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Abstract  To improve the software quality and reduce the 
maintenance cost, cross-project fault prediction (CPFP) 
identifies faulty software components in a particular project 
(aka target project) using the historical fault data of other 
projects (aka source/reference projects). Although several 
diverse approaches/models have been proposed in the past, 
there exists room for improvement in the prediction perfor-
mance. Further, they did not consider effort-based evaluation 
metrics (EBEMs), which are important to ensure the model’s 
application in the industry, undertaking a realistic constraint 
of having a limited inspection effort. Besides, they validated 
their respective approaches using a limited number of data-
sets. Addressing these issues, we propose an improved CPFP 
model with its validation on a large corpus of data contain-
ing 62 datasets in terms of EBEMs (PIM@20%, Cost-effec-
tiveness@20%, and IFA) and other machine learning-based 
evaluation metrics (MLBEMs) like PF, G-measure, and 
MCC. The reference data and the target data are first nor-
malized to reduce the distribution divergence between them 
and then the relevant training data is selected from the refer-
ence data using the KNN algorithm. Seeing the experimen-
tal and statistical test results, we claim the efficacy of our 
proposed model over state-of-the-art CPFP models namely 
the Turhan-Filter and Cruz model comprehensively. Thus, 
the proposed CPFP model provides an effective solution for 

predicting faulty software components, enabling practition-
ers in developing quality software with lesser maintenance 
cost.

Keywords  Cross-project fault prediction · Machine 
learning-based evaluation metrics · Effort-based evaluation 
metrics · Software quality · Software maintenance

1  Introduction

The size and the complexity of the software are growing 
exponentially with growing needs and technical challenges, 
which can lead to faults, causing a substantial loss in terms 
of money and time. Thus, developing quality software 
demands a huge investment in terms of time and money 
(Arar and Ayan 2015). Further, the power of traditional 
testing approaches can never always be guaranteed (Kassab 
et al. 2017). Besides, the delayed identification of faults 
can increase their fixing cost by 100%, if detected after the 
development phase (Pelayo and Dick 2007). Therefore, it 
becomes extremely important to identify the faulty software 
components before the software release, not only to improve 
its quality but also to reduce its maintenance cost.

Machine learning techniques are becoming extremely 
popular in predicting faulty software components so that 
corrective measures should be taken on time to prevent their 
failures and reduce their maintenance cost (Bowes et al. 
2018; D’Ambros et al. 2012; Lessmann et al. 2008; Menzies 
et al. 2007). However, the success of a machine learning-
based technique largely depends on the amount of potential 
data. Thus, when sufficient within-project historical fault/
defect data is available for training and validating the model, 
we term it within-project fault prediction (WPFP). A good 
amount of work (Bisi and Goyal 2016; Canfora et al. 2015; 
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Liu et al. 2010; Lu et al. 2012; Wang et al. 2015) has been 
reported in the existing literature on WPFP, proposing vari-
ous effective approaches. However, in reality, collecting this 
fault data is an extremely time-consuming and costly task. 
Thus, under the situation of building a new software project, 
for which either no historical fault data is available or a very 
less amount of data is available, WPFP may not provide an 
efficient solution. However, several software repositories 
like PROMISE and NASA contain the historical fault data 
of various open-source projects, which can be leveraged to 
construct a fault prediction model for a specific software 
project (aka target project) facing the scarcity of the within-
project training data. Thus, when constructing a fault predic-
tion model for a software project (having either limited or 
no within-project training data) leveraging the fault data of 
some other project(s) (aka reference/source project (s)), we 
term it cross-project fault prediction (CPFP). The reference 
and the target data may or may not have the same feature 
space. However, we particularly have focussed on building 
a CPFP model where both target and the reference data share 
the same feature space. Even if the target and the reference 
projects have the same set of features, they may have differ-
ences in the distribution of their features.

Due to these differences in their distributions, the machine 
learning model’s prediction performance deteriorates. This 
happens because generally machine learning algorithms 
are based on the rationale of utilizing similar distribution 
data in their construction and validation phases. Several 
researchers have proposed different alternative solutions 
(Chen et al. 2015; Herbold 2013; Kawata et al. 2015; Ma 
et al. 2012; Nam et al. 2013; Ryu et al. 2017; Turhan et al. 
2009) to lessen the distribution difference between the refer-
ence project and the target project data, but there still exists 
room for the improvement in the prediction performance. 
Further,  majority of them considered only standard machine 
learning-based evaluation metrics (MLBEMs) like recall, 
precision, G-mean, F-measure, G-measure, balance, AUC 
(area under the curve), MCC (Mathew’s correlation coef-
ficient), PF (probability of false alarm), etc. to assess their 
model’s potential. They did not consider the effort-based 
evaluation metrics (EBEMs) under the practical constraint of 
limited inspection resources, which accounts for the model’s 
applicability in a real scenario. Besides, they validated their 
approaches using a limited number of selected datasets.

Targeting these research gaps, we aim to propose a 
machine learning-based improved CPFP model, considering 
its holistic evaluation using EBEMs along with MLBEMs 
on a large corpus of 62 datasets. Our proposed approach 
consists of three phases namely the normalization phase, 
training data selection phase, and model construction phase. 
In the normalization phase, the reference data and the target 
data are normalized to lessen the distribution dissimilar-
ity between them. In the training data selection phase, the 

relevant data is selected from the available reference data 
leveraging the KNN algorithm. The third phase constitutes 
building the CPFP model using the selected reference data 
retrieved from the previous phase, with its validation using 
the normalized target data retrieved from the first phase. To 
measure the true performance of the proposed CPFP model, 
we compare it with state-of-the-art approaches namely, 
Turhan-Filter (2009) and Cruz model (2009) using 62 data-
sets from the PROMISE repository.

On the basis of the observed results, the study makes the 
following contributions to the CPFP literature:

1.	 We propose an improved machine learning-based CPFP 
model and validate its performance in terms of EBEMs 
and MLBEMs under the realistic scenario of a limited 
inspection effort, using 62 datasets from the PROMISE 
repository.

2.	 The proposed model showcases its effectiveness in terms 
of MLBEMs by satisfying the practitioner’s expectation 
to balance between the accuracy of both faulty and non-
faulty classes over state-of-the-art approaches Turhan-
Filter and Cruz model by effectively reducing the distri-
bution gap between the target the reference data.

3.	 Further, considering the realistic constraint of limited 
inspection effort, the proposed model justifies its appli-
cation into practice by better balancing between its 
cost-effectiveness and the amount of developer’s effort 
required to investigate the faulty modules due to the 
effective selection of the training data.

The rest of the paper is arranged as follows: Sect. 2 puts 
light on the existing literature, and Sect. 3 explains the pro-
posed approach in detail. Further ahead, Sect. 4 describes 
the datasets, evaluation metrics, research questions, and the 
experimental design of the proposed approach, whereas 
Sect. 5 describes the experimental results, its analysis, and 
the ablation study to investigate the contribution of the nor-
malization phase and the training data selection phase in the 
final performance of the proposed approach. Next, Sect. 6 
presents the validity threats with Sect. 7 summarizing the 
research work along with the future directions.

2 � Related work

To the best of our knowledge, Briand et al. (2002) made the 
earliest contribution to exploring the feasibility of CPFP. 
Zimmermann et al. (2009) also attempted to explore the 
feasibility of CPFP by performing a big-scale experimental 
study. But the experimental results were disappointing. The 
prime reason for the unsatisfactory performance of CPFP 
was the distribution gap in the training and testing data.
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Addressing this concern, Watanabe et  al. (2008) 
explored the application of the data standardization tech-
nique to lessen the divergence in the reference and the 
target data distributions. Similarly, Cruz and Ochimizu 
(2009) attempted to normalize the reference and the tar-
get data to minimize the difference in their distributions. 
Both obtained better results, but it was still not satisfac-
tory. Moreover, they evaluated their respective approaches 
on limited datasets using MLBEMs only and did not pay 
any attention to EBEMs.

Further, Turhan et al. (2009) explored a training data 
selection method, where they selected 10 matching soft-
ware modules from the reference data for each target data 
module by applying the KNN algorithm. They achieved 
improvement in the prediction performance, particularly 
with respect to recall and PF. Unfortunately, PF was still 
very high. In addition, the evaluation in terms of EBEMs 
was not performed.

Working on similar lines, transfer learning was explored 
by Ma et al. (2012) to bridge the gap across the reference 
and the target data distributions. The training data were 
assigned weights using the Data Gravitation method (Peng 
et al. 2009) and Bayes logic was incorporated to develop the 
CPFP model. They recorded the improvement with respect 
to F-measure, PF, and AUC in comparison to conventional 
CPFP (a CPFP model built directly using the reference data 
without any processing) and Turhan-Filter (2009). However, 
the evaluation in terms of EBEMs was not performed.

To further ameliorate the prediction performance, another 
transfer learning-based technique called TCA+ (transfer 
component analysis (Pan et  al. 2011)) was explored by 
Nam et al. (2013). They evaluated their model on 8 datasets 
and witnessed the improvement with respect to the mean 
F-measure score over conventional CPFP and WPFP.

The above approaches primarily worked towards improv-
ing recall. As a result, they observed high PF. A higher 
false positive rate can ruin the developer’s effort and time. 
Addressing this issue, Chen et al. (2015) proposed a DTB 
approach, wherein they first assigned weights to the train-
ing data and then constructed an ensemble model by apply-
ing the Transfer AdaBoost algorithm, leveraging 10% of 
the within-project labeled data. They tested their approach 
on 15 datasets and witnessed its supremacy over compared 
approaches, particularly with respect to PF, G-measure, and 
MCC. However, the evaluation in terms of EBEMs was com-
pletely ignored.

Similar to the DTB approach, Ryu et al. (2017) came 
up with another transfer boosting-based approach called 
TCSBoost, which considered class imbalance and feature 
distribution to assign weights to the training modules and 
witnessed improvement in the performance with respect to 
G-mean and balance. Like previous approaches, they also 
missed considering the evaluation in terms of EBEMs.

All the above CPFP approaches evaluated their respective 
models in terms of MLBEMs only and considered only some 
selected datasets from the openly available pool of datasets.

Further, different approaches used different datasets and 
diverse evaluation metrics, one cannot specify which tech-
nique performed the best comprehensively. Therefore, to find 
out the best CPFP approach, Herbold et al. (2018) carried 
out a large empirical study and compared 24 existing CPFP 
approaches and concluded the Cruz model (2009) and the 
Turhan Filter (2009) as the top two CPFP approaches.

In an attempt to further improve the prediction perfor-
mance comprehensively, the study proposes an improved 
CPFP model inspired by Cruz and Ochimizu (2009), Turhan 
et al. (2009) with its evaluation on 62 datasets in terms of 
EBEMs along with MLBEMs and its comparison with the 
two best state-of-the-art CPFP approaches Cruz model 
(2009) and the Turhan-Filter (2009).

3 � Proposed approach

Figure 1 depicts the framework of the proposed model. It 
contains three main phases. The very first phase is the nor-
malization phase. Following the Cruz approach (2009), we 
first normalize the reference data and the target data to nar-
row the distribution gap between them. But different from 
the Cruz approach which used only a single project data for 
training, we use multiple project data in the training phase 
and consider the median of the target data as the reference 
point to normalize the reference and the target data. Kindly 
note that the reference data contains the data of all avail-
able projects except the target data and its related version 
data. After normalization, our second phase starts, which 
basically works on filtering the relevant data from the avail-
able reference data. In particular, we eliminate the irrelevant 
software modules from the reference data by selecting the 
10 nearest software modules from the reference data, for 
each software module in the target data. This phase helps us 
in selecting the reference data which is similar to the target 
data. Further ahead, the third phase constitutes the construc-
tion of a CPFP model using the reference data retrieved from 
the second phase with its validation on the normalized target 
data.

To have a better understanding of the model proposed, 
we also have presented the flow of model building through 
a flowchart as shown in Fig. 2.

3.1 � Normalization phase

As shown in Fig.  2, this phase mainly works towards 
decreasing the gap between the reference and the target 
data distributions. Following the Cruz approach (2009), 
we normalized both the reference as well as the target data. 
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But they used the data of only one project for training and 
considered the median of that data as the reference point. 
Different from them, our reference data contains multiple 

project data, therefore as a reference point, we considered 
the median of the target data. In other words, we used log 
transformation and the median of the target data as the ref-
erence point to normalize the reference and the target data 
using the following equation.

where M′

i
 shows the normalized value of the ith metric Mi 

and MT
i
 represents the same ith metric from the target data.

3.2 � Training data selection phase

This phase worked on selecting the reference data match-
ing with the target data. For each target data module, 10 
nearest modules (considering the Euclidean distance) were 
selected from the reference data by applying the KNN 
algorithm (Cover and Hart 1967). The selected data was 
then searched for any duplicate modules. If found, they 
were then deleted from the selected reference data.

3.3 � Model construction phase

The third phase worked on building the CPFP model using 
the reference data retrieved from the previous phase. We 
used Naïve Bayes (NB) as the underlying machine learning 
classifier for our proposed CPFP model. This is because 
NB has proved its potential in many previous studies 
in comparison to other machine learning models (Chen 
et al. 2015; He et al. 2015; Lessmann et al. 2008; Men-
zies et al. 2007; Ryu et al. 2017) and is used the most 
across existing CPFP studies (Hosseini et al. 2019; Khatri 
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Fig. 1   Proposed CPFP model’s framework

Fig. 2   Proposed model’s building steps
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and Singh 2021). Next, we validated its potential using 
the normalized target data and calculated the MLBEMs 
and EBEMs. Kindly note that the detailed explanation of 
these evaluation metrics and the process of their calcula-
tion is explained in Sect. 4.2.

4 � Datasets, performance measures and 
experimental design

This section describes the datasets, evaluation metrics, 
research question, baseline selection and experimental 
design of the proposed approach.

4.1 � Datasets

For evaluating the potential of our proposed approach, 62 
fault datasets from the PROMISE repository are utilized. 
These datasets consist of 15 closed-source project datasets 
and 47 versions of 17 open-source project datasets. These 
datasets were collected by Jureczko and Madeyski (2010). 
Each dataset consists of 20 static code metrics and the fault 
count. These software metrics represent the features of the 
dataset and the fault count represents the fault-proneness of 
the software module. A fault count with ‘0’ value depicts 
a non-faulty module, whereas a fault count greater than or 
equal to 1 shows a faulty module. Table 1 shows the detailed 
characteristics of these datasets. The first, second, and 
the third columns represent the short notation, name, and 
description of each dataset respectively. The fourth and the 
fifth columns depict the module count and the percentage of 
faulty modules in each dataset respectively.

We particularly selected a large pool of these datasets 
including both open-source and closed-source projects to 
counter the limitation of the many existing studies (Chen 
et al. 2015; Cruz and Ochimizu 2009; Ma et al. 2012; Nam 
et al. 2013; Ryu et al. 2017; Watanabe et al. 2008) as they 
used very limited datasets, which mainly consisted of open-
source project datasets. Further, these datasets cover both 
small to large software projects containing modules ranging 
from 10 to 965 with fault rates varying from 2.24 to 92.19. 
A detailed description of various features of these datasets 
can be found in (Jureczko and Madeyski 2010).

4.2 � Evaluation metrics

To holistically assess the performance of our approach, we 
used EBEMs along with MLBEMs considering the realistic 
constraint of limited inspection effort. Typical MLBEMs 
like recall, precision, F-measure, AUC, etc. do not deliver 
much to practitioners in assessing the strength of a fault 
prediction model comprehensively. The model’s cost-effec-
tiveness and the amount of effort testers/developers have 

to put in investigating faulty modules, are also important 
measures that need to be considered while evaluating any 
fault prediction model (Khatri and Singh 2021; Zhou et al. 
2018) considering the constraint of limited inspection effort.

According to previous studies (Ostrand et al. 2005; Zhou 
et al. 2018), we considered that the inspection effort equal 
to 20% of TLOC (total lines of code) in the target data, is 
available at our disposal, taking lines of code (LOC) as the 
proxy for inspection effort.

4.2.1 � MLBEMs

For holistic evaluation of our approach, we used three 
MLBEMs (G-measure, PF, and MCC). We specifically 
used G-measure and MCC to have a balanced performance 
for both fault-free and fault-prone classes. Thus, the accu-
racy of both classes is important (Ryu et al. 2017), there-
fore we considered G-measure and MCC. In particular, 
G-measure balances between recall and PF, whereas MCC 
considers all positive and negative predictions to calcu-
late a composite score, which ranges between − 1 and 1. 
An MCC score of 1 represents the supreme performance, 
however, an MCC score of − 1 shows the lowest perfor-
mance. Further, we considered PF seeing its impact on 
the developer/tester’s performance as high false positives 
lead to huge wastage of their effort and time and reduce 
their daily efficiency. Therefore, the lower the score, the 
superior the model.

These measures have been widely used in many other 
CPFP studies (Chen et al. 2015; Zhou et al. 2018) and can 
be calculated as follows:

Here, TP and TN denote the count of correct predictions 
of faulty and non-faulty classes respectively. On the other 
hand, FP and FN represent the count of false predictions of 
non-faulty and faulty classes respectively.

4.2.2 � EBEMs

In reality, these MLBEMs just measure the correctness of 
the predictions but didn’t provide enough information about 
the model’s practical application. Since we have a limited 
inspection effort, therefore only a few faulty modules can go 

G − measure =
2 ∗ recall ∗ (1 − PF)

recall + (1 − PF)

PF =
FP

FP + TN

MCC =
TP ∗ TN − FP ∗ FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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Table 1   Dataset description Short notation for 
dataset

Dataset name Description Count of 
modules

% of 
faulty 
modules

D1 ant 1.3 Open-source 125 16
D2 ant 1.4 178 22.47
D3 ant 1.5 293 10.92
D4 ant 1.6 351 26.21
D5 ant 1.7 745 22.28
D6 arc Closed-source (Academic) 234 11.53
D7 berek 43 37.02
D8 camel 1.0 Open-source 339 3.83
D9 camel 1.2 608 35.52
D10 camel 1.4 872 16.62
D11 camel 1.6 965 19.48
D12 ckjm Open-source 10 50
D13 elearn Closed-source (Academic) 64 7.8
D14 forrest 0.7 Open-source 29 17.24
D15 forrest 0.8 32 6.25
D16 intercafe Open-source 27 14.81
D17 ivy 1.1 Open-source 111 56.75
D18 ivy 1.4 241 6.64
D19 ivy 2.0 352 11.36
D20 jedit 3.2 Open-source 272 33.08
D21 jedit 4.0 306 24.5
D22 jedit 4.1 312 25.32
D23 jedit 4.2 367 13.08
D24 jedit 4.3 492 2.24
D25 kalkulator Open-source 27 22.22
D26 log4j 1.0 Open-source 135 25.18
D27 log4j 1.1 109 33.94
D28 log4j 1.2 205 92.19
D29 lucene 2.0 Open-source 195 46.66
D30 lucene 2.2 247 58.29
D31 lucene 2.4 340 59.70
D32 nieruchomosci Closed-source (Academic) 27 37.04
D33 pbeans 1.0 Open-source 26 76.92
D34 pbeans 2.0 51 19.60
D35 pdftranslator Closed-source (Academic) 33 45.45
D36 poi 1.5 Open-source 237 59.49
D37 poi 2.0 314 11.78
D38 poi 2.5 385 64.42
D39 poi 3.0 442 63.57
D40 redaktor Closed-source (Academic) 176 15.34
D41 serapion 45 20
D42 skarbonka 45 20
D43 sklebagd 20 60
D44 synapse 1.0 Open-source 157 10.19
D45 synapse 1.1 222 27.03
D46 synapse 1.2 256 33.59
D47 systemdata Closed-source (Academic) 65 13.85
D48 szybkafucha 25 56.00
D49 termoproject 42 30.95
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under inspection for locating fault positions and their cor-
rections. To quantify the tester/developer’s effort investment 
while inspecting these faulty modules and to measure the 
cost-effectiveness under the limited inspection effort of 20% 
of TLOC, we considered three EBEMs namely PIM@20%, 
Cost-effectiveness@20%, and IFA.

For better understanding, let’s assume that there were 
‘P’ modules in the target data, out of which ‘D’ modules 
were faulty. Further assume that ‘p’ modules were inspected 
under 20% of TLOC, out of which ‘d’ modules were faulty. 
Besides, consider that ‘T’ modules were investigated prior 
to noticing the first truly classified faulty module.

PIM@20% (Meyer et al. 2014) specifies the proportion of 
inspected modules under the 20% of TLOC and is computed 
as follows:

This measure accounts for the additional effort on test-
ers/developers when they have to inspect more modules 
within the same inspection effort as they may need to switch 
between various files and require communication and coor-
dination with people of different expertise. So, the lesser the 
score, the better the model.

Cost-effectiveness@20% (Huang et al. 2018) accounts for 
the actual performance of the model. It measures the propor-
tion of faulty modules inspected under 20% of TLOC and 
can be calculated as follows:

The higher the score, the better the model.
IFA (initial false alarm) (Kochhar et al. 2016) measures 

the initial false predictions before encountering the first cor-
rectly classified faulty module. This measure is particularly 

PIM@20% =
p

P

Cost − effectiveness@20% =
d

D

considered in the study as it strongly impacts the developer/
tester’s performance. A high IFA can shake their confidence 
in the model’s capacity, causing fatigue and disappointment 
among them with a reduction in their work efficiency. There-
fore, the lesser the score, the superior the performance of the 
model. It is computed as follows:

4.3 � Research question and baseline selection

This section presents the research question and baselines 
selection.

To measure the true strength of the proposed model, we 
undertook the following research question:

Research Question Can the proposed approach surpass 
the Turhan-Filter (Turhan et al. 2009) and Cruz model (Cruz 
and Ochimizu 2009) comprehensively?

To answer this question, we performed several experi-
ments taking 62 datasets, the result of which is presented in 
Sect. 5.1. We particularly selected these two state-of-the-art 
approaches namely Turhan-Filter (2009) and Cruz model 
(2009) for comparison as Herbold et al. (2018) confirmed 
these two approaches at the top in their large-scale compara-
tive study amongst 24 existing approaches.

4.4 � Experimental design

Algorithm 1 explains the experimental design of our pro-
posed approach and Algorithm 2 explains the EBEMs com-
putation process.

IFA = T

Table 1   (continued) Short notation for 
dataset

Dataset name Description Count of 
modules

% of 
faulty 
modules

D50 tomcat Open-source 858 8.97
D51 velocity 1.5 Open-source 214 66.36
D52 velocity 1.6 229 34.06
D53 workflow Closed-source (Academic) 39 51.28
D54 wspomaganiepi 18 66.67
D55 xalan 2.4 Open-source 723 15.21
D56 xalan 2.5 803 48.19
D57 xalan 2.6 885 46.44
D58 xerces 1.0 Open-source 162 47.53
D59 xerces 1.2 440 16.14
D60 xerces 1.3 453 15.23
D61 xerces 1.4 588 74.32
D62 zuzel Closed-source (Academic) 29 44.83
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Algorithm 1 Experimental design of the proposed CPFP model 

Input:  All the available datasets 

Output: Median performance of the proposed model with respect to MLBEMs and EBEMs  

1. AvailableData= {D1, D2, D3, D4,………….,D59, D60, D61, D62}
2. For each TargetData in AvailableData

2.1 ReferenceData= AvailableData – {TargetData + TargetData_Versions}
2.2 Remove modules with Zero LOC from TargetData and Reference Data 
2.3 Normalized_ReferenceData=Normalize the ReferenceData 
2.4 Normalized_TargetData=Normalize the TargetData 
2.5 Selected_ Normalized_ ReferenceData = Apply KNN algorithm to select        

                                                                  Normalized_ ReferenceData similar to    
                                                                  Normalized_TargetData 

2.6 Proposed_Model = Train the NB Model using Selected_ Normalized_ReferenceData 

2.7 Proposed_Model_Pred_Labels, Proposed_Model_Prob_Score = Test the Proposed_Model on      
                                                                                                         Normalized_TargetData 

2.8  Compute MLBEMs for Proposed_Model
2.9  Calculate EBEMs for Proposed_Model using Algorithm 2 

3. Report the median performance over all datasets 

First of all, we constructed the reference data for every 
target data by eliminating the target data and its related ver-
sions (if any) from the available pool of data (step 2.1). Next, 
we removed the modules having zero LOC from the target 
and the reference data as such modules did not contain any 
information for the fault (step 2.2). Next, we normalized the 
reference and the target data (steps 2.3 and 2.4) and then 

selected the matching reference data for each target data by 
applying the KNN algorithm (step 2.5). After training data 
selection, the proposed model was constructed and validated 
and the various MLEBMs were calculated (steps 2.6 to 2.8). 
Next, the EBEMs were calculated by applying Algorithm 2 
(step 2.9). In the end, the median results were reported over 
all the target projects (step 3).



1511Int J  Syst  Assur  Eng  Manag (April 2024) 15(4):1503–1518	

1 3

Algorithm 2:  EBEMs computation 

Input: Proposed_Model_Prob_Score: Probability score generated by the proposed model
Proposed_Model_Pred_Labels:   Predicted labels generated by the proposed model

Given Inspection Effort:   20 % of TLOC in TargetData

Output: PIM@20%, Cost-effectiveness@20%, IFA

1 Construct three vacant lists L1_faulty, L2_Non-faulty and L3_Inspection
2 For every module  in TargetData 

2.1 Put into L1_faulty, if classified as faulty, otherwise put it in L2_Non-faulty
2.2 Compute risk_score = (Proposed_Model_Prob_Score /LOC)* avg_cc

3 Arrange the modules in L1_faulty and L2_Non-faulty in decreasing 
order of their risk_score

4 Append L2_Non-faulty at the bottom of L1_faulty
5 Retrieve topmost modules from L1_faulty such that their TLOC should not exceed the given inspection 

effort and add them in L3_Inspection
6 Compute EBEMs using L3_Inspection as follows: 

@20% =
Total modules in L3

 Total modules in

 Faulty modules in L3

 Faulty modules in

L3

Now, we explain the process of EBEMs computation 
as shown in Algorithm 2, which was designed following 
(Khatri and Singh 2022). First, three lists were constructed 
namely L1_faulty, L2_Non-faulty, and L3_inspection. All 
the faulty predicted modules were added in L1_faulty and 
all non-faulty predicted modules were added in L2_Non-
faulty. Next, the risk_score was calculated for every target 
data module according to step 2.2. This risk_score took three 
inputs namely the probability score produced by the model, 
the average cyclomatic complexity (avg_cc), and the LOC. 
Both the probability score and the cyclomatic complexity 
represent the proxies for the module’s fault proneness and 
the third input i.e., LOC represent the proxy for the inspec-
tion effort. The higher the probability score and the cyclo-
matic complexity, the more the fault-proneness. The more 
the LOC, the higher the inspection effort. Therefore, we 
designed our risk_score such that the modules with higher 
fault-proneness, having low inspection effort must be inves-
tigated first.

Keeping this rationale in mind, the two lists were then 
arranged in descending order of their risk_score. After that, 
the list L2_Non-faulty was appended at the bottom of the 
list L1_faulty. Next, we extracted some topmost modules 
from L1_faulty, with their TLOC equal to the given inspec-
tion effort, and added them to the list L3_Inspection. Based 
on this list, the EBEMs were then calculated according to 
step 6.

5 � Results and discussions

This section discusses the results, its analysis, and the 
ablation study to examine the contribution of each phase 
in the overall performance of the proposed CPFP model.

5.1 � Results

Table 2 depicts the result of the comparison of our pro-
posed model with the Turhan-Filter and Cruz model in 
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terms of G-measure, PF, MCC, PIM@20%, Cost-effec-
tiveness@20%, and IFA scores over 62 datasets. Further 
ahead, Table 3 summarizes the results by taking their 
medians for all compared models. We use median results 
to eradicate the effect of outliers as they can mislead the 
results.

While comparing to Turhan-Filter, our model dominated 
in all MLBEMs with an improvement of 3.36%, 80.87%, 
and 10.15%, concerning median G-measure, median PF, 
and median MCC scores respectively. Further, concern-
ing EBEMs, our proposed model showed its superiority 
with respect to PIM@20% and IFA with an improvement 
of 52.24% and 100% in their respective median scores. 
However, the performance with respect to Cost-effective-
ness@20% was a little low.

Next, while comparing with the Cruz model, our model 
showed its excellence with respect to G-measure and MCC 
with similar performance concerning PF. In particular, our 
proposed model achieved an improvement of approximately 
7% and 11% in median G-measure and median MCC scores 
respectively. Further, with respect to median cost-effective-
ness@20%, it showed an improvement of 14.35% with simi-
lar performance in other metrics namely PIM@20% and IFA.

We further applied a statistical test to compare our pro-
posed approach with Turhan-Filter and Cruz model statisti-
cally. In particular, we applied the Wilcoxon-Signed Rank 
test (Demšar 2006) at a 5% significance level for statistical 
comparison. Being a non-parametric test, it compares two 
related samples to verify their belongingness to the same 
population. The resulting p-value score of more than or 
equal to 0.05 reveals that the two compared samples do not 
differ statistically. However, the p-value score of less than 
0.05 reveals that the two compared samples differ statisti-
cally. Table 4 depicts the statistical test results.

The results of the statistical test also revealed the suprem-
acy of our proposed approach over the Turhan-Filter con-
cerning PF, PIM@20%, and IFA as the p-values were less 
than 0.05. The two compared approaches performed compa-
rably to each other with respect to G-measure and MCC (as 
p-values > 0.05). However, with respect to Cost-effective-
ness@20%, the performance was a little low as compared 
to Turhan-Filter.

Further, these results also confirmed the excellence of 
our proposed approach over the Cruz model particularly 
with regard to G-measure as the p-value was less than 0.05 
with comparable performance with respect to other metrics. 
However, we observed an improvement of approximately 
11% and 14.35% in terms of median MCC and median Cost-
effectiveness@20% scores respectively over the Cruz model.

5.2 � Discussions

To analyse our results concretely, we make use of boxplots 
to pictorially represent the distribution of various evalua-
tion metrics obtained from our proposed model, the Turhan-
Filter and Cruz model over all the 62 datasets as shown in 
Fig. 3. The lower black horizontal line of each box shows 
the first quartile, the center black line shows the median (i.e., 
2nd quartile) and the upper black horizontal line of the box 
shows the 3rd quartile. The lowermost black horizontal line 
and the uppermost black horizontal line depict the minimum 
and maximum values of the distribution.

From Fig. 3a, we conclude the superiority of our model 
in comparison to Cruz model with similar performance to 
Turhan-Filter in terms of G-measure. Next, from Fig. 3b, 
we observed the similar performance of all three models 
in terms of MCC. Further, Fig. 3c revealed the outstanding 
performance of our proposed model and the Cruz model in 
comparison to Turhan-Filter concerning PF. However, with 
respect to PF, our proposed model and the Cruz model per-
formed comparable to each other. Similarly, with respect 
to PIM@20%, the Cruz model and our proposed model 
performed comparably to each other as evident in Fig. 3d. 

Table 3   Median performance in terms of MLBEMs and EBEMs

‘↑’ signifies ‘the greater the better’; ‘↓’ indicates ‘the lesser the bet-
ter’

Evaluation metrics Proposed model Turhan-Filter Cruz

G-measure ↑ 0.615 0.595 0.577
PF ↓ 0.251 0.454 0.251
MCC↑ 0.282 0.256 0.254
PIM@20% ↓ 0.178 0.271 0.167
Cost-effectiveness@20% ↑ 0.231 0.283 0.202
IFA ↓ 1 2 1

Table 4   Statistical test results

‘+’ signifies ‘better performance of the proposed model’; ‘−’ indi-
cates ‘the lower performance of the proposed model’

Evaluation metrics Turhan-Filter Cruz

G-measure p-value for our 
proposed 
model vs

0.68 0.015 (+)

PF 0.000 (+) 0.344
MCC 0.078 0.294
PIM@20% 0.000 (+) 0.476
Cost-effective-

ness@20%
0.009 (−) 0.063

IFA 0.006 (+) 0.34



1515Int J  Syst  Assur  Eng  Manag (April 2024) 15(4):1503–1518	

1 3

However, in comparison to Turhan-Filter, both performed 
much better. Further as visible in Fig. 3e, our model per-
formed better than the Cruz model, but Turhan-Filter out-
performed both in terms of Cost-effectiveness@20%. In par-
ticular, Turhan-Filter achieved the best performance with 
respect to Cost-effectiveness@20% at the cost of PIM@20%. 
Because the proportion of inspected modules happened to 
be very large in the case of Turhan-Filter, therefore it suc-
ceeded in inspecting more faulty modules, putting a huge 
additional effort on developers/testers. Further, with respect 
to IFA, Turhan-Filter performed the worst as evident in 
Fig. 3f, whereas the Cruz model and our model performed 
comparably to each other. Thus, combining all evaluation 

metrics, we claimed the dominance of our proposed model 
in comparison to Turhan-Filter and the Cruz model.

5.3 � Ablation study

To witness the impact of each and every phase on the mod-
el’s performance, we performed an ablation study. In par-
ticular, first we measured the model’s performance before 
the first phase of normalization, i.e., taking the data as it is, 
i.e., without applying any normalization technique. After 
that, we captured the model’s performance after applying 
the first phase of normalization to particularly investigate the 
impact of this phase on the model’s performance. Next, we 

Fig. 3   Boxplots of MLBEMs and EBEMs
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measured the performance after applying our second phase 
of training data selection in sequence after the first phase 
to examine the impact of this phase on the model’s perfor-
mance. Figure 4 shows the performance of the proposed 
CPFP model in terms of median G-measure, PF, MCC, 
PIM@20%, Cost-effectiveness@20% and IFA scores, cal-
culated over 62 CPFP experiments, before the normaliza-
tion phase, after the first phase of normalization and second 
phase of training data selection respectively.

It is evident from the above figure that the normaliza-
tion phase brought substantial improvement in the proposed 
model’s prediction performance. In other words, in terms of 
MLBEMs, the normalization phase improved the median 
G-measure and MCC scores by approximately 61% and 32% 
respectively with a slight surge in the PF score. Since both 
faulty and non-faulty classes are important, therefore giving 
equal weightage to the accuracy of both classes, the normali-
zation phase achieved improvement in the overall perfor-
mance in terms of MLBEMs by showcasing better perfor-
mance in two compound evaluation metrics i.e., G-measure 
and MCC. Further, in terms of EBEMs, the normalization 
phase brought improvement in Cost-effectiveness@20% 
with a slight surge in PIM@20%. However, the perfor-
mance in terms of IFA remained the same. In other words, 
the performance in terms of EBEMs more or less remained 
the same after the normalization phase. But combining all 
MLBEMs and EBEMs, the performance of the proposed 
CPFP model significantly improved after the application of 
the first phase of normalization.

Further ahead, the application of second phase of training 
data selection after the first phase further improved the pro-
posed model’s performance by achieving an improvement of 
approximately 7% and 12% in median G-measure and MCC 
scores respectively with comparable performance in terms 

of median PF score. Furthermore, in terms of EBEMs, it 
witnessed an improvement of approximately 15% in median 
Cost-effectiveness@20% score with comparable perfor-
mance in terms of median PIM@20% and IFA scores.

Thus, the above ablation study showcased the impact of 
normalization phase and training data selection phase on the 
proposed model’s performance. Both phases improved the 
overall performance (i.e., combining MLBEMs and EBEMs) 
and thus contributed significantly to justify the effectiveness 
of the proposed CPFP model.

6 � Threats to validity

Some of the significant issues that can pose threats to our 
proposed work are mentioned as follows:

6.1 � Internal validity

To examine the strength of our proposed model, we have 
used a large corpus of 62 datasets, wherein each dataset 
contains object-oriented, complexity-based, and size-based 
software metrics as the potential fault predictors. These soft-
ware metrics have already proven their importance as poten-
tial fault predictors in many SFP studies (Basili et al. 1996; 
Jureczko and Spinellis 2010; Subramanyam and Krishnan 
2003). However, we cannot assure the same performance 
of our model on projects containing other software metrics.

6.2 � External validity

This threat relates to validating the effectiveness of the 
proposed work on other software projects from different 
domains, developed under diverse operating procedures 

Fig. 4   Impact of different 
phases on the proposed model’s 
performance
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and principles. However, to minimize this threat to some 
extent, we have validated the performance of our approach 
on 62 datasets, consisting of a good mix of both open and 
closed-source projects belonging to different domains.

7 � Conclusion

This study aims at building quality software with lesser 
maintenance cost using an improved cross-project fault 
prediction (CPFP) model. The proposed model consisted of 
three phases. The first phase normalized the reference and 
the target data, the second phase selected the relevant train-
ing data by applying the KNN algorithm and the third phase 
finally constructed the CPFP model. To assess the strength 
of the proposed model comprehensively, the effort-based 
evaluation metrics (EBEMs) along with MLBEMs (machine 
learning-based evaluation metrics) were considered, taking 
the realistic constraint of limited inspection effort. Based 
on the large-scale empirical investigation on 62 datasets, 
the excellence of the proposed model over state-of-the-art 
models namely the Turhan-Filter and the Cruz model was 
concluded. In the future, we will work on further improv-
ing its performance by building hybrid models combining 
normalization, instance selection and feature selection with 
its validation on more datasets.

Funding  No funds, grants, or other support was received.

Declarations 

Conflict of interest  The authors have no relevant financial or non-
financial interests to disclose.

Human and/or animals participants  This study doesn’t involve any 
human/animal participants.

Informed consent  This study does not involve any human/animal 
participants, as a result no consent is needed.

References

Arar ÖF, Ayan K (2015) Software defect prediction using cost-sensitive 
neural network. Appl Soft Comput 33:263–277. https://​doi.​org/​
10.​1016/J.​ASOC.​2015.​04.​045

Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented 
design metrics as quality indicators. IEEE Trans Software Eng 
22(10):751–761. https://​doi.​org/​10.​1109/​32.​544352

Bisi M, Goyal NK (2016) An ANN-PSO-based model to predict 
fault-prone modules in software. Int J Reliab Saf 10(3):243–264. 
https://​doi.​org/​10.​1504/​IJRS.​2016.​081611

Bowes D, Hall T, Petrić J (2018) Software defect prediction: do differ-
ent classifiers find the same defects? Softw Qual J 26(2):525–552. 
https://​doi.​org/​10.​1007/​s11219-​016-​9353-3

Briand LC, Melo WL, Wüst J (2002) Assessing the applicability of 
fault-proneness models across object-oriented software projects. 
IEEE Trans Softw Eng 28(7):706–720. https://​doi.​org/​10.​1109/​
TSE.​2002.​10194​84

Canfora G, Lucia AD, Penta MD, Oliveto R, Panichella A, Panichella 
S (2015) Defect prediction as a multiobjective optimization prob-
lem. Softw Test Verif Reliab 25(4):426–459. https://​doi.​org/​10.​
1002/​STVR.​1570

Chen L, Fang B, Shang Z, Tang Y (2015) Negative samples reduction 
in cross-company software defects prediction. Inf Softw Technol 
62(1):67–77. https://​doi.​org/​10.​1016/j.​infsof.​2015.​01.​014

Cover TM, Hart PE (1967) Nearest neighbor pattern classification. 
IEEE Trans Inf Theory 13(1):21–27. https://​doi.​org/​10.​1109/​
TIT.​1967.​10539​64

Cruz AEC, Ochimizu K (2009) Towards logistic regression mod-
els for predicting fault-prone code across software projects. In: 
2009 3rd International symposium on empirical software engi-
neering and measurement, pp 460–463. https://​doi.​org/​10.​1109/​
ESEM.​2009.​53160​02

D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect predic-
tion approaches: a benchmark and an extensive comparison. 
Empir Softw Eng 17(4–5):531–577. https://​doi.​org/​10.​1007/​
s10664-​011-​9173-9

Demšar J (2006) Statistical comparisons of classifiers over multiple 
data sets. J Mach Learn Res 7:1–30

He P, Li B, Liu X, Chen J, Ma Y (2015) An empirical study on soft-
ware defect prediction with a simplified metric set. Inf Softw 
Technol 59:170–190. https://​doi.​org/​10.​1016/j.​infsof.​2014.​11.​
006

Herbold S, Trautsch A, Grabowski J (2018) A comparative study to 
benchmark cross-project defect prediction approaches. IEEE 
Trans Softw Eng 44(9):811–833. https://​doi.​org/​10.​1109/​TSE.​
2017.​27245​38

Herbold S (2013) Training data selection for cross-project defect pre-
diction. In: ACM international conference proceeding series, Part 
F1288, pp 1–10. https://​doi.​org/​10.​1145/​24993​93.​24993​97

Hosseini S, Turhan B, Gunarathna D (2019) A systematic literature 
review and meta-analysis on cross project defect prediction. IEEE 
Trans Softw Eng 45(2):111–147. https://​doi.​org/​10.​1109/​TSE.​
2017.​27701​24

Huang Q, Xia X, Lo D (2018) Revisiting supervised and unsuper-
vised models for effort-aware just-in-time defect prediction. 
Empir Softw Eng 24(5):2823–2862. https://​doi.​org/​10.​1007/​
s10664-​018-​9661-2

Jureczko M, Madeyski L (2010) Towards identifying software project 
clusters with regard to defect prediction. In: ACM international 
conference proceeding series, pp 1–10. https://​doi.​org/​10.​1145/​
18683​28.​18683​42

Jureczko M, Spinellis D (2010) Using object-oriented design metrics 
to predict software defects. In: Models and methods of system 
dependability. Oficyna Wydawnicza Politechniki Wrocławskiej, 
pp 69–81. http://​cites​eerx.​ist.​psu.​edu/​viewd​oc/​summa​ry?​doi=​
10.1.​1.​226.​2285

Kassab M, Defranco JF, Laplante PA (2017) Software testing: the state 
of the practice. IEEE Softw 34(5):46–52. https://​doi.​org/​10.​1109/​
MS.​2017.​35715​82

Kawata K, Amasaki S, Yokogawa T (2015) Improving relevancy filter 
methods for cross-project defect prediction. In: Proceedings—3rd 
international conference on applied computing and information 
technology and 2nd international conference on computational 
science and intelligence, ACIT-CSI 2015, pp 2–7. https://​doi.​org/​
10.​1109/​ACIT-​CSI.​2015.​104

Khatri Y, Singh SK (2021) Cross project defect prediction: a compre-
hensive survey with its SWOT analysis. Innov Syst Softw Eng. 
https://​doi.​org/​10.​1007/​s11334-​020-​00380-5

https://doi.org/10.1016/J.ASOC.2015.04.045
https://doi.org/10.1016/J.ASOC.2015.04.045
https://doi.org/10.1109/32.544352
https://doi.org/10.1504/IJRS.2016.081611
https://doi.org/10.1007/s11219-016-9353-3
https://doi.org/10.1109/TSE.2002.1019484
https://doi.org/10.1109/TSE.2002.1019484
https://doi.org/10.1002/STVR.1570
https://doi.org/10.1002/STVR.1570
https://doi.org/10.1016/j.infsof.2015.01.014
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/ESEM.2009.5316002
https://doi.org/10.1109/ESEM.2009.5316002
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1016/j.infsof.2014.11.006
https://doi.org/10.1016/j.infsof.2014.11.006
https://doi.org/10.1109/TSE.2017.2724538
https://doi.org/10.1109/TSE.2017.2724538
https://doi.org/10.1145/2499393.2499397
https://doi.org/10.1109/TSE.2017.2770124
https://doi.org/10.1109/TSE.2017.2770124
https://doi.org/10.1007/s10664-018-9661-2
https://doi.org/10.1007/s10664-018-9661-2
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1145/1868328.1868342
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.226.2285
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.226.2285
https://doi.org/10.1109/MS.2017.3571582
https://doi.org/10.1109/MS.2017.3571582
https://doi.org/10.1109/ACIT-CSI.2015.104
https://doi.org/10.1109/ACIT-CSI.2015.104
https://doi.org/10.1007/s11334-020-00380-5


1518	 Int J  Syst  Assur  Eng  Manag (April 2024) 15(4):1503–1518

1 3

Khatri Y, Singh SK (2022) Towards building a pragmatic cross-project 
defect prediction model combining non-effort based and effort-
based performance measures for a balanced evaluation. Inf Softw 
Technol 150:106980. https://​doi.​org/​10.​1016/J.​INFSOF.​2022.​
106980

Kochhar PS, Xia X, Lo D, Li S (2016) Practitioners’ expectations on 
automated fault localization. In: Proceedings of the 25th interna-
tional symposium on software testing and analysis, pp 165–176. 
https://​doi.​org/​10.​1145/​29310​37.​29310​51

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking clas-
sification models for software defect prediction: a proposed frame-
work and novel findings. IEEE Trans Softw Eng 34(4):485–496. 
https://​doi.​org/​10.​1109/​TSE.​2008.​35

Liu Y, Khoshgoftaar TM, Seliya N (2010) Evolutionary optimization of 
software quality modeling with multiple repositories. IEEE Trans 
Softw Eng 36(6):852–864. https://​doi.​org/​10.​1109/​TSE.​2010.​51

Lu H, Cukic B, Culp M (2012) Software defect prediction using semi-
supervised learning with dimension reduction. In: 2012 27th 
IEEE/ACM international conference on automated software engi-
neering, ASE 2012 —Proceedings, pp 314–317. https://​doi.​org/​
10.​1145/​23516​76.​23517​34

Ma Y, Luo G, Zeng X, Chen A (2012) Transfer learning for cross-com-
pany software defect prediction. Inf Softw Technol 54(3):248–
256. https://​doi.​org/​10.​1016/j.​infsof.​2011.​09.​007

Menzies T, Greenwald J, Frank A (2007) Data mining static code 
attributes to learn defect predictors. IEEE Trans Softw Eng 
33(1):2–13. https://​doi.​org/​10.​1109/​TSE.​2007.​256941

Meyer AN, Fritz T, Murphy GC, Zimmermann T (2014) Software 
developers’ perceptions of productivity. In: Proceedings of the 
ACM SIGSOFT symposium on the foundations of software engi-
neering, 16–21 November, pp 19–29. https://​doi.​org/​10.​1145/​
26358​68.​26358​92

Nam J, Pan SJ, Kim S (2013) Transfer defect learning. In: Proceed-
ings—international conference on software engineering, pp 382–
391. https://​doi.​org/​10.​1109/​ICSE.​2013.​66065​84

Ostrand TJ, Weyuker EJ, Bell RM (2005) Predicting the location and 
number of faults in large software systems. IEEE Trans Softw Eng 
31(4):340–355. https://​doi.​org/​10.​1109/​TSE.​2005.​49

Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via 
transfer component analysis. IEEE Trans Neural Netw 22(2):199–
210. https://​doi.​org/​10.​1109/​TNN.​2010.​20912​81

Pelayo L, Dick S (2007) Applying novel resampling strategies to 
software defect prediction. In: Annual conference of the north 

American fuzzy information processing society—NAFIPS, pp 
69–72. https://​doi.​org/​10.​1109/​NAFIPS.​2007.​383813

Peng L, Yang B, Chen Y, Abraham A (2009) Data gravitation based 
classification. Inf Sci 179(6):809–819. https://​doi.​org/​10.​1016/j.​
ins.​2008.​11.​007

Ryu D, Jang JI, Baik J (2017) A transfer cost-sensitive boost-
ing approach for cross-project defect prediction. Softw Qual J 
25(1):235–272. https://​doi.​org/​10.​1007/​s11219-​015-​9287-1

Subramanyam R, Krishnan MS (2003) Empirical analysis of CK met-
rics for object-oriented design complexity: implications for soft-
ware defects. IEEE Trans Softw Eng 29(4):297–310. https://​doi.​
org/​10.​1109/​TSE.​2003.​11917​95

Turhan B, Menzies T, Bener AB, Di Stefano J (2009) On the relative 
value of cross-company and within-company data for defect pre-
diction. Empir Softw Eng 14:540–578. https://​doi.​org/​10.​1007/​
s10664-​008-​9103-7

Wang T, Zhang Z, Jing X, Zhang L (2015) Multiple kernel ensem-
ble learning for software defect prediction. Autom Softw Eng 
23(4):569–590. https://​doi.​org/​10.​1007/​S10515-​015-​0179-1

Watanabe S, Kaiya H, Kaijiri K (2008) Adapting a fault prediction 
model to allow inter language reuse. In: Proceedings—interna-
tional conference on software engineering, pp 19–24. https://​doi.​
org/​10.​1145/​13707​88.​13707​94

Zhou Y, Yang Y, Lu H, Chen L, Li Y, Zhao Y, Qian J, Xu B (2018) 
How far we have progressed in the journey? An examination of 
cross-project defect prediction. ACM Trans Softw Eng Methodol 
27(1):1–51. https://​doi.​org/​10.​1145/​31833​39

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) 
Cross-project defect prediction: a large scale experiment on data 
vs. domain vs. process. In: ESEC-FSE’09—Proceedings of the 
joint 12th European software engineering conference and 17th 
ACM SIGSOFT symposium on the foundations of software engi-
neering, pp 91–100. https://​doi.​org/​10.​1145/​15956​96.​15957​13

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1016/J.INFSOF.2022.106980
https://doi.org/10.1016/J.INFSOF.2022.106980
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1109/TSE.2010.51
https://doi.org/10.1145/2351676.2351734
https://doi.org/10.1145/2351676.2351734
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1145/2635868.2635892
https://doi.org/10.1145/2635868.2635892
https://doi.org/10.1109/ICSE.2013.6606584
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TNN.2010.2091281
https://doi.org/10.1109/NAFIPS.2007.383813
https://doi.org/10.1016/j.ins.2008.11.007
https://doi.org/10.1016/j.ins.2008.11.007
https://doi.org/10.1007/s11219-015-9287-1
https://doi.org/10.1109/TSE.2003.1191795
https://doi.org/10.1109/TSE.2003.1191795
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1007/S10515-015-0179-1
https://doi.org/10.1145/1370788.1370794
https://doi.org/10.1145/1370788.1370794
https://doi.org/10.1145/3183339
https://doi.org/10.1145/1595696.1595713

	Predictive software maintenance utilizing cross-project data
	Abstract 
	1 Introduction
	2 Related work
	3 Proposed approach
	3.1 Normalization phase
	3.2 Training data selection phase
	3.3 Model construction phase

	4 Datasets, performance measures and experimental design
	4.1 Datasets
	4.2 Evaluation metrics
	4.2.1 MLBEMs
	4.2.2 EBEMs

	4.3 Research question and baseline selection
	4.4 Experimental design

	5 Results and discussions
	5.1 Results
	5.2 Discussions
	5.3 Ablation study

	6 Threats to validity
	6.1 Internal validity
	6.2 External validity

	7 Conclusion
	References




