
Vol.:(0123456789)1 3

Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518
https://doi.org/10.1007/s13198-023-01957-6

ORIGINAL ARTICLE

Predictive software maintenance utilizing cross‑project data

Yogita Khatri1  · Sandeep Kumar Singh1

Received: 22 September 2022 / Revised: 16 May 2023 / Accepted: 24 May 2023 / Published online: 23 June 2023
© The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and
The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2023

Abstract  To improve the software quality and reduce the
maintenance cost, cross-project fault prediction (CPFP)
identifies faulty software components in a particular project
(aka target project) using the historical fault data of other
projects (aka source/reference projects). Although several
diverse approaches/models have been proposed in the past,
there exists room for improvement in the prediction perfor-
mance. Further, they did not consider effort-based evaluation
metrics (EBEMs), which are important to ensure the model’s
application in the industry, undertaking a realistic constraint
of having a limited inspection effort. Besides, they validated
their respective approaches using a limited number of data-
sets. Addressing these issues, we propose an improved CPFP
model with its validation on a large corpus of data contain-
ing 62 datasets in terms of EBEMs (PIM@20%, Cost-effec-
tiveness@20%, and IFA) and other machine learning-based
evaluation metrics (MLBEMs) like PF, G-measure, and
MCC. The reference data and the target data are first nor-
malized to reduce the distribution divergence between them
and then the relevant training data is selected from the refer-
ence data using the KNN algorithm. Seeing the experimen-
tal and statistical test results, we claim the efficacy of our
proposed model over state-of-the-art CPFP models namely
the Turhan-Filter and Cruz model comprehensively. Thus,
the proposed CPFP model provides an effective solution for

predicting faulty software components, enabling practition-
ers in developing quality software with lesser maintenance
cost.

Keywords  Cross-project fault prediction · Machine
learning-based evaluation metrics · Effort-based evaluation
metrics · Software quality · Software maintenance

1  Introduction

The size and the complexity of the software are growing
exponentially with growing needs and technical challenges,
which can lead to faults, causing a substantial loss in terms
of money and time. Thus, developing quality software
demands a huge investment in terms of time and money
(Arar and Ayan 2015). Further, the power of traditional
testing approaches can never always be guaranteed (Kassab
et al. 2017). Besides, the delayed identification of faults
can increase their fixing cost by 100%, if detected after the
development phase (Pelayo and Dick 2007). Therefore, it
becomes extremely important to identify the faulty software
components before the software release, not only to improve
its quality but also to reduce its maintenance cost.

Machine learning techniques are becoming extremely
popular in predicting faulty software components so that
corrective measures should be taken on time to prevent their
failures and reduce their maintenance cost (Bowes et al.
2018; D’Ambros et al. 2012; Lessmann et al. 2008; Menzies
et al. 2007). However, the success of a machine learning-
based technique largely depends on the amount of potential
data. Thus, when sufficient within-project historical fault/
defect data is available for training and validating the model,
we term it within-project fault prediction (WPFP). A good
amount of work (Bisi and Goyal 2016; Canfora et al. 2015;

 *	 Yogita Khatri
	 19403019@mail.jiit.ac.in

	 Sandeep Kumar Singh
	 sandeepk.singh@jiit.ac.in

1	 Department of Computer Science Engineering
and Information Technology, Jaypee Institute of Information
Technology, Noida 201309, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-023-01957-6&domain=pdf
http://orcid.org/0000-0001-8789-5932

1504	 Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518

1 3

Liu et al. 2010; Lu et al. 2012; Wang et al. 2015) has been
reported in the existing literature on WPFP, proposing vari-
ous effective approaches. However, in reality, collecting this
fault data is an extremely time-consuming and costly task.
Thus, under the situation of building a new software project,
for which either no historical fault data is available or a very
less amount of data is available, WPFP may not provide an
efficient solution. However, several software repositories
like PROMISE and NASA contain the historical fault data
of various open-source projects, which can be leveraged to
construct a fault prediction model for a specific software
project (aka target project) facing the scarcity of the within-
project training data. Thus, when constructing a fault predic-
tion model for a software project (having either limited or
no within-project training data) leveraging the fault data of
some other project(s) (aka reference/source project (s)), we
term it cross-project fault prediction (CPFP). The reference
and the target data may or may not have the same feature
space. However, we particularly have focussed on building
a CPFP model where both target and the reference data share
the same feature space. Even if the target and the reference
projects have the same set of features, they may have differ-
ences in the distribution of their features.

Due to these differences in their distributions, the machine
learning model’s prediction performance deteriorates. This
happens because generally machine learning algorithms
are based on the rationale of utilizing similar distribution
data in their construction and validation phases. Several
researchers have proposed different alternative solutions
(Chen et al. 2015; Herbold 2013; Kawata et al. 2015; Ma
et al. 2012; Nam et al. 2013; Ryu et al. 2017; Turhan et al.
2009) to lessen the distribution difference between the refer-
ence project and the target project data, but there still exists
room for the improvement in the prediction performance.
Further, majority of them considered only standard machine
learning-based evaluation metrics (MLBEMs) like recall,
precision, G-mean, F-measure, G-measure, balance, AUC
(area under the curve), MCC (Mathew’s correlation coef-
ficient), PF (probability of false alarm), etc. to assess their
model’s potential. They did not consider the effort-based
evaluation metrics (EBEMs) under the practical constraint of
limited inspection resources, which accounts for the model’s
applicability in a real scenario. Besides, they validated their
approaches using a limited number of selected datasets.

Targeting these research gaps, we aim to propose a
machine learning-based improved CPFP model, considering
its holistic evaluation using EBEMs along with MLBEMs
on a large corpus of 62 datasets. Our proposed approach
consists of three phases namely the normalization phase,
training data selection phase, and model construction phase.
In the normalization phase, the reference data and the target
data are normalized to lessen the distribution dissimilar-
ity between them. In the training data selection phase, the

relevant data is selected from the available reference data
leveraging the KNN algorithm. The third phase constitutes
building the CPFP model using the selected reference data
retrieved from the previous phase, with its validation using
the normalized target data retrieved from the first phase. To
measure the true performance of the proposed CPFP model,
we compare it with state-of-the-art approaches namely,
Turhan-Filter (2009) and Cruz model (2009) using 62 data-
sets from the PROMISE repository.

On the basis of the observed results, the study makes the
following contributions to the CPFP literature:

1.	 We propose an improved machine learning-based CPFP
model and validate its performance in terms of EBEMs
and MLBEMs under the realistic scenario of a limited
inspection effort, using 62 datasets from the PROMISE
repository.

2.	 The proposed model showcases its effectiveness in terms
of MLBEMs by satisfying the practitioner’s expectation
to balance between the accuracy of both faulty and non-
faulty classes over state-of-the-art approaches Turhan-
Filter and Cruz model by effectively reducing the distri-
bution gap between the target the reference data.

3.	 Further, considering the realistic constraint of limited
inspection effort, the proposed model justifies its appli-
cation into practice by better balancing between its
cost-effectiveness and the amount of developer’s effort
required to investigate the faulty modules due to the
effective selection of the training data.

The rest of the paper is arranged as follows: Sect. 2 puts
light on the existing literature, and Sect. 3 explains the pro-
posed approach in detail. Further ahead, Sect. 4 describes
the datasets, evaluation metrics, research questions, and the
experimental design of the proposed approach, whereas
Sect. 5 describes the experimental results, its analysis, and
the ablation study to investigate the contribution of the nor-
malization phase and the training data selection phase in the
final performance of the proposed approach. Next, Sect. 6
presents the validity threats with Sect. 7 summarizing the
research work along with the future directions.

2 � Related work

To the best of our knowledge, Briand et al. (2002) made the
earliest contribution to exploring the feasibility of CPFP.
Zimmermann et al. (2009) also attempted to explore the
feasibility of CPFP by performing a big-scale experimental
study. But the experimental results were disappointing. The
prime reason for the unsatisfactory performance of CPFP
was the distribution gap in the training and testing data.

1505Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518	

1 3

Addressing this concern, Watanabe et al. (2008)
explored the application of the data standardization tech-
nique to lessen the divergence in the reference and the
target data distributions. Similarly, Cruz and Ochimizu
(2009) attempted to normalize the reference and the tar-
get data to minimize the difference in their distributions.
Both obtained better results, but it was still not satisfac-
tory. Moreover, they evaluated their respective approaches
on limited datasets using MLBEMs only and did not pay
any attention to EBEMs.

Further, Turhan et al. (2009) explored a training data
selection method, where they selected 10 matching soft-
ware modules from the reference data for each target data
module by applying the KNN algorithm. They achieved
improvement in the prediction performance, particularly
with respect to recall and PF. Unfortunately, PF was still
very high. In addition, the evaluation in terms of EBEMs
was not performed.

Working on similar lines, transfer learning was explored
by Ma et al. (2012) to bridge the gap across the reference
and the target data distributions. The training data were
assigned weights using the Data Gravitation method (Peng
et al. 2009) and Bayes logic was incorporated to develop the
CPFP model. They recorded the improvement with respect
to F-measure, PF, and AUC in comparison to conventional
CPFP (a CPFP model built directly using the reference data
without any processing) and Turhan-Filter (2009). However,
the evaluation in terms of EBEMs was not performed.

To further ameliorate the prediction performance, another
transfer learning-based technique called TCA+ (transfer
component analysis (Pan et al. 2011)) was explored by
Nam et al. (2013). They evaluated their model on 8 datasets
and witnessed the improvement with respect to the mean
F-measure score over conventional CPFP and WPFP.

The above approaches primarily worked towards improv-
ing recall. As a result, they observed high PF. A higher
false positive rate can ruin the developer’s effort and time.
Addressing this issue, Chen et al. (2015) proposed a DTB
approach, wherein they first assigned weights to the train-
ing data and then constructed an ensemble model by apply-
ing the Transfer AdaBoost algorithm, leveraging 10% of
the within-project labeled data. They tested their approach
on 15 datasets and witnessed its supremacy over compared
approaches, particularly with respect to PF, G-measure, and
MCC. However, the evaluation in terms of EBEMs was com-
pletely ignored.

Similar to the DTB approach, Ryu et al. (2017) came
up with another transfer boosting-based approach called
TCSBoost, which considered class imbalance and feature
distribution to assign weights to the training modules and
witnessed improvement in the performance with respect to
G-mean and balance. Like previous approaches, they also
missed considering the evaluation in terms of EBEMs.

All the above CPFP approaches evaluated their respective
models in terms of MLBEMs only and considered only some
selected datasets from the openly available pool of datasets.

Further, different approaches used different datasets and
diverse evaluation metrics, one cannot specify which tech-
nique performed the best comprehensively. Therefore, to find
out the best CPFP approach, Herbold et al. (2018) carried
out a large empirical study and compared 24 existing CPFP
approaches and concluded the Cruz model (2009) and the
Turhan Filter (2009) as the top two CPFP approaches.

In an attempt to further improve the prediction perfor-
mance comprehensively, the study proposes an improved
CPFP model inspired by Cruz and Ochimizu (2009), Turhan
et al. (2009) with its evaluation on 62 datasets in terms of
EBEMs along with MLBEMs and its comparison with the
two best state-of-the-art CPFP approaches Cruz model
(2009) and the Turhan-Filter (2009).

3 � Proposed approach

Figure 1 depicts the framework of the proposed model. It
contains three main phases. The very first phase is the nor-
malization phase. Following the Cruz approach (2009), we
first normalize the reference data and the target data to nar-
row the distribution gap between them. But different from
the Cruz approach which used only a single project data for
training, we use multiple project data in the training phase
and consider the median of the target data as the reference
point to normalize the reference and the target data. Kindly
note that the reference data contains the data of all avail-
able projects except the target data and its related version
data. After normalization, our second phase starts, which
basically works on filtering the relevant data from the avail-
able reference data. In particular, we eliminate the irrelevant
software modules from the reference data by selecting the
10 nearest software modules from the reference data, for
each software module in the target data. This phase helps us
in selecting the reference data which is similar to the target
data. Further ahead, the third phase constitutes the construc-
tion of a CPFP model using the reference data retrieved from
the second phase with its validation on the normalized target
data.

To have a better understanding of the model proposed,
we also have presented the flow of model building through
a flowchart as shown in Fig. 2.

3.1 � Normalization phase

As shown in Fig. 2, this phase mainly works towards
decreasing the gap between the reference and the target
data distributions. Following the Cruz approach (2009),
we normalized both the reference as well as the target data.

1506	 Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518

1 3

But they used the data of only one project for training and
considered the median of that data as the reference point.
Different from them, our reference data contains multiple

project data, therefore as a reference point, we considered
the median of the target data. In other words, we used log
transformation and the median of the target data as the ref-
erence point to normalize the reference and the target data
using the following equation.

where M′

i
 shows the normalized value of the ith metric Mi

and MT
i
 represents the same ith metric from the target data.

3.2 � Training data selection phase

This phase worked on selecting the reference data match-
ing with the target data. For each target data module, 10
nearest modules (considering the Euclidean distance) were
selected from the reference data by applying the KNN
algorithm (Cover and Hart 1967). The selected data was
then searched for any duplicate modules. If found, they
were then deleted from the selected reference data.

3.3 � Model construction phase

The third phase worked on building the CPFP model using
the reference data retrieved from the previous phase. We
used Naïve Bayes (NB) as the underlying machine learning
classifier for our proposed CPFP model. This is because
NB has proved its potential in many previous studies
in comparison to other machine learning models (Chen
et al. 2015; He et al. 2015; Lessmann et al. 2008; Men-
zies et al. 2007; Ryu et al. 2017) and is used the most
across existing CPFP studies (Hosseini et al. 2019; Khatri

M
�
i
= log

(

1 +M
i

)

+
(

median
(

log
(

1 +M
i

))

− median
(

log
(

1 +M
T

i

)))

Fig. 1   Proposed CPFP model’s framework

Fig. 2   Proposed model’s building steps

1507Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518	

1 3

and Singh 2021). Next, we validated its potential using
the normalized target data and calculated the MLBEMs
and EBEMs. Kindly note that the detailed explanation of
these evaluation metrics and the process of their calcula-
tion is explained in Sect. 4.2.

4 � Datasets, performance measures and
experimental design

This section describes the datasets, evaluation metrics,
research question, baseline selection and experimental
design of the proposed approach.

4.1 � Datasets

For evaluating the potential of our proposed approach, 62
fault datasets from the PROMISE repository are utilized.
These datasets consist of 15 closed-source project datasets
and 47 versions of 17 open-source project datasets. These
datasets were collected by Jureczko and Madeyski (2010).
Each dataset consists of 20 static code metrics and the fault
count. These software metrics represent the features of the
dataset and the fault count represents the fault-proneness of
the software module. A fault count with ‘0’ value depicts
a non-faulty module, whereas a fault count greater than or
equal to 1 shows a faulty module. Table 1 shows the detailed
characteristics of these datasets. The first, second, and
the third columns represent the short notation, name, and
description of each dataset respectively. The fourth and the
fifth columns depict the module count and the percentage of
faulty modules in each dataset respectively.

We particularly selected a large pool of these datasets
including both open-source and closed-source projects to
counter the limitation of the many existing studies (Chen
et al. 2015; Cruz and Ochimizu 2009; Ma et al. 2012; Nam
et al. 2013; Ryu et al. 2017; Watanabe et al. 2008) as they
used very limited datasets, which mainly consisted of open-
source project datasets. Further, these datasets cover both
small to large software projects containing modules ranging
from 10 to 965 with fault rates varying from 2.24 to 92.19.
A detailed description of various features of these datasets
can be found in (Jureczko and Madeyski 2010).

4.2 � Evaluation metrics

To holistically assess the performance of our approach, we
used EBEMs along with MLBEMs considering the realistic
constraint of limited inspection effort. Typical MLBEMs
like recall, precision, F-measure, AUC, etc. do not deliver
much to practitioners in assessing the strength of a fault
prediction model comprehensively. The model’s cost-effec-
tiveness and the amount of effort testers/developers have

to put in investigating faulty modules, are also important
measures that need to be considered while evaluating any
fault prediction model (Khatri and Singh 2021; Zhou et al.
2018) considering the constraint of limited inspection effort.

According to previous studies (Ostrand et al. 2005; Zhou
et al. 2018), we considered that the inspection effort equal
to 20% of TLOC (total lines of code) in the target data, is
available at our disposal, taking lines of code (LOC) as the
proxy for inspection effort.

4.2.1 � MLBEMs

For holistic evaluation of our approach, we used three
MLBEMs (G-measure, PF, and MCC). We specifically
used G-measure and MCC to have a balanced performance
for both fault-free and fault-prone classes. Thus, the accu-
racy of both classes is important (Ryu et al. 2017), there-
fore we considered G-measure and MCC. In particular,
G-measure balances between recall and PF, whereas MCC
considers all positive and negative predictions to calcu-
late a composite score, which ranges between − 1 and 1.
An MCC score of 1 represents the supreme performance,
however, an MCC score of − 1 shows the lowest perfor-
mance. Further, we considered PF seeing its impact on
the developer/tester’s performance as high false positives
lead to huge wastage of their effort and time and reduce
their daily efficiency. Therefore, the lower the score, the
superior the model.

These measures have been widely used in many other
CPFP studies (Chen et al. 2015; Zhou et al. 2018) and can
be calculated as follows:

Here, TP and TN denote the count of correct predictions
of faulty and non-faulty classes respectively. On the other
hand, FP and FN represent the count of false predictions of
non-faulty and faulty classes respectively.

4.2.2 � EBEMs

In reality, these MLBEMs just measure the correctness of
the predictions but didn’t provide enough information about
the model’s practical application. Since we have a limited
inspection effort, therefore only a few faulty modules can go

G − measure =
2 ∗ recall ∗ (1 − PF)

recall + (1 − PF)

PF =
FP

FP + TN

MCC =
TP ∗ TN − FP ∗ FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

1508	 Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518

1 3

Table 1   Dataset description Short notation for
dataset

Dataset name Description Count of
modules

% of
faulty
modules

D1 ant 1.3 Open-source 125 16
D2 ant 1.4 178 22.47
D3 ant 1.5 293 10.92
D4 ant 1.6 351 26.21
D5 ant 1.7 745 22.28
D6 arc Closed-source (Academic) 234 11.53
D7 berek 43 37.02
D8 camel 1.0 Open-source 339 3.83
D9 camel 1.2 608 35.52
D10 camel 1.4 872 16.62
D11 camel 1.6 965 19.48
D12 ckjm Open-source 10 50
D13 elearn Closed-source (Academic) 64 7.8
D14 forrest 0.7 Open-source 29 17.24
D15 forrest 0.8 32 6.25
D16 intercafe Open-source 27 14.81
D17 ivy 1.1 Open-source 111 56.75
D18 ivy 1.4 241 6.64
D19 ivy 2.0 352 11.36
D20 jedit 3.2 Open-source 272 33.08
D21 jedit 4.0 306 24.5
D22 jedit 4.1 312 25.32
D23 jedit 4.2 367 13.08
D24 jedit 4.3 492 2.24
D25 kalkulator Open-source 27 22.22
D26 log4j 1.0 Open-source 135 25.18
D27 log4j 1.1 109 33.94
D28 log4j 1.2 205 92.19
D29 lucene 2.0 Open-source 195 46.66
D30 lucene 2.2 247 58.29
D31 lucene 2.4 340 59.70
D32 nieruchomosci Closed-source (Academic) 27 37.04
D33 pbeans 1.0 Open-source 26 76.92
D34 pbeans 2.0 51 19.60
D35 pdftranslator Closed-source (Academic) 33 45.45
D36 poi 1.5 Open-source 237 59.49
D37 poi 2.0 314 11.78
D38 poi 2.5 385 64.42
D39 poi 3.0 442 63.57
D40 redaktor Closed-source (Academic) 176 15.34
D41 serapion 45 20
D42 skarbonka 45 20
D43 sklebagd 20 60
D44 synapse 1.0 Open-source 157 10.19
D45 synapse 1.1 222 27.03
D46 synapse 1.2 256 33.59
D47 systemdata Closed-source (Academic) 65 13.85
D48 szybkafucha 25 56.00
D49 termoproject 42 30.95

1509Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518	

1 3

under inspection for locating fault positions and their cor-
rections. To quantify the tester/developer’s effort investment
while inspecting these faulty modules and to measure the
cost-effectiveness under the limited inspection effort of 20%
of TLOC, we considered three EBEMs namely PIM@20%,
Cost-effectiveness@20%, and IFA.

For better understanding, let’s assume that there were
‘P’ modules in the target data, out of which ‘D’ modules
were faulty. Further assume that ‘p’ modules were inspected
under 20% of TLOC, out of which ‘d’ modules were faulty.
Besides, consider that ‘T’ modules were investigated prior
to noticing the first truly classified faulty module.

PIM@20% (Meyer et al. 2014) specifies the proportion of
inspected modules under the 20% of TLOC and is computed
as follows:

This measure accounts for the additional effort on test-
ers/developers when they have to inspect more modules
within the same inspection effort as they may need to switch
between various files and require communication and coor-
dination with people of different expertise. So, the lesser the
score, the better the model.

Cost-effectiveness@20% (Huang et al. 2018) accounts for
the actual performance of the model. It measures the propor-
tion of faulty modules inspected under 20% of TLOC and
can be calculated as follows:

The higher the score, the better the model.
IFA (initial false alarm) (Kochhar et al. 2016) measures

the initial false predictions before encountering the first cor-
rectly classified faulty module. This measure is particularly

PIM@20% =
p

P

Cost − effectiveness@20% =
d

D

considered in the study as it strongly impacts the developer/
tester’s performance. A high IFA can shake their confidence
in the model’s capacity, causing fatigue and disappointment
among them with a reduction in their work efficiency. There-
fore, the lesser the score, the superior the performance of the
model. It is computed as follows:

4.3 � Research question and baseline selection

This section presents the research question and baselines
selection.

To measure the true strength of the proposed model, we
undertook the following research question:

Research Question Can the proposed approach surpass
the Turhan-Filter (Turhan et al. 2009) and Cruz model (Cruz
and Ochimizu 2009) comprehensively?

To answer this question, we performed several experi-
ments taking 62 datasets, the result of which is presented in
Sect. 5.1. We particularly selected these two state-of-the-art
approaches namely Turhan-Filter (2009) and Cruz model
(2009) for comparison as Herbold et al. (2018) confirmed
these two approaches at the top in their large-scale compara-
tive study amongst 24 existing approaches.

4.4 � Experimental design

Algorithm 1 explains the experimental design of our pro-
posed approach and Algorithm 2 explains the EBEMs com-
putation process.

IFA = T

Table 1   (continued) Short notation for
dataset

Dataset name Description Count of
modules

% of
faulty
modules

D50 tomcat Open-source 858 8.97
D51 velocity 1.5 Open-source 214 66.36
D52 velocity 1.6 229 34.06
D53 workflow Closed-source (Academic) 39 51.28
D54 wspomaganiepi 18 66.67
D55 xalan 2.4 Open-source 723 15.21
D56 xalan 2.5 803 48.19
D57 xalan 2.6 885 46.44
D58 xerces 1.0 Open-source 162 47.53
D59 xerces 1.2 440 16.14
D60 xerces 1.3 453 15.23
D61 xerces 1.4 588 74.32
D62 zuzel Closed-source (Academic) 29 44.83

1510	 Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518

1 3

Algorithm 1 Experimental design of the proposed CPFP model

Input: All the available datasets

Output: Median performance of the proposed model with respect to MLBEMs and EBEMs

1. AvailableData= {D1, D2, D3, D4,………….,D59, D60, D61, D62}
2. For each TargetData in AvailableData

2.1 ReferenceData= AvailableData – {TargetData + TargetData_Versions}
2.2 Remove modules with Zero LOC from TargetData and Reference Data
2.3 Normalized_ReferenceData=Normalize the ReferenceData
2.4 Normalized_TargetData=Normalize the TargetData
2.5 Selected_ Normalized_ ReferenceData = Apply KNN algorithm to select

 Normalized_ ReferenceData similar to
 Normalized_TargetData

2.6 Proposed_Model = Train the NB Model using Selected_ Normalized_ReferenceData

2.7 Proposed_Model_Pred_Labels, Proposed_Model_Prob_Score = Test the Proposed_Model on
 Normalized_TargetData

2.8 Compute MLBEMs for Proposed_Model
2.9 Calculate EBEMs for Proposed_Model using Algorithm 2

3. Report the median performance over all datasets

First of all, we constructed the reference data for every
target data by eliminating the target data and its related ver-
sions (if any) from the available pool of data (step 2.1). Next,
we removed the modules having zero LOC from the target
and the reference data as such modules did not contain any
information for the fault (step 2.2). Next, we normalized the
reference and the target data (steps 2.3 and 2.4) and then

selected the matching reference data for each target data by
applying the KNN algorithm (step 2.5). After training data
selection, the proposed model was constructed and validated
and the various MLEBMs were calculated (steps 2.6 to 2.8).
Next, the EBEMs were calculated by applying Algorithm 2
(step 2.9). In the end, the median results were reported over
all the target projects (step 3).

1511Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518	

1 3

Algorithm 2: EBEMs computation

Input: Proposed_Model_Prob_Score: Probability score generated by the proposed model
Proposed_Model_Pred_Labels: Predicted labels generated by the proposed model

Given Inspection Effort: 20 % of TLOC in TargetData

Output: PIM@20%, Cost-effectiveness@20%, IFA

1 Construct three vacant lists L1_faulty, L2_Non-faulty and L3_Inspection
2 For every module in TargetData

2.1 Put into L1_faulty, if classified as faulty, otherwise put it in L2_Non-faulty
2.2 Compute risk_score = (Proposed_Model_Prob_Score /LOC)* avg_cc

3 Arrange the modules in L1_faulty and L2_Non-faulty in decreasing
order of their risk_score

4 Append L2_Non-faulty at the bottom of L1_faulty
5 Retrieve topmost modules from L1_faulty such that their TLOC should not exceed the given inspection

effort and add them in L3_Inspection
6 Compute EBEMs using L3_Inspection as follows:

@20% =
Total modules in L3

 Total modules in

 Faulty modules in L3

 Faulty modules in

L3

Now, we explain the process of EBEMs computation
as shown in Algorithm 2, which was designed following
(Khatri and Singh 2022). First, three lists were constructed
namely L1_faulty, L2_Non-faulty, and L3_inspection. All
the faulty predicted modules were added in L1_faulty and
all non-faulty predicted modules were added in L2_Non-
faulty. Next, the risk_score was calculated for every target
data module according to step 2.2. This risk_score took three
inputs namely the probability score produced by the model,
the average cyclomatic complexity (avg_cc), and the LOC.
Both the probability score and the cyclomatic complexity
represent the proxies for the module’s fault proneness and
the third input i.e., LOC represent the proxy for the inspec-
tion effort. The higher the probability score and the cyclo-
matic complexity, the more the fault-proneness. The more
the LOC, the higher the inspection effort. Therefore, we
designed our risk_score such that the modules with higher
fault-proneness, having low inspection effort must be inves-
tigated first.

Keeping this rationale in mind, the two lists were then
arranged in descending order of their risk_score. After that,
the list L2_Non-faulty was appended at the bottom of the
list L1_faulty. Next, we extracted some topmost modules
from L1_faulty, with their TLOC equal to the given inspec-
tion effort, and added them to the list L3_Inspection. Based
on this list, the EBEMs were then calculated according to
step 6.

5 � Results and discussions

This section discusses the results, its analysis, and the
ablation study to examine the contribution of each phase
in the overall performance of the proposed CPFP model.

5.1 � Results

Table 2 depicts the result of the comparison of our pro-
posed model with the Turhan-Filter and Cruz model in

1512	 Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518

1 3

Ta
bl

e 
2  

C
om

pa
ris

on
 o

f o
ur

 p
ro

po
se

d
ap

pr
oa

ch
 w

ith
 T

ur
ha

n-
Fi

lte
r a

nd
 C

ru
z

m
od

el
 in

 te
rm

s o
f M

LB
EM

s a
nd

 E
B

EM
s

D
at

as
et

Pr
op

os
ed

 a
pp

ro
ac

h
Tu

rh
an

-F
ilt

er
C

ru
z

G
-m

ea
s-

ur
e

M
C

C
PF

PI
M

@
20

%
C

os
t-

eff
ec

tiv
e-

ne
ss

@
20

%

IF
A

G
-m

ea
su

re
M

C
C

PF
PI

M
@

20
%

C
os

t-
eff

ec
tiv

e-
ne

ss
@

20
%

IF
A

G
-m

ea
su

re
M

C
C

PF
PI

M
@

20
%

C
os

t-
eff

ec
tiv

e-
ne

ss
@

20
%

IF
A

D
1

0.
75

7
0.

41
1

0.
34

6
0.

16
9

0.
35

0
7

0.
48

6
0.

22
6

0.
67

3
0.

34
7

0.
30

0
26

0.
62

7
0.

28
4

0.
51

9
0.

25
0

0.
35

0
14

D
2

0.
56

2
0.

12
2

0.
35

8
0.

16
9

0.
25

0
1

0.
45

8
0.

11
1

0.
67

9
0.

33
9

0.
40

0
8

0.
56

9
0.

11
7

0.
46

0
0.

20
9

0.
27

5
3

D
3

0.
73

0
0.

30
2

0.
31

5
0.

18
2

0.
25

0
17

0.
54

8
0.

19
4

0.
60

8
0.

33
2

0.
21

9
53

0.
69

1
0.

25
3

0.
38

1
0.

21
9

0.
21

9
23

D
4

0.
76

1
0.

47
0

0.
26

0
0.

19
1

0.
25

0
0

0.
58

8
0.

32
2

0.
56

6
0.

35
4

0.
22

8
3

0.
70

7
0.

39
6

0.
38

8
0.

24
3

0.
21

7
0

D
5

0.
70

8
0.

35
5

0.
29

5
0.

19
9

0.
21

7
6

0.
59

4
0.

30
8

0.
56

1
0.

32
7

0.
30

1
7

0.
70

0
0.

37
1

0.
40

5
0.

25
5

0.
27

1
4

D
6

0.
58

0
0.

22
6

0.
16

7
0.

11
6

0.
14

8
3

0.
59

5
0.

13
2

0.
35

9
0.

19
6

0.
14

8
4

0.
58

5
0.

25
1

0.
14

6
0.

10
2

0.
18

5
3

D
7

0.
81

4
0.

61
5

0.
18

5
0.

25
6

0.
37

5
5

0.
81

4
0.

64
8

0.
11

1
0.

23
3

0.
43

8
3

0.
72

6
0.

52
4

0.
40

7
0.

32
6

0.
31

3
9

D
8

0.
66

5
0.

14
4

0.
27

6
0.

13
1

0.
23

1
0

0.
53

9
0.

05
2

0.
55

9
0.

26
9

0.
23

1
27

0.
51

8
0.

08
3

0.
20

8
0.

10
7

0.
23

1
8

D
9

0.
47

8
0.

10
0

0.
25

7
0.

14
2

0.
17

1
0

0.
53

5
0.

06
9

0.
48

8
0.

25
6

0.
25

9
4

0.
41

9
0.

10
5

0.
19

2
0.

12
1

0.
13

9
0

D
10

0.
59

3
0.

21
8

0.
22

2
0.

13
4

0.
20

8
0

0.
64

4
0.

23
3

0.
43

1
0.

23
4

0.
27

8
12

0.
50

2
0.

17
1

0.
17

6
0.

11
6

0.
17

4
0

D
11

0.
52

3
0.

16
0

0.
21

9
0.

13
0

0.
19

7
0

0.
57

0
0.

11
8

0.
47

4
0.

25
3

0.
26

1
0

0.
48

5
0.

12
8

0.
21

4
0.

12
9

0.
18

6
0

D
12

0.
00

0
−

 0
.3

33
1.

00
0

0.
40

0
0.

00
0

4
0.

32
0

0.
00

0
0.

80
0

0.
30

0
0.

00
0

3
0.

32
0

0.
00

0
0.

20
0

0.
10

0
0.

00
0

1
D

13
0.

84
6

0.
51

6
0.

10
2

0.
09

4
0.

20
0

0
0.

48
7

0.
18

9
0.

67
8

0.
31

3
0.

00
0

20
0.

56
6

0.
40

6
0.

03
4

0.
04

7
0.

20
0

0
D

14
0.

34
5

0.
20

8
0.

79
2

0.
37

9
0.

40
0

6
0.

64
6

0.
25

8
0.

45
8

0.
13

8
0.

20
0

2
0.

63
2

0.
20

8
0.

33
3

0.
10

3
0.

00
0

3
D

15
0.

69
6

0.
25

8
0.

46
7

0.
18

8
0.

50
0

5
0.

66
7

0.
24

3
0.

50
0

0.
18

8
0.

50
0

4
0.

53
1

0.
03

3
0.

43
3

0.
12

5
0.

00
0

4
D

16
0.

67
2

0.
25

6
0.

39
1

0.
22

2
0.

00
0

6
0.

64
7

0.
34

6
0.

52
2

0.
25

9
0.

25
0

2
0.

60
6

0.
32

0
0.

56
5

0.
22

2
0.

00
0

6
D

17
0.

59
3

0.
30

9
0.

16
7

0.
15

3
0.

19
0

0
0.

60
1

0.
26

9
0.

22
9

0.
18

9
0.

22
2

1
0.

61
9

0.
30

6
0.

20
8

0.
19

8
0.

23
8

0
D

18
0.

64
8

0.
18

6
0.

23
6

0.
14

1
0.

37
5

10
0.

66
1

0.
17

5
0.

29
8

0.
21

2
0.

31
3

32
0.

67
5

0.
19

7
0.

26
7

0.
15

8
0.

18
8

15
D

19
0.

71
0

0.
31

0
0.

21
8

0.
13

4
0.

17
5

10
0.

69
1

0.
25

7
0.

37
5

0.
26

4
0.

20
0

36
0.

72
4

0.
31

1
0.

25
0

0.
15

6
0.

15
0

14
D

20
0.

74
6

0.
46

9
0.

25
3

0.
25

0
0.

45
6

0
0.

62
9

0.
32

6
0.

49
5

0.
35

3
0.

47
8

6
0.

70
4

0.
41

3
0.

38
5

0.
31

6
0.

46
7

0
D

21
0.

69
5

0.
34

3
0.

30
3

0.
23

9
0.

34
7

8
0.

65
6

0.
31

3
0.

45
0

0.
30

4
0.

42
7

12
0.

66
5

0.
31

2
0.

42
4

0.
29

4
0.

33
3

2
D

22
0.

71
2

0.
38

5
0.

35
6

0.
26

0
0.

38
0

0
0.

59
6

0.
25

9
0.

53
2

0.
33

3
0.

34
2

16
0.

63
8

0.
31

6
0.

48
9

0.
32

1
0.

32
9

0
D

23
0.

71
9

0.
35

1
0.

41
7

0.
26

2
0.

41
7

0
0.

53
0

0.
24

8
0.

63
6

0.
38

7
0.

35
4

0
0.

56
9

0.
25

5
0.

59
6

0.
33

8
0.

31
3

0
D

24
0.

59
2

0.
05

6
0.

44
7

0.
22

0
0.

00
0

10
8

0.
47

8
0.

00
6

0.
61

7
0.

33
7

0.
00

0
16

6
0.

52
1

0.
02

3
0.

55
9

0.
28

3
0.

00
0

13
9

D
25

0.
27

9
0.

02
8

0.
14

3
0.

07
4

0.
16

7
0

0.
39

2
−

 0
.1

58
0.

52
4

0.
07

4
0.

16
7

0
0.

27
9

0.
02

8
0.

14
3

0.
07

4
0.

16
7

0
D

26
0.

66
4

0.
44

2
0.

11
1

0.
10

5
0.

26
5

1
0.

49
9

0.
24

8
0.

65
7

0.
33

1
0.

29
4

0
0.

62
9

0.
50

3
0.

05
1

0.
08

3
0.

26
5

0
D

27
0.

75
4

0.
64

4
0.

04
2

0.
11

0
0.

24
3

1
0.

54
6

0.
32

3
0.

61
1

0.
29

4
0.

13
5

7
0.

71
7

0.
62

6
0.

02
8

0.
10

1
0.

24
3

0
D

28
0.

40
0

0.
08

3
0.

12
5

0.
13

7
0.

14
3

0
0.

61
4

0.
12

4
0.

37
5

0.
26

3
0.

28
0

0
0.

38
6

0.
11

5
0.

06
3

0.
11

7
0.

12
2

0
D

29
0.

68
1

0.
37

0
0.

26
9

0.
22

1
0.

25
3

1
0.

66
2

0.
32

8
0.

37
5

0.
26

2
0.

28
6

1
0.

65
9

0.
33

8
0.

26
0

0.
18

5
0.

19
8

3
D

30
0.

59
6

0.
22

2
0.

29
1

0.
19

0
0.

21
5

0
0.

62
8

0.
25

5
0.

38
8

0.
29

1
0.

34
7

0
0.

60
4

0.
25

6
0.

25
2

0.
17

4
0.

21
5

0
D

31
0.

60
5

0.
29

9
0.

19
0

0.
17

9
0.

22
7

0
0.

63
7

0.
27

0
0.

35
0

0.
27

1
0.

31
0

0
0.

63
3

0.
31

3
0.

21
9

0.
19

7
0.

24
1

1
D

32
0.

38
1

0.
32

0
0.

76
5

0.
25

9
0.

20
0

2
0.

69
2

0.
54

2
0.

47
1

0.
22

2
0.

20
0

1
0.

18
2

0.
25

6
0.

00
0

0.
07

4
0.

20
0

0
D

33
0.

00
0

−
 0

.2
08

1.
00

0
0.

60
0

0.
57

9
2

0.
40

0
0.

09
6

0.
16

7
0.

16
0

0.
15

8
0

0.
27

3
0.

20
8

0.
00

0
0.

04
0

0.
05

3
0

D
34

0.
45

9
0.

40
4

0.
02

6
0.

04
1

0.
10

0
0

0.
73

3
0.

40
3

0.
23

1
0.

24
5

0.
50

0
0

0.
55

8
0.

37
2

0.
07

7
0.

08
2

0.
20

0
0

1513Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518	

1 3

Ta
bl

e 
2  

(c
on

tin
ue

d)

D
at

as
et

Pr
op

os
ed

 a
pp

ro
ac

h
Tu

rh
an

-F
ilt

er
C

ru
z

G
-m

ea
s-

ur
e

M
C

C
PF

PI
M

@
20

%
C

os
t-

eff
ec

tiv
e-

ne
ss

@
20

%

IF
A

G
-m

ea
su

re
M

C
C

PF
PI

M
@

20
%

C
os

t-
eff

ec
tiv

e-
ne

ss
@

20
%

IF
A

G
-m

ea
su

re
M

C
C

PF
PI

M
@

20
%

C
os

t-
eff

ec
tiv

e-
ne

ss
@

20
%

IF
A

D
35

0.
69

6
0.

62
0

0.
00

0
0.

09
1

0.
20

0
0

0.
87

5
0.

78
4

0.
22

2
0.

39
4

0.
60

0
0

0.
42

1
0.

40
7

0.
00

0
0.

06
1

0.
13

3
0

D
36

0.
66

4
0.

33
2

0.
37

5
0.

25
7

0.
28

4
0

0.
45

3
0.

27
0

0.
69

8
0.

39
2

0.
34

0
1

0.
61

6
0.

34
2

0.
51

0
0.

32
1

0.
31

9
0

D
37

0.
61

7
0.

15
6

0.
35

9
0.

17
6

0.
18

9
2

0.
30

3
0.

08
6

0.
81

9
0.

45
4

0.
43

2
3

0.
46

9
0.

09
8

0.
67

0
0.

34
8

0.
29

7
1

D
38

0.
65

6
0.

31
4

0.
26

5
0.

24
5

0.
29

4
2

0.
51

3
0.

37
8

0.
64

7
0.

47
1

0.
49

6
9

0.
65

0
0.

37
3

0.
46

3
0.

35
7

0.
41

5
7

D
39

0.
77

5
0.

53
3

0.
18

8
0.

28
3

0.
39

5
1

0.
54

1
0.

39
1

0.
61

9
0.

48
5

0.
48

4
0

0.
77

5
0.

57
0

0.
29

4
0.

34
7

0.
44

8
2

D
40

0.
39

5
0.

09
2

0.
74

3
0.

29
7

0.
44

4
19

0.
22

8
0.

14
9

0.
87

2
0.

38
3

0.
48

1
4

0.
49

8
0.

13
3

0.
64

2
0.

24
0

0.
25

9
13

D
41

0.
74

1
0.

45
2

0.
16

7
0.

08
9

0.
11

1
3

0.
64

8
0.

26
7

0.
44

4
0.

28
9

0.
11

1
2

0.
70

0
0.

55
2

0.
05

6
0.

08
9

0.
22

2
2

D
42

0.
78

0
0.

51
1

0.
36

1
0.

20
0

0.
55

6
1

0.
64

0
0.

31
5

0.
50

0
0.

26
7

0.
33

3
2

0.
61

7
0.

20
9

0.
30

6
0.

15
6

0.
22

2
1

D
43

0.
53

6
0.

17
1

0.
25

0
0.

10
0

0.
08

3
1

0.
60

0
0.

25
7

0.
50

0
0.

20
0

0.
16

7
0

0.
64

7
0.

47
1

0.
50

0
0.

20
0

0.
08

3
3

D
44

0.
74

9
0.

32
1

0.
30

5
0.

13
4

0.
25

0
4

0.
54

4
0.

20
3

0.
61

7
0.

21
7

0.
06

3
9

0.
56

0
0.

17
8

0.
58

9
0.

19
1

0.
18

8
11

D
45

0.
61

5
0.

26
4

0.
24

1
0.

13
5

0.
15

0
7

0.
60

2
0.

20
7

0.
30

9
0.

18
0

0.
21

7
6

0.
63

7
0.

25
8

0.
42

6
0.

18
0

0.
13

3
2

D
46

0.
65

5
0.

35
4

0.
20

7
0.

14
1

0.
17

4
3

0.
69

5
0.

37
0

0.
32

0
0.

19
2

0.
24

4
0

0.
65

7
0.

30
7

0.
39

6
0.

20
0

0.
14

0
0

D
47

0.
70

6
0.

31
2

0.
25

0
0.

18
5

0.
22

2
1

0.
62

5
0.

19
9

0.
28

6
0.

16
9

0.
11

1
7

0.
55

3
0.

13
4

0.
26

8
0.

20
0

0.
22

2
2

D
48

0.
46

5
0.

00
7

0.
63

6
0.

36
0

0.
28

6
0

0.
23

9
−

 0
.1

61
0.

27
3

0.
44

0
0.

42
9

0
0.

35
3

0.
32

7
0.

00
0

0.
04

0
0.

07
1

0
D

49
0.

60
9

0.
40

3
0.

10
3

0.
14

3
0.

23
1

0
0.

73
9

0.
46

4
0.

34
5

0.
26

2
0.

23
1

3
0.

14
3

0.
23

3
0.

00
0

0.
00

0
0.

00
0

0
D

50
0.

03
3

0.
03

9
0.

98
3

0.
63

0
0.

26
0

12
1

0.
55

1
0.

16
7

0.
18

1
0.

12
6

0.
24

7
38

0.
74

6
0.

33
0

0.
20

3
0.

12
5

0.
31

2
5

D
51

0.
37

8
0.

16
6

0.
10

0
0.

15
1

0.
19

7
0

0.
65

7
0.

31
5

0.
40

0
0.

35
8

0.
40

1
0

0.
39

6
0.

18
0

0.
10

0
0.

14
2

0.
18

3
1

D
52

0.
46

7
0.

21
2

0.
14

1
0.

16
3

0.
23

1
1

0.
56

2
0.

20
9

0.
55

7
0.

38
3

0.
43

6
0

0.
46

9
0.

23
2

0.
12

8
0.

14
5

0.
20

5
1

D
53

0.
61

2
0.

23
0

0.
42

1
0.

41
0

0.
45

0
1

0.
54

2
0.

26
9

0.
15

8
0.

12
8

0.
15

0
0

0.
53

1
0.

20
5

0.
21

1
0.

15
4

0.
10

0
1

D
54

0.
74

1
0.

47
1

0.
16

7
0.

22
2

0.
33

3
0

0.
80

0
0.

75
6

0.
33

3
0.

22
2

0.
25

0
1

0.
90

9
0.

79
1

0.
00

0
0.

22
2

0.
33

3
0

D
55

0.
70

7
0.

30
9

0.
34

9
0.

23
5

0.
29

1
7

0.
65

8
0.

28
5

0.
46

9
0.

29
7

0.
30

9
29

0.
63

7
0.

25
3

0.
48

5
0.

31
0

0.
28

2
25

D
56

0.
50

2
0.

10
6

0.
28

7
0.

22
2

0.
21

4
2

0.
57

3
0.

14
5

0.
42

6
0.

33
2

0.
33

6
0

0.
54

6
0.

11
9

0.
35

5
0.

27
1

0.
25

6
2

D
57

0.
54

1
0.

23
8

0.
18

9
0.

22
2

0.
27

7
0

0.
55

8
0.

11
5

0.
44

7
0.

36
7

0.
36

0
0

0.
56

3
0.

17
7

0.
29

8
0.

28
3

0.
30

4
0

D
58

0.
45

4
0.

14
7

0.
18

8
0.

17
7

0.
17

8
2

0.
47

0
−

 0
.0

27
0.

42
4

0.
30

4
0.

23
3

11
0.

42
1

0.
23

5
0.

09
4

0.
10

8
0.

13
7

1
D

59
0.

37
7

0.
15

5
0.

10
0

0.
06

1
0.

09
0

0
0.

52
1

0.
08

6
0.

30
7

0.
21

7
0.

26
9

2
0.

39
6

0.
16

6
0.

10
2

0.
06

3
0.

10
4

1
D

60
0.

44
0

0.
23

0
0.

08
6

0.
05

9
0.

11
6

0
0.

75
1

0.
39

3
0.

23
7

0.
20

6
0.

46
4

1
0.

42
1

0.
18

8
0.

10
2

0.
06

6
0.

11
6

2
D

61
0.

28
9

0.
20

2
0.

01
4

0.
06

6
0.

08
9

0
0.

59
8

0.
37

6
0.

02
7

0.
21

6
0.

28
6

0
0.

25
4

0.
18

3
0.

01
4

0.
05

6
0.

07
3

0
D

62
0.

81
9

0.
65

1
0.

12
5

0.
17

2
0.

23
1

1
0.

78
8

0.
61

7
0.

31
3

0.
31

0
0.

38
5

1
0.

86
0

0.
72

1
0.

12
5

0.
20

7
0.

30
8

1

1514	 Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518

1 3

terms of G-measure, PF, MCC, PIM@20%, Cost-effec-
tiveness@20%, and IFA scores over 62 datasets. Further
ahead, Table 3 summarizes the results by taking their
medians for all compared models. We use median results
to eradicate the effect of outliers as they can mislead the
results.

While comparing to Turhan-Filter, our model dominated
in all MLBEMs with an improvement of 3.36%, 80.87%,
and 10.15%, concerning median G-measure, median PF,
and median MCC scores respectively. Further, concern-
ing EBEMs, our proposed model showed its superiority
with respect to PIM@20% and IFA with an improvement
of 52.24% and 100% in their respective median scores.
However, the performance with respect to Cost-effective-
ness@20% was a little low.

Next, while comparing with the Cruz model, our model
showed its excellence with respect to G-measure and MCC
with similar performance concerning PF. In particular, our
proposed model achieved an improvement of approximately
7% and 11% in median G-measure and median MCC scores
respectively. Further, with respect to median cost-effective-
ness@20%, it showed an improvement of 14.35% with simi-
lar performance in other metrics namely PIM@20% and IFA.

We further applied a statistical test to compare our pro-
posed approach with Turhan-Filter and Cruz model statisti-
cally. In particular, we applied the Wilcoxon-Signed Rank
test (Demšar 2006) at a 5% significance level for statistical
comparison. Being a non-parametric test, it compares two
related samples to verify their belongingness to the same
population. The resulting p-value score of more than or
equal to 0.05 reveals that the two compared samples do not
differ statistically. However, the p-value score of less than
0.05 reveals that the two compared samples differ statisti-
cally. Table 4 depicts the statistical test results.

The results of the statistical test also revealed the suprem-
acy of our proposed approach over the Turhan-Filter con-
cerning PF, PIM@20%, and IFA as the p-values were less
than 0.05. The two compared approaches performed compa-
rably to each other with respect to G-measure and MCC (as
p-values > 0.05). However, with respect to Cost-effective-
ness@20%, the performance was a little low as compared
to Turhan-Filter.

Further, these results also confirmed the excellence of
our proposed approach over the Cruz model particularly
with regard to G-measure as the p-value was less than 0.05
with comparable performance with respect to other metrics.
However, we observed an improvement of approximately
11% and 14.35% in terms of median MCC and median Cost-
effectiveness@20% scores respectively over the Cruz model.

5.2 � Discussions

To analyse our results concretely, we make use of boxplots
to pictorially represent the distribution of various evalua-
tion metrics obtained from our proposed model, the Turhan-
Filter and Cruz model over all the 62 datasets as shown in
Fig. 3. The lower black horizontal line of each box shows
the first quartile, the center black line shows the median (i.e.,
2nd quartile) and the upper black horizontal line of the box
shows the 3rd quartile. The lowermost black horizontal line
and the uppermost black horizontal line depict the minimum
and maximum values of the distribution.

From Fig. 3a, we conclude the superiority of our model
in comparison to Cruz model with similar performance to
Turhan-Filter in terms of G-measure. Next, from Fig. 3b,
we observed the similar performance of all three models
in terms of MCC. Further, Fig. 3c revealed the outstanding
performance of our proposed model and the Cruz model in
comparison to Turhan-Filter concerning PF. However, with
respect to PF, our proposed model and the Cruz model per-
formed comparable to each other. Similarly, with respect
to PIM@20%, the Cruz model and our proposed model
performed comparably to each other as evident in Fig. 3d.

Table 3   Median performance in terms of MLBEMs and EBEMs

‘↑’ signifies ‘the greater the better’; ‘↓’ indicates ‘the lesser the bet-
ter’

Evaluation metrics Proposed model Turhan-Filter Cruz

G-measure ↑ 0.615 0.595 0.577
PF ↓ 0.251 0.454 0.251
MCC↑ 0.282 0.256 0.254
PIM@20% ↓ 0.178 0.271 0.167
Cost-effectiveness@20% ↑ 0.231 0.283 0.202
IFA ↓ 1 2 1

Table 4   Statistical test results

‘+’ signifies ‘better performance of the proposed model’; ‘−’ indi-
cates ‘the lower performance of the proposed model’

Evaluation metrics Turhan-Filter Cruz

G-measure p-value for our
proposed
model vs

0.68 0.015 (+)

PF 0.000 (+) 0.344
MCC 0.078 0.294
PIM@20% 0.000 (+) 0.476
Cost-effective-

ness@20%
0.009 (−) 0.063

IFA 0.006 (+) 0.34

1515Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518	

1 3

However, in comparison to Turhan-Filter, both performed
much better. Further as visible in Fig. 3e, our model per-
formed better than the Cruz model, but Turhan-Filter out-
performed both in terms of Cost-effectiveness@20%. In par-
ticular, Turhan-Filter achieved the best performance with
respect to Cost-effectiveness@20% at the cost of PIM@20%.
Because the proportion of inspected modules happened to
be very large in the case of Turhan-Filter, therefore it suc-
ceeded in inspecting more faulty modules, putting a huge
additional effort on developers/testers. Further, with respect
to IFA, Turhan-Filter performed the worst as evident in
Fig. 3f, whereas the Cruz model and our model performed
comparably to each other. Thus, combining all evaluation

metrics, we claimed the dominance of our proposed model
in comparison to Turhan-Filter and the Cruz model.

5.3 � Ablation study

To witness the impact of each and every phase on the mod-
el’s performance, we performed an ablation study. In par-
ticular, first we measured the model’s performance before
the first phase of normalization, i.e., taking the data as it is,
i.e., without applying any normalization technique. After
that, we captured the model’s performance after applying
the first phase of normalization to particularly investigate the
impact of this phase on the model’s performance. Next, we

Fig. 3   Boxplots of MLBEMs and EBEMs

1516	 Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518

1 3

measured the performance after applying our second phase
of training data selection in sequence after the first phase
to examine the impact of this phase on the model’s perfor-
mance. Figure 4 shows the performance of the proposed
CPFP model in terms of median G-measure, PF, MCC,
PIM@20%, Cost-effectiveness@20% and IFA scores, cal-
culated over 62 CPFP experiments, before the normaliza-
tion phase, after the first phase of normalization and second
phase of training data selection respectively.

It is evident from the above figure that the normaliza-
tion phase brought substantial improvement in the proposed
model’s prediction performance. In other words, in terms of
MLBEMs, the normalization phase improved the median
G-measure and MCC scores by approximately 61% and 32%
respectively with a slight surge in the PF score. Since both
faulty and non-faulty classes are important, therefore giving
equal weightage to the accuracy of both classes, the normali-
zation phase achieved improvement in the overall perfor-
mance in terms of MLBEMs by showcasing better perfor-
mance in two compound evaluation metrics i.e., G-measure
and MCC. Further, in terms of EBEMs, the normalization
phase brought improvement in Cost-effectiveness@20%
with a slight surge in PIM@20%. However, the perfor-
mance in terms of IFA remained the same. In other words,
the performance in terms of EBEMs more or less remained
the same after the normalization phase. But combining all
MLBEMs and EBEMs, the performance of the proposed
CPFP model significantly improved after the application of
the first phase of normalization.

Further ahead, the application of second phase of training
data selection after the first phase further improved the pro-
posed model’s performance by achieving an improvement of
approximately 7% and 12% in median G-measure and MCC
scores respectively with comparable performance in terms

of median PF score. Furthermore, in terms of EBEMs, it
witnessed an improvement of approximately 15% in median
Cost-effectiveness@20% score with comparable perfor-
mance in terms of median PIM@20% and IFA scores.

Thus, the above ablation study showcased the impact of
normalization phase and training data selection phase on the
proposed model’s performance. Both phases improved the
overall performance (i.e., combining MLBEMs and EBEMs)
and thus contributed significantly to justify the effectiveness
of the proposed CPFP model.

6 � Threats to validity

Some of the significant issues that can pose threats to our
proposed work are mentioned as follows:

6.1 � Internal validity

To examine the strength of our proposed model, we have
used a large corpus of 62 datasets, wherein each dataset
contains object-oriented, complexity-based, and size-based
software metrics as the potential fault predictors. These soft-
ware metrics have already proven their importance as poten-
tial fault predictors in many SFP studies (Basili et al. 1996;
Jureczko and Spinellis 2010; Subramanyam and Krishnan
2003). However, we cannot assure the same performance
of our model on projects containing other software metrics.

6.2 � External validity

This threat relates to validating the effectiveness of the
proposed work on other software projects from different
domains, developed under diverse operating procedures

Fig. 4   Impact of different
phases on the proposed model’s
performance

0.
36

0.
19

0.
07

0.
08 0.

12

1

0.
58

0.
25

0.
25

0.
17 0.
2

1

0.
62

0.
28

0.
25

0.
18 0.

23

1

Before First Phase A�er First Phase A�er Second Phase

1517Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518	

1 3

and principles. However, to minimize this threat to some
extent, we have validated the performance of our approach
on 62 datasets, consisting of a good mix of both open and
closed-source projects belonging to different domains.

7 � Conclusion

This study aims at building quality software with lesser
maintenance cost using an improved cross-project fault
prediction (CPFP) model. The proposed model consisted of
three phases. The first phase normalized the reference and
the target data, the second phase selected the relevant train-
ing data by applying the KNN algorithm and the third phase
finally constructed the CPFP model. To assess the strength
of the proposed model comprehensively, the effort-based
evaluation metrics (EBEMs) along with MLBEMs (machine
learning-based evaluation metrics) were considered, taking
the realistic constraint of limited inspection effort. Based
on the large-scale empirical investigation on 62 datasets,
the excellence of the proposed model over state-of-the-art
models namely the Turhan-Filter and the Cruz model was
concluded. In the future, we will work on further improv-
ing its performance by building hybrid models combining
normalization, instance selection and feature selection with
its validation on more datasets.

Funding  No funds, grants, or other support was received.

Declarations 

Conflict of interest  The authors have no relevant financial or non-
financial interests to disclose.

Human and/or animals participants  This study doesn’t involve any
human/animal participants.

Informed consent  This study does not involve any human/animal
participants, as a result no consent is needed.

References

Arar ÖF, Ayan K (2015) Software defect prediction using cost-sensitive
neural network. Appl Soft Comput 33:263–277. https://​doi.​org/​
10.​1016/J.​ASOC.​2015.​04.​045

Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented
design metrics as quality indicators. IEEE Trans Software Eng
22(10):751–761. https://​doi.​org/​10.​1109/​32.​544352

Bisi M, Goyal NK (2016) An ANN-PSO-based model to predict
fault-prone modules in software. Int J Reliab Saf 10(3):243–264.
https://​doi.​org/​10.​1504/​IJRS.​2016.​081611

Bowes D, Hall T, Petrić J (2018) Software defect prediction: do differ-
ent classifiers find the same defects? Softw Qual J 26(2):525–552.
https://​doi.​org/​10.​1007/​s11219-​016-​9353-3

Briand LC, Melo WL, Wüst J (2002) Assessing the applicability of
fault-proneness models across object-oriented software projects.
IEEE Trans Softw Eng 28(7):706–720. https://​doi.​org/​10.​1109/​
TSE.​2002.​10194​84

Canfora G, Lucia AD, Penta MD, Oliveto R, Panichella A, Panichella
S (2015) Defect prediction as a multiobjective optimization prob-
lem. Softw Test Verif Reliab 25(4):426–459. https://​doi.​org/​10.​
1002/​STVR.​1570

Chen L, Fang B, Shang Z, Tang Y (2015) Negative samples reduction
in cross-company software defects prediction. Inf Softw Technol
62(1):67–77. https://​doi.​org/​10.​1016/j.​infsof.​2015.​01.​014

Cover TM, Hart PE (1967) Nearest neighbor pattern classification.
IEEE Trans Inf Theory 13(1):21–27. https://​doi.​org/​10.​1109/​
TIT.​1967.​10539​64

Cruz AEC, Ochimizu K (2009) Towards logistic regression mod-
els for predicting fault-prone code across software projects. In:
2009 3rd International symposium on empirical software engi-
neering and measurement, pp 460–463. https://​doi.​org/​10.​1109/​
ESEM.​2009.​53160​02

D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect predic-
tion approaches: a benchmark and an extensive comparison.
Empir Softw Eng 17(4–5):531–577. https://​doi.​org/​10.​1007/​
s10664-​011-​9173-9

Demšar J (2006) Statistical comparisons of classifiers over multiple
data sets. J Mach Learn Res 7:1–30

He P, Li B, Liu X, Chen J, Ma Y (2015) An empirical study on soft-
ware defect prediction with a simplified metric set. Inf Softw
Technol 59:170–190. https://​doi.​org/​10.​1016/j.​infsof.​2014.​11.​
006

Herbold S, Trautsch A, Grabowski J (2018) A comparative study to
benchmark cross-project defect prediction approaches. IEEE
Trans Softw Eng 44(9):811–833. https://​doi.​org/​10.​1109/​TSE.​
2017.​27245​38

Herbold S (2013) Training data selection for cross-project defect pre-
diction. In: ACM international conference proceeding series, Part
F1288, pp 1–10. https://​doi.​org/​10.​1145/​24993​93.​24993​97

Hosseini S, Turhan B, Gunarathna D (2019) A systematic literature
review and meta-analysis on cross project defect prediction. IEEE
Trans Softw Eng 45(2):111–147. https://​doi.​org/​10.​1109/​TSE.​
2017.​27701​24

Huang Q, Xia X, Lo D (2018) Revisiting supervised and unsuper-
vised models for effort-aware just-in-time defect prediction.
Empir Softw Eng 24(5):2823–2862. https://​doi.​org/​10.​1007/​
s10664-​018-​9661-2

Jureczko M, Madeyski L (2010) Towards identifying software project
clusters with regard to defect prediction. In: ACM international
conference proceeding series, pp 1–10. https://​doi.​org/​10.​1145/​
18683​28.​18683​42

Jureczko M, Spinellis D (2010) Using object-oriented design metrics
to predict software defects. In: Models and methods of system
dependability. Oficyna Wydawnicza Politechniki Wrocławskiej,
pp 69–81. http://​cites​eerx.​ist.​psu.​edu/​viewd​oc/​summa​ry?​doi=​
10.1.​1.​226.​2285

Kassab M, Defranco JF, Laplante PA (2017) Software testing: the state
of the practice. IEEE Softw 34(5):46–52. https://​doi.​org/​10.​1109/​
MS.​2017.​35715​82

Kawata K, Amasaki S, Yokogawa T (2015) Improving relevancy filter
methods for cross-project defect prediction. In: Proceedings—3rd
international conference on applied computing and information
technology and 2nd international conference on computational
science and intelligence, ACIT-CSI 2015, pp 2–7. https://​doi.​org/​
10.​1109/​ACIT-​CSI.​2015.​104

Khatri Y, Singh SK (2021) Cross project defect prediction: a compre-
hensive survey with its SWOT analysis. Innov Syst Softw Eng.
https://​doi.​org/​10.​1007/​s11334-​020-​00380-5

https://doi.org/10.1016/J.ASOC.2015.04.045
https://doi.org/10.1016/J.ASOC.2015.04.045
https://doi.org/10.1109/32.544352
https://doi.org/10.1504/IJRS.2016.081611
https://doi.org/10.1007/s11219-016-9353-3
https://doi.org/10.1109/TSE.2002.1019484
https://doi.org/10.1109/TSE.2002.1019484
https://doi.org/10.1002/STVR.1570
https://doi.org/10.1002/STVR.1570
https://doi.org/10.1016/j.infsof.2015.01.014
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/ESEM.2009.5316002
https://doi.org/10.1109/ESEM.2009.5316002
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1016/j.infsof.2014.11.006
https://doi.org/10.1016/j.infsof.2014.11.006
https://doi.org/10.1109/TSE.2017.2724538
https://doi.org/10.1109/TSE.2017.2724538
https://doi.org/10.1145/2499393.2499397
https://doi.org/10.1109/TSE.2017.2770124
https://doi.org/10.1109/TSE.2017.2770124
https://doi.org/10.1007/s10664-018-9661-2
https://doi.org/10.1007/s10664-018-9661-2
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1145/1868328.1868342
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.226.2285
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.226.2285
https://doi.org/10.1109/MS.2017.3571582
https://doi.org/10.1109/MS.2017.3571582
https://doi.org/10.1109/ACIT-CSI.2015.104
https://doi.org/10.1109/ACIT-CSI.2015.104
https://doi.org/10.1007/s11334-020-00380-5

1518	 Int J Syst Assur Eng Manag (April 2024) 15(4):1503–1518

1 3

Khatri Y, Singh SK (2022) Towards building a pragmatic cross-project
defect prediction model combining non-effort based and effort-
based performance measures for a balanced evaluation. Inf Softw
Technol 150:106980. https://​doi.​org/​10.​1016/J.​INFSOF.​2022.​
106980

Kochhar PS, Xia X, Lo D, Li S (2016) Practitioners’ expectations on
automated fault localization. In: Proceedings of the 25th interna-
tional symposium on software testing and analysis, pp 165–176.
https://​doi.​org/​10.​1145/​29310​37.​29310​51

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking clas-
sification models for software defect prediction: a proposed frame-
work and novel findings. IEEE Trans Softw Eng 34(4):485–496.
https://​doi.​org/​10.​1109/​TSE.​2008.​35

Liu Y, Khoshgoftaar TM, Seliya N (2010) Evolutionary optimization of
software quality modeling with multiple repositories. IEEE Trans
Softw Eng 36(6):852–864. https://​doi.​org/​10.​1109/​TSE.​2010.​51

Lu H, Cukic B, Culp M (2012) Software defect prediction using semi-
supervised learning with dimension reduction. In: 2012 27th
IEEE/ACM international conference on automated software engi-
neering, ASE 2012 —Proceedings, pp 314–317. https://​doi.​org/​
10.​1145/​23516​76.​23517​34

Ma Y, Luo G, Zeng X, Chen A (2012) Transfer learning for cross-com-
pany software defect prediction. Inf Softw Technol 54(3):248–
256. https://​doi.​org/​10.​1016/j.​infsof.​2011.​09.​007

Menzies T, Greenwald J, Frank A (2007) Data mining static code
attributes to learn defect predictors. IEEE Trans Softw Eng
33(1):2–13. https://​doi.​org/​10.​1109/​TSE.​2007.​256941

Meyer AN, Fritz T, Murphy GC, Zimmermann T (2014) Software
developers’ perceptions of productivity. In: Proceedings of the
ACM SIGSOFT symposium on the foundations of software engi-
neering, 16–21 November, pp 19–29. https://​doi.​org/​10.​1145/​
26358​68.​26358​92

Nam J, Pan SJ, Kim S (2013) Transfer defect learning. In: Proceed-
ings—international conference on software engineering, pp 382–
391. https://​doi.​org/​10.​1109/​ICSE.​2013.​66065​84

Ostrand TJ, Weyuker EJ, Bell RM (2005) Predicting the location and
number of faults in large software systems. IEEE Trans Softw Eng
31(4):340–355. https://​doi.​org/​10.​1109/​TSE.​2005.​49

Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via
transfer component analysis. IEEE Trans Neural Netw 22(2):199–
210. https://​doi.​org/​10.​1109/​TNN.​2010.​20912​81

Pelayo L, Dick S (2007) Applying novel resampling strategies to
software defect prediction. In: Annual conference of the north

American fuzzy information processing society—NAFIPS, pp
69–72. https://​doi.​org/​10.​1109/​NAFIPS.​2007.​383813

Peng L, Yang B, Chen Y, Abraham A (2009) Data gravitation based
classification. Inf Sci 179(6):809–819. https://​doi.​org/​10.​1016/j.​
ins.​2008.​11.​007

Ryu D, Jang JI, Baik J (2017) A transfer cost-sensitive boost-
ing approach for cross-project defect prediction. Softw Qual J
25(1):235–272. https://​doi.​org/​10.​1007/​s11219-​015-​9287-1

Subramanyam R, Krishnan MS (2003) Empirical analysis of CK met-
rics for object-oriented design complexity: implications for soft-
ware defects. IEEE Trans Softw Eng 29(4):297–310. https://​doi.​
org/​10.​1109/​TSE.​2003.​11917​95

Turhan B, Menzies T, Bener AB, Di Stefano J (2009) On the relative
value of cross-company and within-company data for defect pre-
diction. Empir Softw Eng 14:540–578. https://​doi.​org/​10.​1007/​
s10664-​008-​9103-7

Wang T, Zhang Z, Jing X, Zhang L (2015) Multiple kernel ensem-
ble learning for software defect prediction. Autom Softw Eng
23(4):569–590. https://​doi.​org/​10.​1007/​S10515-​015-​0179-1

Watanabe S, Kaiya H, Kaijiri K (2008) Adapting a fault prediction
model to allow inter language reuse. In: Proceedings—interna-
tional conference on software engineering, pp 19–24. https://​doi.​
org/​10.​1145/​13707​88.​13707​94

Zhou Y, Yang Y, Lu H, Chen L, Li Y, Zhao Y, Qian J, Xu B (2018)
How far we have progressed in the journey? An examination of
cross-project defect prediction. ACM Trans Softw Eng Methodol
27(1):1–51. https://​doi.​org/​10.​1145/​31833​39

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009)
Cross-project defect prediction: a large scale experiment on data
vs. domain vs. process. In: ESEC-FSE’09—Proceedings of the
joint 12th European software engineering conference and 17th
ACM SIGSOFT symposium on the foundations of software engi-
neering, pp 91–100. https://​doi.​org/​10.​1145/​15956​96.​15957​13

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1016/J.INFSOF.2022.106980
https://doi.org/10.1016/J.INFSOF.2022.106980
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1109/TSE.2010.51
https://doi.org/10.1145/2351676.2351734
https://doi.org/10.1145/2351676.2351734
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1145/2635868.2635892
https://doi.org/10.1145/2635868.2635892
https://doi.org/10.1109/ICSE.2013.6606584
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TNN.2010.2091281
https://doi.org/10.1109/NAFIPS.2007.383813
https://doi.org/10.1016/j.ins.2008.11.007
https://doi.org/10.1016/j.ins.2008.11.007
https://doi.org/10.1007/s11219-015-9287-1
https://doi.org/10.1109/TSE.2003.1191795
https://doi.org/10.1109/TSE.2003.1191795
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1007/S10515-015-0179-1
https://doi.org/10.1145/1370788.1370794
https://doi.org/10.1145/1370788.1370794
https://doi.org/10.1145/3183339
https://doi.org/10.1145/1595696.1595713

	Predictive software maintenance utilizing cross-project data
	Abstract
	1 Introduction
	2 Related work
	3 Proposed approach
	3.1 Normalization phase
	3.2 Training data selection phase
	3.3 Model construction phase

	4 Datasets, performance measures and experimental design
	4.1 Datasets
	4.2 Evaluation metrics
	4.2.1 MLBEMs
	4.2.2 EBEMs

	4.3 Research question and baseline selection
	4.4 Experimental design

	5 Results and discussions
	5.1 Results
	5.2 Discussions
	5.3 Ablation study

	6 Threats to validity
	6.1 Internal validity
	6.2 External validity

	7 Conclusion
	References

