environmental 
conditions. So proper planning is needed before the 
allocation of DSTATCOM, PVAs, and WTGUs to EDS. 
This proposed method presents MOPI minimization 
optimization using the ITLBO approach and is applied 
to solve DSTATCOM, PVAs DG, and WTGUs DG 
allocation problems in the EDS effectively by placing them 
individually and in combination. ITLBO is used due to the 
great advantage of the TLBO method where there is no 
need for the algorithm specific parameters. The objectives 
of this approach are to increase power loss reduction, 
maintain a better voltage profile, voltage stability 
enhancement, line loadability margin improvement, 
and reduce the customer loss allocation burden. Before 
placement of DSTATCOM and renewable-based PVA 
and WTGU DGs in the system, the exact output power 
needs to be determined because the output power of 
PVA and WTGU mainly depends upon solar irradiance, 
temperature, and wind speed of the particular location, 
respectively. The solar irradiance and wind energy are 
modelled by selecting the average solar irradiance and 
average wind speed, respectively. After determining the 
power output of PVA and WTGU, the best locations are 
found, and a number of PVAs and WTGUs are placed at 
the identified locations along with DSTATCOM. This is 
carried out by ITLBO by optimizing the minimization 
MOPI objective function. The WTGUs are operating at 
unity, 0.95 lead and 0.95 lag to observe the performance 
of the EDS system with DSTATCOM and PVA. Finally, 
the developed methodology of performance improvement 
is examined on 33-node EDS test systems.

Further, the paper is subdivided into various sections: 
Sect. 2 demonstrates EDS performance objectives; Sect. 3 
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demonstrates multi-objective problem statement; Sect. 4 
demonstrates basic TLBO method; Sect. 5 demonstrates 
the Improved TLBO method; Sect. 6 explains computation 
method for the size of the PVA panel and WTGU; Sect. 7 
gives constraints of the multi-objective function; Sect. 8 
explains the complete flow chart for DSTATCOM, PVAs, 
and WTGUs placement and sizing using ITLBO; and Sect. 9 
gives the outcome of the process of simulation and details 
of comparisons. Finally, we conclude the total work with a 
summary in Sect. 10.

2 � EDS performance objectives

To effectively handle EDs operational performance, a multi-
object function with six performance objects is developed. 
The EDS performance object function objectives (indices) 
are mentioned below.

2.1 � Index for active power losses (IAPL) and index 
for reactive power losses (IRPL) based on available 
load

When EDS power losses (via load flow solution (Ramana 
et al. 2013)) are minimized, the EDS performs optimally. 
The active and reactive power loss indices based on total 
active and reactive demands are stated as follows.

wherebr is total number of branches of EDSnd is total 
number of nodes of EDS

br∑

pq=1

Ploss(pq)and
br∑

pq=1

Qloss(pq) are total APL (kW) and 

total RPL (kVAr).
nd∑

q=1

PL(q)and
nd∑

q=1

QL(q) are total active (kW) and reactive 

(kVAr) load.
For enhancing EDS performance, total EDS losses will 

be reduced to near-zero IAPL and IRPL values. Reducing 
of the real power losses improves the system efficiency by 
transferring the power via EDS lines, where as reducing 
the reactive power losses helps the system reliability and 
security.

(1)IAPL =

(
br∑

pq=1

Ploss(pq)∕

nd∑

q=1

PL(q)

)

(2)IRPL =

(
br∑

pq=1

Qloss(pq)∕

nd∑

q=1

QL(q)

)

2.2 � Index for node voltage deviation (IVDI)

The EDS node voltage should be kept within the limitations. 
Voltage variations outside the prescribed limits can cause EDS 
block out. The voltage deviation index (VDI) measures voltage 
deviations from defined voltage limits (Rau and Wan 1994).

where
Vlimit is upper limit voltage if the upper limit violation 

or lower limit voltage if a lower limit violation, 
0.925 ≤ V(q) ≤ 1.025p.u.

V(q) is the voltage at the qth node
Nv Voltage violation nodes

The minimizing value of IVDI is the improvement of the 
voltage profile, which enhances EDS voltage regulation. 
Optimizing EDS performance will reduce system node 
voltage variation to zero.

2.3 � Consumer loss allocation index based on total APL 
(ICPL)

End node consumers with large loss allocation burdens must 
be considered, and any performance improvement approach 
must always provide the best solution to decrease their loss 
allocation. Based on the overall system APL (Ramana et al. 
2019), the index was created to lower the maximum loss 
allocation consumer.

where
CPloss(q) is the loss allocation of qth consumer.
The burden of excessive loss allocation to consumers 

will be decreased using proper EDS objective function 
optimization, and the ICPL will be near zero.

2.4 � Index for VSI (IVSI)

The voltage stability index can be used to calculate EDS 
voltage stability and take necessary action if the index shows 
low voltage stability. Thus, stability is required for good 
operation and to avoid blocking the system (Chakravorty 
and Das 2001).

(3)VDI =

√√√
√

nd∑

q=1

|
|V(q) − Vlimit

|
|
2

Nv

(4)Index for Voltage Deviation Index (IVDI) = VDI

(5)ICPL = max
q=1tond

(

CPloss(q)�

br∑

pq=1

Ploss(pq)

)
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where
P(pq) is the active power flow through the branch pq.
Q(pq) is the reactive power flow through the branch pq.
For secure and stable operation VSI(q) > 0 for all the nodes. 

The node where VSI(q) is found to be minimum is the most 
sensitive to the voltage collapse. The index of VSI is defined as

The EDS stability intensity may be evaluated using the 
IVSI. If the EDS index reveals instability, intervention 
is necessary. The VSI value is larger than zero if the EDS 
operates in a stable and secure condition.

2.5 � Index for LLM (ILLM)

The EDS branches power flow varies as EDS performance 
improves. The maximum loading allowed with branch 
LLM (Yu et al. 2008) is the branch’s allowable limit for 
preventing system instability. The ILLM index in EDS 
provides information on the minimum loading of LLM from 
all branches of LLMs.

To operate the EDS system with high LLM values and use 
the existing lines to handle future load growths, the ILLM 
value must be increased.

3 � Defining the EDS performance improvement 
multi‑objective optimization problem

The multi-objective performance index (MOPI) of the EDS 
is calculated by including the individual objective functions. 
The MOPI has multiple indices presented to optimize EDS 
and enhance the performance of EDS. The largest values 
of IVSI and ILLM are to enhance voltage stability and line 
loadability such that all the line flows should be within their 
permissible limits for accepting the additional load growth of 
EDS, respectively. The lowest values of IAPL, IRPL, IVDI, 
and ICPL are to reduce APL and RPL, improve the voltage 
profile, and reduce the loss allocation to the consumer of the 
EDS. For good performance of EDS, the individual objectives 
are normalized between zero and one. Individual objectives are 
given weighting factors to form a single objective optimization 
problem.

VSI(q) = V(p)4 − 4(P(pq)X(pq) − Q(pq)R(pq))2

− 4V(p)2(P(pq)R(pq) + Q(pq)X(pq))

(6)q = 2, 3, 4...nd

(7)IVSI = min
q=1tond

(VSI(q))

(8)ILLM = min
pq=1tobr

(
LLM(pq)

LML(pq)

)

The optimization used by MOPI is given by

where

The weighting factors are decided by planners and designers 
of EDS and play a very important role in the multi-objective 
problem. In the proposed technique, IAPL is the objective 
function first part inward with an important weighting factor 
of 0.25. The objective function’s second part is the IRPL, 
which receives 0.15 as a weight factor. Because of the system’s 
consumer voltage profile, the IVDI is given a weighting factor 
of 0.15. The ICPL receives 0.2 as the fourth objective function 
to examine the loss allocation load to the consumer. The 
inverse of IVSI is given a value of 0.10, indicating whether 
the system is operating away from the voltage collapse point. 
The information concerning line loadability is given by the 
inverse of ILLM, which receives 0.15. The ITBLO algorithm 
must be simulated in order for the teaching–learning process 
to traverse the feasible region and reach its limit in the search 
space. The goal of the problem formulation is to minimize the 
MOPI function while meeting voltage and power constraints.

4 � TLBO algorithm

Teaching–learning is an essential preparation where each 
student prepares to become proficient in something from 
other students to  upgrade themself. Teaching–Learning-
Based Optimization (TLBO) (Rao et al. 2011) introduces 
the conventional classroom teaching–learning process. 
The algorithm mimics two essential modes of process: (i) 
knowledge from the teacher (called as the teacher phase) 
and (ii) knowledge exchange between learners (called as 
the learner phase). TLBO method is basically a population-
based optimization, where a group of learners (i.e., students) 
are taken from the population and the distinctive subjects 
considered to the learners closely resembling the various 
design parameters of the optimization objective function 
(problem). The results of the learner closely resemble the 
solution of the optimization objective function (problem). 
The best solution of TLBO in each iteration is considered as 
a teacher. TLBO method is used common control parameters 
such as population, number of iterations and there is no need 
of any optimization execution specific parameters as required 
in meta-heuristic optimization techniques which needs better 
tuning for global optimization solution (for Genetic Algorithm 
(GA) (Cus and Balic 2003) needs selection, crossover and 
mutation probabilities, and PSO (Kennedy and Eberhart 1995) 

(9)
MOPI = w

1
.IAPL + w

2
.IRPL + w

3
.IVDI

+ w
4
.ICPL + w

5
.

(
1

IVSI

)
+ w

6
.

(
1

ILLM

)

6∑

s=1

ws = 1 ∩ ws ∈ [0, 1]
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needs inertia weight, social and cognitive parameters). Various 
stages of TLBO described below.

4.1 � Teacher phase

This is the first part of TLBO where learners acquire 
knowledge from a teacher. Teacher always tries to enhance 
the classroom mean result depends on the teacher capability 
of the subject taught. At iteration k, s is number classroom 
subjects (i.e. design variables v = 1, 2, …, s) with subject 
(each) score as Xv , l is learners (i.e. size of population p = 1, 
2, …, l), mean of class Mv,k in v subject during the iteration 
k and the best result of the all learners for all subjects in the 
overall population is Xv,pbset,k . Efficient learner is observed as 
a teacher who shared the knowledge to learners at maximum 
extent. The difference between teacher of all subjects to the 
available mean of individual subject is computing by

where
TF,k is teaching factor i.e., 1 or 2.
Teaching factor is computing via

whererk is generated random number in range [01]
Each subject score is increasing with addition of 

Diff_Meanv,p,k , mathematically,

The existing subject score replace if new subject score is 
better than the existing subject score.

4.1.1 � Learner phase

Second part of the TLBO method is learner phase where 
learners get the knowledge form other learners, mathematically 
select two learners x and y randomly after the end of the 
teacher phase such that f (X�

x,k
) ≠ f (X

�

y,k
)

The eqns. (13) and (14) are considered for minimization 
optimization problem as we are interested in minimization of 
objective function.

(10)

Diff_Meanv,k = rk ×
[
Xv,pbest,k − TF,k ×Mv,k

]
Diff_Means,p,t

= rt ×
[
Xs,pbest,t − TF ×Ms,t

]
Diff_Means,p,t

= rt ×
[
Xs,pbest,t − TF ×Ms,t

]

(11)
TF,k = round

[
1 − rk

]
TF = round[1 − rand(0, 1) × {2 − 1}]

(12)X
�

v,p,k
= Xv,p,k + Diff_Meanv,k

(13)
X

��

v,x,k
= X

�

v,x,k
+ rk ×

(
X

�

v,x,k
− X

�

v,y,k

)
, Iff

(
X

�

x,k

)
< f

(
X

�

y,k

)

(14)
X

��

v,x,k
= X

�

v,x,k
+ rk ×

(
X

�

v,y,k
− X

�

v,x,k

)
, Iff

(
X

�

y,k

)
< f

(
X

�

x,k

)

5 � Improved TLBO

The ITLBO algorithm (Rao and Patel 2013) is the enhanced 
revision by introducing the number of teachers, adapting 
different teacher factors for an individual group, learning 
leaners through tutorials and discussions and self-learning 
during learner phase to the basic TLBO algorithm.

5.1 � Number of teachers

All students are divided and assigned to different groups. 
Individual groups assign the teacher who performed top 
in their subjects. Each group teacher teaches the learners 
and brings the learners to the teacher level of that group, if 
learners of the particular group reach the teacher level in the 
particular group, the learners of that group are assigned to 
another better teacher. This improvement is the same as the 
population sorting mechanism used in other optimization 
algorithms such as swarm intelligence and evolution.

5.2 � Adaptive teaching factor

In the basic TLBO algorithm, teaching factor (TF) is 1 or 
2 which means the learner can learn completely from the 
teacher or nothing he will learn from a teacher and these 
two possibilities during the entire optimization process. This 
will trap the local optimum solution and also show slow 
convergence. In real-time teaching–learning processing, 
the learner can learn from a teacher in any proportionate 
way. So, for the learner, it does not end state and various 
in between of these two possibilities. A larger value of TF 
speeds up the optimization search and reduces exploration 
capacity. Teaching factor is improved with the following,

where f (Xx,g,k) is the result of the x student related to group g 
by taking into account all subjects in iteration k. f (Xg,k) is the 
result of the same group of teachers in the same iteration k

Hence, teaching factor changes automatically depend on 
the result of learner and teacher during the search.

5.3 � Learning through the tutorial

Teacher phase is modified by including the tutorial hours, 
during the tutorial hours or by discussing learner can 
enhance knowledge from fellow classmates or teacher 
which is considered in ITLBO algorithm. Mathematical 
model of this modification can be shown as follows:

(15)TF,g,k =
f
(
Xx,g,k

)

f
(
Xg,k

) if f
(
Xg,k

)
≠ 0

(16)TF,k = 0 if f
(

Xg,k
)

= 0
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where

In above eqns. (17) and (18), the first element on the 
right indicates learning in the classroom and the second 
element indicates learning through tutorials.

5.4 � Self‑motivated learning

Learner phase is modified by including the self-learning. 
During the self-learning learner can gain the knowledge 
in the absence of teacher which is considered in ITLBO 
algorithm. Mathematical model of this modification can 
be shown as follows:

where
Xv,g,k Xs,g,t Xs,g,t is the grade of the teacher in iteration t 

associated with group g in v subjects.
EF is the exploration factor and its value is decided 

randomly as:

In above eqns. (20) and (21), the first element to the right 
represents learning through interaction with other students, 
and the second term represents self-motivated learning.

X
��

v,x,g,k
= Xv,x,g,k + Diff_Meanv,g,k + rk ×

(
Xv,x,g,k − Xv,y,g,k

)

(17)Iff
(
Xv,x,g,k

)
< f

(
Xv,y,g,k

)
, x ≠ y

X
��

v,x,g,k
= Xv,x,g,k + Diff_Meanv,g,k + rk ×

(
Xv,y,g,k − Xv,x,g,k

)

(18)Iff
(
Xv,y,g,k

)
< f

(
Xv,x,g,k

)
, x ≠ y

(19)Diff_Meanv,g,k = rk ×
[
Xv,g,k − TF,g,k ×Mv,g,k

]

X
��

v,x,g,k
= X

�

v,x,g,k
+ rk ×

(
X

�

v,x,g,k
− X

�

v,y,g,k

)

+ rk ×
(
Xv,g,k − EF,k × X

�

v,x,g,k

)

(20)Iff
(
X

′

v,x,g,k

)
< f

(
X

′

v,y,g,k

)
, x ≠ y

X
��

v,x,g,k
= X

�

v,x,g,k
+ rk ×

(
X

�

v,y,g,k
− X

�

v,x,g,k

)

+ rk ×
(
Xv,g,k − EF,k × X

�

v,x,g,k

)

(21)Iff
(
X

′

v,y,g,k

)
< f

(
X

′

v,x,g,k

)
, x ≠ y

(22)EF,k = round
[
1 + rk

]

Knowledge from the teacher and tutorial sessions are 
available throughout the teacher phase of ITLBO. During 
the learner phase, the student can learn from peers and 
self-learn, which helps exploit search space. The ITLBO 
method computes the teaching and learning phases in each 
iteration until optimization is completed. So, each cycle 
includes both exploration and exploitation to discover a 
more optimal solution. The teaching factor is also changed 
for ITLBO, which speeds up the search for the best solution 
and improves convergence. ITLBO also does not need any 
algorithm-specific parameters. So, accelerating optimization 
reduces computing time, and balancing exploration and 
exploitation yields results.

6 � Size of PVA and WTGU​

To calculate the PVA and WTGU sizes, it is considered 
based on assumption that test systems are placed near 
Anantapuram (state: Andhra Pradesh, Country: India) and 
related data to these locations, i.e. solar irradiance (http://​
www.​syner​gyenv​iron.​com/​tools/​solar-​irrad​iance/​india/​
andhra-​prade​sh/​anant​apur), ambient temperature (http://​
www.​syner​gyenv​iron.​com/​tools/​solar-​irrad​iance/​india/​
andhra-​prade​sh/​anant​apur) and wind speed (https://​www.​
world​weath​eronl​ine.​com/​lang/​en-​in/​anant​apur-​weath​
er-​avera​ges/​andhra-​prade​sh/​in.​aspx). The latitude and 
longitude of the Anantapuram location are 14.55 N and 
77.75 E respectively. PVA and WTGU specification are 
taken from (Wei et al. 2007) to calculate PVA size and 
WTGU size. The PVA and WTGU size are fixed and once 
the location of PVAs and WTGUs are selected along with 
DSTATCOM, the number of PVA and number of WTGU 
will change based on the optimal size.

7 � Constraints for MOPI optimization 
for DSTATCOM, PVAs and WTGUs allocation

The following equality and inequality constraints are 
considered for DSTATCOM, PVAs and WTGUs planning 
and optimization in EDS for the generalized MOPI function 
to minimize in order to keep the operating condition within 
the limit.

7.1 � Equality constraints

7.1.1 � Active power conservation limits

The algebraic sum of all active power including active power 
branch losses and produced active power from the PVAs and 
WTGUs over the complete EDS should be equal to zero

http://www.synergyenviron.com/tools/solar-irradiance/india/andhra-pradesh/anantapur
http://www.synergyenviron.com/tools/solar-irradiance/india/andhra-pradesh/anantapur
http://www.synergyenviron.com/tools/solar-irradiance/india/andhra-pradesh/anantapur
http://www.synergyenviron.com/tools/solar-irradiance/india/andhra-pradesh/anantapur
http://www.synergyenviron.com/tools/solar-irradiance/india/andhra-pradesh/anantapur
http://www.synergyenviron.com/tools/solar-irradiance/india/andhra-pradesh/anantapur
https://www.worldweatheronline.com/lang/en-in/anantapur-weather-averages/andhra-pradesh/in.aspx
https://www.worldweatheronline.com/lang/en-in/anantapur-weather-averages/andhra-pradesh/in.aspx
https://www.worldweatheronline.com/lang/en-in/anantapur-weather-averages/andhra-pradesh/in.aspx
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wherenpva is total locations of PVAs placed in EDSnwt is 
total locations of WTGUs placed in EDS

NPVA(p) is number of PVAs placed at location p.
NWT (w) is number of WTGUs placed at location w.
PPVA is the size of PVA in kW.
PWT is the size of WTGU in kW.

7.1.2 � Reactive power conservation limits

The algebraic sum of all reactive power including reactive 
power branch losses and produced reactive power or 
absorbed reactive power from the DSTATCOM and WTGU 
over the complete EDS should be equal to zero

where
QDSTATCOM(s) is the size of DSTATCOM at the location 

s in kVAr.

7.2 � Inequality constraints

7.2.1 � Injected active power of PVAs and WTGUs

The injected active power by all WTGUs at various 
candidate nodes should be within their minimum and 
maximum limits.

where
Pmin
PVA+WT

 Pmin
PVA

 Pmin
PVA

 is minimum PVA and WTGU value 
of real power i.e. single PVA and WTGU value.

Pmax
PVA+WT

 is total active power load available in EDS 

i.e.
nd∑

q=1

PL(q).

(23)

Ps∕s =
nd
∑

q=1
PL(q) +

br
∑

pq=1
Ploss(pq) −

npva
∑

p=1
NPVA(p) ∗ PPVA

−
nwt
∑

w=1
NWT (w) ∗ PWT

(24)

Qs∕s =

nd∑

q=1

QL(q) +

br∑

pq=1

Qloss(pq)

− j

ns∑

s=1

QDSTATCOM(s) ±

nwt∑

w=1

NWT (w) ∗ PWT ∗

√
1 − cos2�

cos �

(25)

Pmin
PVA+WT

≤

npva∑

p=1

NPVA(p) ∗ PPVA +

nwt∑

w=1

NWT (w) ∗ PWT ≤ Pmax
PVA+WT

7.2.2 � Injected reactive power of DSTATCOMs 
and WTGUs

The injected reactive power by all WTGU at various 
candidate nodes should be within their minimum and 
maximum limits.

where
Qmin

DSTATCOM+WT
 is minimum DSTATCOM and WTGU 

value of reactive power i.e. single WTGU size or 5 kVAr in 
case of DSTATCOM.

Qmax
DSTATCOM+WT

 is total reactive power load available in 

EDS i.e.
nd∑

q=1

QL(q).

7.2.3 � Line thermal limit (Kumar et al. 2010)

For thermal and stability measure, the constraint of 
maximum power flow in the branch is needed to measure. 
The carrying power capacity of the branch is represented 
by MVA limit (S(pq))throw any branch pq must within the 
maximum thermal capacity (Smax(pq)) of the branch

8 � Flow Chart for DSTATCOM, PVAs 
and WTGUs placement and sizing using ITLBO 
algorithm

The MOPI function Eq. (9) is minimized to optimize the 
ideal location and size of DSTATCOM, PVAs, and WTGUs 
at three sites (one at each location). The ITLBO algorithm 
parameters (number of generations, population size (i.e., 
number of learners), number of teachers, and number of 
subjects), constraints (equality and inequality), and the 
EDS specification (which includes node and line data) can 
be included as inputs of the ITLBO. Select the locations as 
an integer number between 2 and the maximum number of 
EDS nodes (as 1 is the substation) and the size of the cor-
responding location for DSTATCOM, PVAs, and WTGUs. 
Figure 1 illustrates the flowchart diagram of the approaches 
utilized in optimizing the optimal DSTATCOM, PVA, and 

(26)

Qmin
DSTATCOM+WT

≤ j

ns∑

s=1

QDSTATCOM(s)

+

nwt∑

w=1

NWT (w) ∗ PWT ∗

√
1 − cos2�

cos �
≤ Qmax

DSTATCOM+WT

(27)S(pq) ≤ Smax(pq)
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WTGU placement and size utilizing the ITLBO. After ini-
tializing the ITLBO populations’ locations, size, and num-
bers, the MOPI objective function evaluation checks equality 
and inequality requirements for a particular population size 
and generates EDS performance indices. As illustrated in 
Fig. 1, ITLBO identifies the number of teachers, learners 
under each group, teaching phase, and learner phase for the 
following iteration. Convergence occurs when the optimum 

global solution does not improve after a specified number 
of iterations.

9 � Result and analysis

A standard 33 node EDS (Sahoo and Prasad 2006) consists 
of 32 branches and 33 nodes with a total load demand of 
3715 kW and 2300 kVAr. The system operates at a base 

Fig. 1   Flow chart for DSTAT-
COM, PVAs and WTGUs 
Placement and Sizing using 
ITLBO

Read line and load data of EDS with constraints
Execute to identify EDS structure and load flow solution [11]
Set Population size (np), No. of teachers (No. of groups) (ng), 
No. of generation (i.e. iterations k = 1, 2, ..ngen)
Define minimize optimization problem function eqn. (9)
Initialize Population (i.e. Learners, p = 1, 2, .. np)
Design variables (i.e. number of subjects offered to learners, 
v = 1, 2, .. nv) no. of locations and sizes of DSTATCOM, PVA 
& WTGU which is equal to nv = nl+ns+npva+nwt 
Evaluate of Initial population with EDS load flow [11] with 
DSTATCOM, PVAs & WTGUs allocation

Teacher Phase

Ran the evaluated population i.e. 
solutions (in ascending order for the 
minimization problem for eqn. (9))
Select the best solution (i.e. the 
solution obtained the first rank) 
f(Xv,best,k). 
This solution acts as the chief 
teacher (Tl) of the class (i.e. Tl = 
f(Xv,best,k).
Select the other teachers (Tg) based 
on the best solution (i.e. f(Xv,best,k)),
Tg = f(Xv,best,k) ± rt* f(Xv,best,k) 
for g = 2,3,..ng
(If the equality is not met, select the 
Tg closer to the value calculated 
above)

Assign learners to teachers
For p = 1 to np
  If T1 ≤ f(Xv,p,k) < T2

Assign the learner f(Xv,p,k) to 
teacher 1 (i.e. T1)

  Else If T2 ≤ f(Xv,p,k) < T3
Assign the learner f(Xv,p,k) to 
teacher 2 (i.e. T2)

   :
   Else If TN-1 ≤ f(Xv,p,k) < TN

Assign the learner f(Xv,p,k) to 
teacher N-1 (i.e. TN)

   Else
Assign the learner f(Xv,p,k) to 
teacher TN

   End If
End For

Calculate the average result of each set of students result in 
each subject (i.e Mv,g,k)
For g = 1 to ng (i.e No. of teacher)
  For v= 1 to nv

Calculate the adaptive teaching factor using eqn. (15), 
which will show the difference between the current 
average and the corresponding results of the teacher of the 
same group.

 End For
End For
With the help of the teacher's knowledge, as well as the 
knowledge gained by the students during the tutorial hours, 
update the learner's knowledge.
For v = 1 to nv

Execute eqns. (17) and (18) & execute EDS load flow [11] 
with DSTATCOM, PVAs & WTGUs and validate the 
constrains

End For
If the result has improved 
    Keep the improved result
Else, Keep the previous result
End If

Learner Phase

 no

                   yes
Get the final Optimal solution

                     

Update the learner’ knowledge of each group by utilizing the 
knowledge of another learner of the same group as well as by 
self-learning in accordance with 
For v = 1 to nv

Execute eqns. (20) and (21) and EDS load flow [11] with 
DSTATCOM, PVAs & WTGUs and validate the 
constrains

End For
If the result has improved
     Keep the improved result
Else, Keep the result of teacher phase
End If
Combine all the groups

Sto

if t > ngen

Selection of teachers Initialization

Start
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voltage of 12.66 kV and a base power of 100 MVA. The 
real and reactive power losses without any compensation 
(without DSTATCOM, number of PVAs and number of 
WTGUs) in the EDS are 210.98 kW and 143.12 kVAr 
with a minimum voltage of 0.90378 p.u in a 33 node test 
system.

The MOPI optimization using ITLBO is performed on 
the 33 node EDS for DSTATCOM, PVAs, & WTGUs (with 
pf unity, 0.95 (lead & lag)) placement with three locations 
respectively, as shown in flowchart Fig. 1. For solving the 
ITLBO, 50 students are considered with 5 teacher groups, 
and the number of subjects depends on the number of 
DSTATCOM and DG placements and corresponding sizes. 
The locations & sizes of DSTATCOM in kVAr, PVAs in 
kW and WTGUs in kW, APL in kW, RPL in kVAr, |V|min 
in p.u., VSImin in p.u., PLAMmax in kW and LLMmin in 

MW for the proposed MOPI optimization using ITLBO for 
DSTATCOM, PVAs, WTGUs (with pf unity, 0.95 (lead & 
lag)) at three locations in Table 1. From the Table 1, the pro-
posed method has reduced the total real and reactive power 
losses, enhanced the minimum voltage, minimum VSI & 
line loadability, and reduced the consumer loss allocation 
for 33 node EDS with DSTATCOM, PVAs, and WTGUs 
placement at different locations. The size of DSTATCOM, 
number of PVAs (1 PVA = 25 kW), and number of WTGUs 
(1 WTGU = 96.67 kW with pf unity, 0.95 (lead & lag)) 
placement at three locations are 1360 kVAr DSTATCOM, 
40 PVAs, and 12 WTGUs, respectively, and it has been 
observed that WTGUs placement with pf 0.95 lead has given 

Fig. 2   Voltage profile improvement for DSTATCOM, PVAs and 
WTGUs placement at three locations in 33 node EDS

Fig. 3   Active power losses for DSTATCOM, PVAs and WTGUs 
placement at three locations in 33 node EDS

Fig. 4   ITLBO convergence with MOPI objective function for 
DSTATCOM, PVAs and WTGUs placement at three locations in 33 
node EDS

Fig. 5   Analysis of MOPI Function Indices for DSTATCOM, PVAs 
and WTGUs placement at three locations in 33 node EDS
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better EDS performance results along with the DSTATCOM 
and PVAs compared with WTGUs placement with unit or 
0.95 lag pf along with DSTATCOM and PVAs placement 
and sizing at different locations. From the Table 1, it can 
be noticed that the active and reactive power loss has been 
reduced to 36.29 kW and 27.24 kVAr for DSTATCOM, 
PVAs & WTGUs (with pf 0.95 (lead)) placement at three 
locations from 210.98 kW and 143.12 kVAr respectively by 
using the proposed MOPI optimization using the ITLBO 
based method. The power loss reduction is slightly lower 
compared with the WTGUs placement (with pf 0.95 lead) 
at three locations and is high compared with DSTATCOM 
or PVAs placement at three locations in the 33 node EDS. 
Better improvement has observed to increase the minimum 
node voltage from 0.90378 p.u. to 0.98037 p.u., increase the 
minimum VSI from 0.66901 p.u. to 0.92589 p.u., decrease 
the VDI from 0.32299 to with the voltage limits, increase the 
minimum LLM from 15.64 MW to 19.18 MW, and decrease 
the maximum customer loss allocation from 22.61 kW to 
7.22 kW with DSTATCOM, PVAs, & WTGUs (with pf 0.95 
lead) placement at three locations from Table 1. Each indi-
visual method has been compared with the existing methods 
to show the performance of the proposed method.

From the above discussion, it can be concluded that 
the MOPI optimization using ITLBO compared with 
existing methods has effectively reduced the losses and also 
improved EDS performance with respect to enhancing the 
minimum voltage, improving the voltage stability, reducing 
the VDI, improving the LLM, and reducing the loss burden 
of consumers.

Figures 2–3 shows the enhancement in node voltage pro-
file and active power loss reduction under DSTATCOM, 
PVAs, and WTGUs placement at three locations in the 33 
node EDS. Figure 4 shows the convergence of the MOPI 
optimization using ITLBO and most of the cases with the 
DSTATCOM, PVAs, & WTGUs (with pf 0.95 lead) place-
ments at three locations. The ITLBO solution obtained the 
optimal value before 30 iterations for 33 node EDS. The 
good optimal solution is based on the objective function and 
has a global solution. The number of iterations for conver-
gence has increased as the complexity of the problem has 
increased.

Figure 5 shows the MOPI objective function indices val-
ues for different WTGUs placement in 33 node EDS. From 
Fig. 5, it has been observed that IAPL, IRPL, IVDL, & 
ICPL are decreased, whereas IVSI & ILLM are increased 
and MOPI has decreased for getting the best performance 
of EDS from the base case to DSTATCOM, PVAs, and 
WTGUs (with pf 0.95 lead) placement at three locations in 
33 node EDS.

10 � Conclusions

A generalized MOPI objective function has been developed 
for observing EDS performance based on total system 
losses, voltage deviation, voltage stability, line flows, and 
loss burden to end node consumers. The ITLBO technique 
has been used to solve the minimizing MOPI objective 
function for various cases to find optimal places and sizes for 
the individual and combination of DSTATCOM, PVAs, and 
WTGUs (with different pfs) at three distinct locations. In all 
instances in which the results are compared with existing 
methods, it has been observed that the proposed technique 
has better efficiency. EDS performance has been shown to 
be good with the combination of DSTATCOM, PVAs, and 
WTGUs compared with the individual DSTATCOM, or 
PVAs, or WTGUs in three distinct places. The proposed 
method has reduced the active and reactive losses by nearly 
83% and 81%, respectively. The voltage profile has improved 
by 8.5% with no deviation in voltage limits, the voltage 
stability has improved by 38.4%, the additional loading 
handling has increased by 22.6%, and the loss burden on 
end node consumers has been reduced by 68%. The obtained 
results have shown that the proposed approach reduces the 
power loss in compromise with the existing methods and has 
also been shown to have greater performance in improving 
the node voltage profile by reducing the VDI, enhancing the 
minimum VSI, enhancing the minimum LLM, and reducing 
the consumer loss allocation in the EDS. Hence, overall EDS 
performance has been enhanced with the proposed method.
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