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Abstract  Software maintenance is essential and signifi-
cant phase of software development life cycle. In software 
projects, issue tracking systems are used to collect, catego-
rise, and track filed issues. The distinct bug reports are not 
being able to reproduced by software developers and hence, 
marked as non-reproducible. Non-reproducible problems are 
a major performance issue in bug repositories since they 
take up a lot of time and effort from developers. The goal 
of this paper is to create a prediction model for detecting 
non-reproducible bugs. Due to sheer unexpected nature of 
bug fixation, bug management is frequently a painful under-
taking for software engineers. Non reproducible bugs add 
to the difficulty of this vexing indexing. This paper deals 
with the development of a early prediction model for iden-
tification of non-reproducible bugs. In this work, a novel 
framework named NRPredictor, has been proposed which 
uses three ensemble learning and one feature selection algo-
rithm for Non-Reproducible bug prediction. The prediction 

performance of the proposed framework has been examined 
using projects of Bugzilla bug tracking system. Three open-
source projects viz. Mozilla Firefox, Eclipse and NetBeans 
have been used for evaluating the prediction performance. 
While forecasting the fixability of bug reports, the experi-
mental findings reveal that NRPredictor surpasses traditional 
machine learning techniques. For Mozilla Firefox, Eclipse, 
and NetBeans projects, NRPredictor, delivers performance 
(in terms of F1-score) up to 88.3, 87.8, and 87.4% respec-
tively. An improvement in performance up to 6.1, 5 and 2.7% 
has been obtained for NetBeans, Eclipse, and Mozilla Fire-
fox projects, respectively as compared to the best performing 
standalone machine learning classifier.

Keywords  Non-reproducible bugs · Reproducible bugs · 
Machine learning · Classification · Ensemble learning · 
Feature selection · Fixability prediction · Mining software 
repositories

1  Introduction

The emergence of numerous project management tools and 
approaches have attributed to the increased project complex-
ity and team-based initiatives. The use of bug tracking tools 
is an important aspect of open-source project management. 
Bug reports and their debugging procedures have become an 
unavoidable part of software development during the previ-
ous few decades (Kamkar 1998). Software developers work 
hard to ensure that the software entity is bug-free (Fagan 
2002). However, in actuality, a high number of defect reports 
are encountered by any software. For collecting, organis-
ing, and monitoring of incoming bug reports, large software 
companies use bug tracking systems (Breu et al. 2010). Bug 
tracking systems (BTS) are also termed as issue tracking 
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systems (ITS), hence, they have been used interchange-
ably in this paper. Past works have produced a multitude of 
research endeavours to ensure genuine treatment of bugs. 
Out of these, most works are concerned with bug summary 
generation (Gupta and Gupta 2021), meta-field prediction 
(such as severity, priority, etc.) (Kumari et al. 2020; Sharma 
et al. 2021), duplicate identification (Neysiani et al. 2020; 
Isotani et al. 2021), developer recommendation (Goyal and 
Sardana 2016; Ye et al. 2020), reopening (Tagra et al. 2021), 
fixing time (Lee et al. 2020; Kumari et al. 2020), localization 
(Li et al. 2021) etc. These methods collect numerous bug 
report parameters/ meta-fields from bug repositories and use 
them to create the prediction models for certain tasks.

In basic scenario, various stakeholders of BTS (such as 
end users, developers, and testers) file the problems found 
to BTS (Anvik 2006). Bug triager checks the bug’s exist-
ence and if found as valid, assigns the bug to the developer 
(Zhang et al. 2014). The developer uses information sup-
plied by reporter in the bug report to reproduce the problem 
(Shokripour et al. 2015). However, if the developer is unable 
to replicate the bug, it is designated as Non-Reproducible 
(NR) (Joorabchi et al. 2014). In bug repositories, NR bug 
reports are a significant performance issue since they occupy 
a significant amount of developer’s time and effort. NR bugs 
create delay in bug fixing and they may even lead to the 
release of software project with critical bugs (Rahman et al. 
2020). Hence, the detection of NR bugs in early bug life 
cycle is an open research problem requiring investigation.

Joorabchi et al. (Joorabchi et al. 2014) published first 
characterization study on NR bugs. They addressed four 
research questions related to quantitative and qualitative 
analysis of NR bugs. They manually mined the cause catego-
ries and transition patterns of about 1600 NR bugs. Further, 
they studied the NR bugs which eventually got fixed. After 
conducting an exploratory investigation on 6 bug tracking 
repositories, they discovered that 17% of all bug reports are 
resolved as NR. The cause categories for 1,643 NR bugs 
are defined as Interbug Dependencies (45%), Environmen-
tal Differences (24%), Insufficient Information (14%), Con-
flicting Expectations (12%), Non-deterministic Behaviour 
(3%) and Others (2%). Furthermore, only around 2% of all 
NR bug reports get fixed with code fixes in the end, while 
the other half are implicitly repaired. This work puts some 
light on the factors leading to make bugs NR, however, it 
does not provide any mitigation strategy. It does not provide 
any mechanisms to improve the bug fixing process. Further, 
(Goyal and Sardana 2017) presented a sentiment analysis 
based study of developers who worked on NR issue fixes. 
They discovered that developer comments posted in NR bug 
reports are more negative than standard defects. Machine 
learning classifiers are then used to forecast fixable issues 
from NR flagged bugs. Our work is different from this work 
as we do not study developer sentiments as bug reports are 

technical documents and they constitute technical keywords 
which lack any kind of sentiment. Secondly, the prediction 
model proposed by Goyal and Sardana (2017) deals with the 
prediction of reopened bugs whereas our work deals with 
the prediction of new bugs. Hence, the work presented in 
this paper attempts to fill the research gap present in the 
literature “ to provide a mitigation strategy to early predict 
the NR bugs”.

To the best of our knowledge, there does not exist any 
work on early prediction of NR bugs. A unique NRPredictor 
framework is provided in this paper to forecast the fixability 
of bug reports. For fixability prediction, the proposed model 
combines feature selection and ensemble learning methods. 
Ensemble-based approaches use the capabilities of several 
different basic classifiers to improve classification accuracy 
(Alzubi 2015). In this method, the training data is first sep-
arated into many disjoint groups, and then each subset is 
trained using a base classifier. Feature selection algorithms 
try to reduce the complexity of the system.

The following are the current work’s key research con-
tributions (RC): 

1.	 The early fixability problem in bug reports has been 
examined. In this RC, the problem of prediction of bug 
type (R or NR) when a new bug is filed to BTS has been 
examined.

2.	 A novel framework, NRPredictor, based on feature 
selection and ensemble machine learning algorithms, 
has been proposed. In this RC, a novel framework has 
been proposed which predicts whether a new bug report 
will get fixed or it will be marked as NR.

3.	 Thirteen machine learning classifiers (Bayes Net, Naive 
Bayes, Naive Bayes Multinomial Text, Naive Bayes 
Updateable, IBk, Zero-R, JRip, OneR, PART, Decision 
Table, J48, Rep Tree and Random Tree) along with three 
ensemble learning techniques (Bagging, Boosting and 
Stacking) and one feature selection technique (Classi-
fier Attribute Evaluator) has been utilized in proposed 
framework, NRPredictor.  In this RC, traditional and 
advanced machine learning algorithms have been uti-
lized for prediction of a newly reported bug as Fixable 
or NR.

4.	 The proposed framework, NRPredictor has been tested 
on three large-scale, well-known, long lived, open-
source Bugzilla repository projects, namely NetBeans,1 
Eclipse,2 and Mo-zilla Firefox.3 In this RC, bug reports 
from three long lived software projects have been col-

1  https://​netbe​ans.​org/​bugzi​lla/.
2  https://​bugs.​eclip​se.​org/​bugs/.
3  https://​bugzi​lla.​mozil​la.​org/.

https://netbeans.org/bugzilla/
https://bugs.eclipse.org/bugs/
https://bugzilla.mozilla.org/
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lected and processed to be fed into NRPredictor frame-
work for prediction purposes.

5.	 Four evaluation metrics (Precision, Recall, F1-Score, 
Area under Receiver Operating Ch-aracteristic Curve) 
have been used for comparison. The experimental find-
ings reveal that the proposed framework, NRPredictor 
outperforms traditional machine learning techniques 
consistently. F1-scores up to 88.3, 87.8 and 87.4% for 
Mozilla Firefox, Eclipse and NetBeans projects has been 
obtained respectively. In this RC, performance evalua-
tion of proposed framework is conducted using various 
performance evaluation metrics.

The paper is organised as per the roadmap defined in Fig. 1. 
Section 2 goes through the background information which 
includes NR bug report structure, the bug report life cycle, 
and the ensemble and feature selection approaches used 
in this paper. The relevant past work across three domains 
(reproducibility, prediction and ensemble techniques) is dis-
cussed in Sect. 3. The architecture of proposed NRPredictor 
framework is detailed in Sect. 4. The experimental details 
are presented in Sect. 5. The results and analysis of the 

experimental evaluation are presented in Sect. 6. The risks 
to validity are discussed in Sect. 7. Finally, Sect. 8 brings the 
work to a close by providing conclusion. Section 9 discusses 
future research prospects.

2 � Background

This section covers the necessary background information 
for this research, such as the fundamental layout of a bug 
report, the normal life-cycle of an issue, and various ensem-
ble learning & feature selection methodologies used.

2.1 � Bug report structure

A bug report is a record that contains complete information 
concerning a problem. It contains a number of bug meta-
fields as well as some textual material. Bug id, product, 
component, platform, hardware, version, operating system, 
severity and priority, milestone, status, resolution, reporter’s 
name, time-stamp of report submission, assignee, and so 
on are all included in the meta-fields. A quick summary 

Fig. 1   The roadmap for article
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or tagline, a detailed explanation of the error, and com-
ments provided by the reporter, developer, or testers are 
all included in the textual information. Figure 2 displays 
an example of an Eclipse Project’s NR bug report (Bug id: 
13747).4

In Fig. 2, the unique serial number assigned for every 
problem is referred to as the "Bug ID". The term "Product" 
refers to the wide region from which the bug sprang. The 
term "Component" refers to the product’s next level of cat-
egorisation. One or more components can be found in a sin-
gle product. The term "Version" refers to the software prod-
uct version in which a defect was discovered. The "Status" 
parameter indicates where the bug is in its life cycle. The 
name of the developer who has been assigned task for fixing 
the fault is referred to as "Assigned-to." The term "Sum-
mary" refers to a one-sentence explanation of the reported 
defect. "Description" refers to the bug report’s whole com-
prehensive specification, which is often written by reporter. 
Description usually consists of 3 main elements: noticed 

behaviour, reproducible processes, and predicted software 
behaviour (Chaparro et al. 2017). The term "Comments" 
refers to an open-ended discussion among developers to find 
viable remedies for bug solving.

Along with particular meta-fields and textual contents, 
bug report contains attachments, URLs, and automatically 
produced notes. Extra information about the problem is com-
monly included in these columns, like test cases, patch filed, 
user-supplied screen shots, the URL of website containing 
issue, similar duplicate bugs, and so on.

2.2 � Bug life‑cycle

A bug progresses via various phases throughout its exist-
ence. Figure 3 shows life-cycle of a bug report in Bugzilla 
repository.5 For different projects, life-cycle stages may vary 
slightly but the mainstream order remains same. Initially, 
any bug’s existence is UNCONFIRMED. A bug reporter 
has reported the problem thus far, but its existence has yet 

Fig. 2   An example of a NR bug report

4  https://​bugs.​eclip​se.​org/​bugs/​show_​bug.​cgi?​id=​13747. 5  https://​www.​bugzi​lla.​org/​docs/2.​18/​html/​lifec​ycle.​html.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=13747
https://www.bugzilla.org/docs/2.18/html/lifecycle.html
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to be validated. The existence of an unconfirmed issue is 
confirmed by the bug triager, who then labels the validated 
bug as NEW. Because it is presumed that a bug submitted 
by an expert is real and existent, it may reach NEW state 
immediately. The bug triager assigns a verified bug to the 
developer and labels the resolution with ASSIGNED. The 
allocated developer investigates the problem, reproduces it, 
and performs appropriate modifications for fixing it.

There are numerous bug report resolutions available in 
the RESOLVED status, including fixed, duplicate, won’t 
fix, worksforme (NR), invalid, remind, and later. The 
resolution of the problem is indicated as fixed once the 
assigned developer has successfully made relevant source 
code adjustments. However, the assigned developer does 
not have to always discover a valid remedy to the reported 
issue. A software developer may discover that the claimed 

Fig. 3   Life-cycle of a typical bug report in Bugzilla Repository
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problem is not unique when investigating a bug report. It 
might be a duplicate of an existing or fixed problem, or 
it could have the same basic cause as another bug. In this 
case, the bug’s resolution is marked as duplicate (Sureka 
and Jalote 2010). The resolution of a bug report that out-
lines a non-rectified issue is set as won’t fix. The prob-
lem is marked as NR or worksforme if it cannot be recre-
ated using the information given in the bug report. When 
additional information is added to the NR bug, it may be 
reopened, which may aid in replicating the problem. A 
bug is marked as resolving invalid when it is proven to 
be illegible or spam. Invalid bugs are considered as not 
real problems (Yuan et al. 2021). Bugs that force third-
party software or websites to make changes, for example, 
constitute a breach of legal and contractual obligations. If 
bug requires further information and cannot be addressed 
immediately, then it is marked with resolution remind or 
later (Abou et al. 2021).

2.3 � Ensemble learning/ classification

The classification refers to division or category in a system 
that organises or categorises objects. Initially, manual clas-
sification of items was popular. Manual classification, on the 
other hand, has the drawbacks of being exceedingly time-
consuming and fundamentally subjective in nature (Bauer 
et al. 1999; Alzubi et al. 2018). As a result, automatic classi-
fication algorithms were developed. Automatic classification 
is more objective, quicker, and scalable. It can be effective 
in more complicated, nuanced circumstances, such as busi-
ness-specific material, because it provides companies with 
a more systematic and consistent classification. Artificial 
intelligence techniques are excessively used in computing 
for training, forecasting and evaluation purposes (Movassagh 
et al. 2021). Automatic document categorization can benefit 
from machine learning and artificial intelligence techniques 
to improve speed and efficiency.

Ensemble classification approaches are a type of meta 
machine learning algorithm that has recently gained popu-
larity. To improve predictive performance, these strategies 
aggregate predictions from different learning algorithms 
(Dietterich et al. 2000). Distinct machine learning classi-
fiers have different fundamental principles and training data 
sensitivity. As a result, various categorization systems make 
different predictions based on the data. These various out-
comes are used by ensemble machine learning algorithms 
to produce a superior prediction output (Alzubi et al. 2020). 
These strategies aim to reduce prediction model bias and 
variance while also attempting to improve prediction accu-
racy using only one of the constituent learning algorithms. 
Three alternative ensemble classification approaches were 
investigated in this paper. 

1.	 Bagging: Bagging also referred as "Bootstrap Aggregat-
ing" is a meta-estimator that uses several random subsets 
of the original dataset to fit a base classifier. The original 
dataset is re-sampled via replacement, and the predic-
tions of several learners are combined for generating 
final result. Breiman demonstrates bagging approach is 
helpful for unstable learners (Breiman 1996).

2.	 Boosting: This approach combines various weak classi-
fiers to produce a powerful classifier. If the model has 
a large error rate, it is deemed weak (0.5 or more for 
binary classification). The ensemble classifier is con-
structed to reduce the mistakes obtained in the previous 
step throughout each iteration. Iterations are repeated 
till the point of maximum iterations or till whole train-
ing dataset is correctly predicted (Freund and Schapire 
1995).

3.	 Stacking: Stacked generalisation, is an ensemble strat-
egy which uses a training dataset to train several base 
classifiers and then uses these base classifiers to build 
a new dataset. Then, using combiner machine learning 
approach, this new dataset is incorporated (Wolpert 
1992).

2.4 � Feature selection techniques

Raw machine learning data is made up of a variety of 
attributes, some of which are useful for making predictions 
and others that aren’t. Feature selection approaches assist 
in identifying a set of relevant traits from a large number 
of options. The Classifier Attribute Evaluator was used to 
select features in this paper. The attribute evaluator is a 
tool for evaluating each attribute (also known as a column 
or feature) in your dataset in relation to the output variable 
(e.g. the class).

3 � Literature review

Since the previous two decades, the study of software 
flaws has been a hot topic of research. (Perry and Stieg 
1993) presented a preliminary research on the investiga-
tion of reported problems in major software projects. The 
authors performed a poll to find out what kinds of diffi-
culties users report, how they are discovered, and at what 
point of testing they are filed to BTS. Since then, various 
studies have been done that examine different buggy loca-
tions. This section goes into previous research in these 
buggy domains, which are divided into three categories: 
reproducing bug reports, prediction models in bug fixing, 
and ensemble learning in bug fixing.



995Int J  Syst  Assur  Eng  Manag (June 2023) 14(3):989–1009	

1 3

3.1 � Reproducing bug reports

A bug report comprises 3 key elements: procedures for rep-
lication of problem, what reporter anticipated to observe, 
and what reporter actually observed (Chaparro et al. 2017). 
The above listed 3 elements aid software developers in veri-
fying, finding, and replicating the problematic scenario, as 
well as understanding the fundamental cause of the fault. 
After that, the allocated developer fixes the problem by mak-
ing modifications to the source code. Reproducing a bug 
report is famously difficult since engineers are only given 
limited information about the failure, such as a memory 
dump. ReCrash is an automated approach to construct test-
cases for simulating a software failure introduced by Artzi 
et al. (2008). CRASHDROID was created by White et al. 
(2015) for Android apps to automate system of replicating 
problems. Jin and Orso (2012) established BugRedux, an 
approach to gather extra information from the buggy ground 
and transmits the collected information to developers for 
repeating the failure circumstance. Despite the fact that stud-
ies exist to assist developers in recreating problem reports, 
their in-field performance is quite poor. RecrashJ, the Java 
version of ReCrash, for example, has a performance over-
head of 13–64%.

If a developer is unable to replicate an issue, the resolu-
tion is marked as NR. It is often perplexing and time-con-
suming for engineers to manage NR problems. An empirical 
analysis over 32,000 NR bugs was given by Joorabchi et al. 
(2014) which discovered that resolution NR is assigned to 
17% of all bug reports, and that just 3% of NR-assigned 
bug reports get repaired. Further, 1,643 NR issue reports are 
manually sorted into six different cause groups, including 
inter-bug dependencies, environmental differences, insuffi-
cient information, conflicting expectations, non-determinis-
tic bugs, and others. Goyal and Sardana (2017) did a senti-
ment study of developers who worked on NR issue fixes. 
They discovered that developer comments posted in NR bug 
reports are more negative than standard defects. Machine 
learning classifiers are also used to forecast fixable issues 
from NR flagged bugs.

Table 1 presents the review of literature in the broad 
domain of NR bugs. From Table 1 it has been observed that 
these works put some light on the factors leading to make 
bugs NR, however, they do not provide any concrete miti-
gation strategies. Joorabchi et al. (2014) does not provide 
any mechanisms to improve the bug fixing process. Goyal 
and Sardana (2017) presented a sentiment analysis based 
model to forecast fixable issues from NR flagged bugs. How-
ever, their work deals with the prediction of re-opened bugs 
whereas the current manuscript deals with the prediction of 
new bugs. Hence, the work presented in this paper attempts 
to fill the research gap present in the literature “to provide a 
mitigation strategy to early predict the NR bugs". Ta
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3.2 � Prediction models in bug fixing

In the arena of software engineering research, debugging 
is a well-known concept. A lot of research and prediction 
models have been established for bug summarization (Koh 
et al. 2021), bug triaging (Mohan et al. 2016; Goyal and 
Sardana 2017), duplicate detection (Rocha and Carvalho 
2021), fix time prediction (Yuan et al. 2021), blocking 
bug prediction (Cheng et al. 2020), reopened bugs (Shihab 
et al. 2013), etc. Garcia and Shihab (2014) developed a 
bug-blocking prediction model. They inspected the per-
formance of decision tree, Naive Bayes, kNN, random for-
est, and Zero-R classifiers using 14 bug attributes to dis-
criminate between blocking and non-blocking bug reports. 
Using 10-fold cross validation, they were able to reach an 
F-measure of 15 − 42% . Xia et al. (2015) expanded on this 
research to address the problem of class imbalance in the 
blocking problem prediction. It has been found that ensem-
ble learners successfully operate upon the phenomena of 
class imbalance and, as a result, may increase minority 
class prediction accuracy. Our forecasting is based on 
the same principles. Shihab et al. (2013) took care of the 
reopened bug reports. For bug report classification, they 
employed 22 distinct characteristics divided into four cat-
egories: developer work habits, bug report, problem fix, 
and team. While predicting reopened bugs, they reported 
accuracy values 52.1–78.6% and recall values 0.5–94.1% 
for reopened bug finding. Comment text and last status 
were discovered to be the most important elements.

Hewett and Kijsanayothin (2009) built a model that antic-
ipated how long it would take to fix software bugs. On a 
medical software system dataset, the suggested model has an 
accuracy of 93.44%. Guo et al. (2010) presented an architec-
ture for predicting fixability of a freshly discovered problem. 
On Microsoft Windows Vista project, the suggested model 
achieved accuracy values of up to 68% and recall values of 
up to 64%. Zimmermann et al. (2012) analysed and evalu-
ated reopened bug complaints to determine likely causes 
of reopening and to assess their effect. Table 2 presents the 
review of literature related to prediction models in different 
phases of bug handling. Meta-heuristic algorithms such as 
AHP, TOPSIS, etc. are also used in bug handling processes 
nowadays (Goyal and Sardana 2017). Research is in progress 
to further optimise the meta-heuristic algorithms (Agushaka 
et al. 2022; Abualigah et al. 2021, 2022; Oyelade et al. 2022; 
Abualigah et al. 2021; Sethuraman et al. 2019).

Various studies have showed that machine learning 
classifiers are successful in predicting different buggy 
locations(Garcia and Shihab 2014; Ahmed et al. 2021; Mal-
hotra et al. 2021; Rashmi and Kambli 2020). Our research 
focuses on NR defects, as opposed to many prediction mod-
els present in past works relating to software debugging pro-
cedures. The tests were carried out on bug reports identified 

with the classes Reproducible (R) and NR. The goal is to 
forecast which bug reports can be fixed.

3.3 � Ensemble learning in bug fixing

In the literature of machine learning classification, ensemble 
learning plays an essential role. Numerous ensemble based 
classifiers have been suggested to increase the performance 
of a traditional machine learning classifiers (López et al. 
2013). The effectiveness of ensembling technique may be 
attributed to the diversity of their base learners (Guo et al. 
2008). As a result, ensemble classifiers use a group of basis 
classifiers to build a prediction model. There are many dif-
ferent forms of ensemble models, e.g., bagging (Breiman 
1996), boosting (Freund and Schapire 1995), stacking 
(Wolpert 1992), etc. The bagging approach uses the same 
basic classifier to train several classifiers, which are then 
combined using an unweighted majority voting mechanism. 
The majority of votes determines the final forecast. Bagging 
approaches typically outperform single model algorithms by 
a wide margin. It is never considerably insufficient since it 
mitigates the classifiers’ volatility by raising the victory pro-
portion (Phua et al. 2004). Boosting is an iterative method 
which provides a weight value to the training dataset in each 
iteration. During 1st run, all weights are put equal (Freund 
and Schapire 1995). The weights of improperly categorised 
instances are raised with each repetition. This helps weak 
learners to concentrate on the training set’s difficult cases. 
Using a meta-classifier like Logistic Regression, stacking 
combines numerous classifiers (Wolpert 1992). Multiple 
basic classifiers are used to classify a single test case. The 
output of these several basic classifiers is fed into a meta-
classifier, which produces the ultimate prediction.

In the literature on software debugging, ensemble learn-
ers have been employed in a number of studies. Stacking 
ensemble approach for automated bug triaging was assessed 
by Jonsson et al. (2016). Stacking beats standard machine 
learning techniques for the multi-class issue of developer 
selection, according to their findings. Goyal and Sardana 
(2019) provided an empirical study on bug triaging strat-
egies using ensemble classification algorithms (bagging, 
boosting, majority voting, average voting, and stacking). 
Ensemble classifiers outperformed standard machine learn-
ing algorithms in the identification of an appropriate devel-
oper to handle the bug report, according to the researchers.

Limsettho et al. (2018) presented a SMOTE-based tech-
nique to predict cross-project defects. Laradji et al. (2015) 
found that ensemble learning had a favourable influence 
on software fault prediction. Xia et al. (2015) proposed 
ELBlocker, an ensemble learning approach for predict-
ing blocking problems. They demonstrated that orthodox 
machine learning methods perform poorly for severely 
unbalanced datasets, but ensemble-based strategies aid in the 
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development of stronger prediction models. They found that 
employing an ensemble-based method improved F1-Score 
by 14.69% when compared to traditional machine learn-
ing classifiers. Lal, et al. (2017) introduced an ensemble-
based model for logging predictions called ECLogger. To 
deal with the problem of class imbalance, they employed 
bagging and voting ensemble approaches. Using ensemble-
based approaches, they were able to obtain better prediction 
performance. Motivated by these studies (Jonsson,Borg,B
roman,Sandahl,Eldh and Runeson, 2016; Lal et al., 2017; 
Xia,Lo,Shihab,Wang and Yang, 2015) the issue of fixability 
prediction has been addressed. Ensemble based techniques 
along with feature selection techniques has been used to pre-
dict the fixable and NR bugs optimally.

4 � NRPredictor framework

This section describes the architecture of proposed frame-
work, NRPredictor as shown in Fig. 4. The framework, 
NRPredictor, is divided into two phases: model building 
and prediction.

PHASE 1: model building phase
Initially, previous bug reports from the bug repository 

with known labels (R or NR) are used as input. Following 
that, different characteristics are retrieved and pre-process-
ing techniques are used. Machine learning is then used to 
learn multiple models based on the retrieved information. 
Finally, this step generates hybrid models for forecasting 
the class for bug reports that haven’t been tagged. The 

following are the phases in model building phase of pro-
posed framework, NRPredictor:

1.	 Dataset acquisition: First, bug reports with class labels 
(R and NR) are collected from various projects of Bug-
zilla repositories in this stage. A bug report is considered 
as NR if it is marked as NR or "worksforme" during the 
life.

2.	 Feature extraction: Next, 9 different features are drawn 
out from the collected bug reports. Among the 9 fea-
tures, 8 are numerical (component, severity, priority, 
operating system, hardware, version, number of com-
ments and cc count) and 1 is textual in nature. All of the 
features along with their descriptions which are utilised 
in this paper are listed in Table 3.

3.	 Data pre-processing: The bug reports’ textual contents 
are evaluated in this stage to build a feature vector con-
taining critical keywords. This stage entails cleaning up 
the contents of the text. The bug report’s textual descrip-
tion is received first. The phrases are then tokenized, 
with all concatenated terms being broken up and further 
their case changed to the lower version. Stop words have 
been eliminated because their frequency is higher but 
they do not constitute any information. Python Natural 
Language Processing ToolKit (NLTK) has been used to 
leverage the stop word list. Porter stemming (supplied 
by Python NLTK) is then used to transform the remain-
ing tokens to their root phrase. Stemming is the pro-
cess of combining closely similar phrases (for example, 

Fig. 4   Architecture of proposed framework: NRPredictor
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stemming converts the two words likes and likely to root 
terms like).

4.	 Feature vector creation: Next, the frequency of each 
token has been determined after data preprocessing, 
and a textual feature vector has been constructed. In this 
stage, the top 100 tokens derived from textual character-
istics with the highest overall frequency were considered 
for textual features.

5.	 Feature selection/ reduction: Feature selection tech-
niques help to obtain a set of relevant features from 
the list of all available features. In this work, Classifier 
Attribute Evaluator has been used for feature selection. 
The attribute evaluator is a method for evaluating each 
attribute in your dataset (also known as a column or 
feature) in relation to the output variable (e.g. the class).

6.	 Classifier learning: Various NRPredictor models were 
created in this stage. First, 13 machine learning algo-
rithms (Bayes Net, Naive Bayes, Naive Bayes Multi-
nomial Text, Naive Bayes Updateable, IBk, Zero-R, 
JRip, OneR, PART, Decision Table, J48, Rep Tree and 
Random Tree) from four families: Bayes, trees, rules 
and lazy were used to learn the models. Comparison 
of the performances of 13 machine learning classifiers 
was used to conduct an empirical investigation. Then, 
employing 13 machine learning classifiers, three ensem-
ble learning strategies were used. To create prediction 
models for fixability prediction, three ensemble-based 
strategies (bagging, boosting, and stacking) are utilised.

PHASE 2: prediction phase
This phase accepts the bug report as input for which 

the class label has to be anticipated. Then it draws out 
the bug report’s characteristics, uses pre-processing tech-
niques, and predicts label using the hybrid models created 
during the model building phase (Phase 1). The following 

step is involved in the prediction phase of the NRPredictor 
framework:

Classification In this step, first, 9 features for test bug 
report are extracted. Then, pre-processing is done by apply-
ing tokenization, casing, removal of punctuation, stop word 
removal and stemming corresponding to the test bug report. 
The pre-processed feature vector is then supplied to the 
proposed framework, NRPredictor. On the basis of various 
learned hybrid models, the test bug report is classified and 
a label is predicted corresponding to it (label is either R 
or NR). Next, the predicted label by proposed framework, 
NRPredictor and the ground truth label is considered and 
various evaluation metrics are computed to evaluate the 
prediction performance of learned models and NRPredictor 
framework.

5 � Experimental details

The subject systems, implementation details, assessment 
measures, and research issues addressed in this paper are 
detailed in this section. The experimental setup constitutes 
MacBook Pro with 8 GB of memory and a 2.7 GHz Intel 
Core i5 processor running Mac OS X 10.13.1. However, 
few machine learning algorithms were not able to be run 
in the given platform. The time threshold of 8 hrs has been 
used. The requirement of high computing power has been 
considered for all such combinations. Hence, all such algo-
rithm combinations have been run on a GPU equipped with 
NVIDIA Tesla V100 with 16GB RAM (5120 CUDA Cores). 
Four such cores in parallel manner have been used for this 
work. For experimentation, Python programming language 
has been used with Jupyter Notebook as Integrated Develop-
ment Environment (IDE). Scikit machine learning library 

Table 3   Feature/ parameter list used in NRPredictor framewore

Name of parameter Description

Component Component where the problem first appeared
Severity The intensity of the bug’s influence on the software system. The reporter of the bug report assigns 

this field. Minor, Major, Normal, Trivial, and blocking are all possible values
Priority Measure of quickness required for addressing the bug. The developers in charge of resolving the 

problem assign this field. Priority is usually determined by the severity field. Values that might 
be used: P1 (highest priority: urgent addressing is required), P2, P3, P4, and P5 (lowest priority: 
urgent addressing is required) (lowest priority)

Operating system The operating system where the problem first appeared
Hardware Hardware of the system where the problem first appeared
Version The software’s version
Number of comments Before designating a bug report as NR, the number of comments submitted by developers is counted
CC Count The number of developers on the bug report’s CC list
Keywords Terms derived from the bug report’s textual content
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has been used for building conventional and ensemble clas-
sification models.

5.1 � Subject systems

This research examined bug reports obtained from three pro-
jects of Bugzilla BTS: NetBeans, Eclipse, and Mozilla Fire-
fox. NetBeans is an open source development environment, 
tooling platform, and application framework for creation of 
programs using modules.6 It is a Java application. Eclipse 
is a framework that contains a number of tools for creating 
a Java integrated development environment (IDE).7 It was 
introduced in 2001 and is the most extensively used Java 
IDE. It is primarily written in Java. Mozilla Firefox is an 
open-source web browser launched in 2002.8 The popular 
web browser is available for a variety of systems. It is writ-
ten in C++.

Since a huge number of bug reports are sent on a daily 
basis, the Bugzilla dataset’s different projects are capable of 
assessing trends and evaluating recommended techniques. 
While choosing experimental projects, it was attempted 
to cover a wide variety of disciplines. These projects have 

been used frequently in the past studies Anvik and Murphy 
(2011); Bhattacharya and Neamtiu (2010); Tamrawi et al. 
(2011). These projects’ popularity and maturity makes it 
ideal for researching any novel bug-handling techniques. A 
total of 261551 bug reports were gathered and divided into 
two groups (R and NR). The distribution of bug reports into 
R and NR categories is depicted in Table 4.

5.2 � Implementation details

The proposed framework, NRPredictor has been evaluated 
using bug reports obtained from three long lived projects of 
Bugzilla BTS: NetBeans, Eclipse, and Mozilla Firefox. The 
general procedure of implementation is depicted in Fig. 5. 
First, the bug reports from the bug repository with known 
labels (R or NR) are collected and are considered as ground 
truth. Next, 8 numerical (component, severity, priority, 
operating system, hardware, version, number of comments 
and cc count) and 1 textual feature is extracted from bug 

Fig. 5   General procedure of proposed framework: NRPredictor

Table 4   Distribution of bug reports in R and NR categories

Project Total bugs R bugs NR bugs

NetBeans 114,177 94,173 20,004
Eclipse 90,788 76,006 14,782
Mozilla firefox 56,586 32,113 24,473

6  https://​en.​wikip​edia.​org/​wiki/​NetBe​ans.
7  https://​en.​wikip​edia.​org/​wiki/​Eclip​se(softw​are).
8  https://​en.​wikip​edia.​org/​wiki/​Firef​ox.

https://en.wikipedia.org/wiki/NetBeans
https://en.wikipedia.org/wiki/Eclipse(software)
https://en.wikipedia.org/wiki/Firefox


1001Int J  Syst  Assur  Eng  Manag (June 2023) 14(3):989–1009	

1 3

reports. The textual feature is then preprocessed by using 
five procedures: tokenization, case conversion, punctuation 
removal, stopword removal and stemming. Next, the fre-
quency of each token has been determined and 100 most 
frequent tokens are considered for feature vector creation. 
Further, feature selection technique called Classifier Attrib-
ute Evaluator has been used to further reduce the complexity 
of dataset. Finally, various NRPredictor models have been 
created using three machine learning algorithms (Bayes Net, 
Naive Bayes, Naive Bayes Multinomial Text, Naive Bayes 
Updateable, IBk, Zero- R, JRip, OneR, PART, Decision 
Table, J48, Rep Tree and Random Tree) and three ensemble 
learning strategies (bagging, boosting, and stacking) for each 
considered project. Finally the built models are evaluated by 
passing new bug reports as input. The proposed framework, 
NRPredictor, outputs a class label (R or NR) corresponding 
to the testing bug report.

5.3 � Evaluation metrics

Four common performance assessment criteria were utilised 
to estimate the achieving power of NRPredictor framework: 
Precision, Recall, F1-Score, and Area under Receiver Oper-
ating Characteristic (ROC) curve. All of the above assess-
ment criteria have been extensively utilised in the software 
debugging area (Hewett and Kijsanayothin 2009; Shihab 
et al. 2013; Xia et al. 2015). When utilising NRPredictor 
models to predict class label, there are four possible out-
comes: (1) A bug is predicted as NR bug when it is truly NR 
(True Positive: tp), (2) Predicted as NR but is truly R (False 
Positive: fp), (3) Predicted as R when it is truly NR (False 
Negative: fn), or (4) Predicted as R when it is truly R (True 
Negative: tn). Different metrics such as accuracy, recall, 
F1-Score, and ROC are computed using these four values:

1.	 Precision: It denotes the proportion of relevant occur-
rences found among the overall number of examples 
found. Equation 1 shows the formula for precision. 

2.	 Recall: It denotes the percentage of relevant occurrences 
found out of all relevant examples. Equation 2 shows the 
formula for recall. 

3.	 F1- Score: There is a trade-off between precision and 
recall measurements. An rise in one statistic frequently 
results in a drop in the other. As a result, evaluating pre-
diction performance using accuracy and recall is prob-
lematic. The F1-Score measure combines the advantages 

(1)Precision =
tp

tp + fp

(2)Recall =
tp

tp + fn

of accuracy and recall metrics. The weighted harmonic 
mean of precision and recall is represented by the 
F1-Score. It’s a frequently used metric for evaluating 
performance (Lal, et al. 2017; Xia et al. 2015). Equa-
tion 3 shows the formula for F1-Score. 

 when � is equal to 1, F1-Score is calculated as shown 
in Equation 4 

4.	 Area under ROC curve: The ROC (Receiver Operat-
ing Characteristic) curve is a graph of the true posi-
tive rate (tpr) vs the false positive rate (fpr). The area 
under the resulting ROC plot is represented by the area 
under the ROC curve. It assesses the possibility of an 
NR bug report being assigned a greater likelihood than 
an R problem report. The ROC value might be anything 
between 0 and 1. A larger number in ROC value shows 
better prediction performance of the developed model 
of NRPredictor framework.

The effectiveness of NRPredictor models was assessed 
using the cross validation approach. When just a small num-
ber of data examples are present, cross validation is employed 
to provide an impartial estimate of the model’s performance. 
Data is separated into k equal-sized subgroups in k-fold cross-
validation. As a result, the model is generated k times, each 
time utilising (k − 1) sets of data examples for training the 
learning classifier and one subset for testing predictions.

5.4 � Research questions

The following set of research questions (RQs) are examined 
in this paper:

•	 Research Question 1: What is the performance of tradi-
tional machine learning approaches for predicting bug 
report reproducibility?

•	 Research Question 2: What is the performance of ensem-
ble machine learning approaches for predicting bug report 
reproducibility?

•	 Research Question 3: What is the performance of ensemble 
machine learning techniques after applying feature selec-
tion for predicting bug report reproducibility?

(3)F1 − Score =
(�2 + 1) ∗ Precision ∗ Recall

�2 ∗ Precision + Recall

(4)F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall
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Table 5   Performance of 
conventional classifiers on 
NetBeans project

Project Classifier Precision Recall F1-score ROC

Netbeans Bayes.BayesNet 77.4 82.4 77.2 72.4
Bayes.NaiveBayes 77.5 82.3 77.7 71.4
Bayes.NaiveBayesMultinomialText 82.5 100 80 50
Bayes.NaiveBayesUpdateable 77.5 82.3 77.7 71.4
Lazy.IBk 79.7 82.6 80.3 69
Rules.DecisionTable 83.2 84.5 80.1 71.6
Rules.Zero-R 82.5 100 80 50
Rules.JRip 85 82.6 74.8 50.3
Rules.OneR 77.5 82.5 75.3 50.9
Rules.PART​ 81.6 84.2 81.3 72.9
Trees.J48 83.7 84.4 79.7 69.4
Trees.RepTree 82.8 84.5 80.7 71.7
Trees.RandomForest 80.3 83 80.9 72.8

Table 6   Performance of 
conventional classifiers on 
eclipse project

Project Classifier Precision Recall F1-score ROC

Eclipse Bayes.BayesNet 77.3 83 78.1 76.2
Bayes.NaiveBayes 78 82.1 79.2 75.9
Bayes.NaiveBayesMultinomialText 83.7 100 80 50
Bayes.NaiveBayesUpdateable 78 82.1 79.2 75.9
Lazy.IBk 82.3 85 82.2 76.6
Rules.DecisionTable 84 85.7 82.1 80.3
Rules.Zero-R 83.7 100 80 50
Rules.JRip 83.5 85.2 80.9 57.1
Rules.OneR 70.1 83.7 76.3 50
Rules.PART​ 83.7 85.7 82.8 80.7
Trees.J48 84.4 85.9 82.3 77.8
Trees.RepTree 84 85.8 82.5 80.3
Trees.RandomForest 82.4 85 82.4 78.8

Table 7   Performance of 
conventional classifiers on 
mozilla firefox project

Project Classifier Precision Recall F1-score ROC

Mozilla firefox Bayes.BayesNet 84.9 84.8 84.8 91.6
Bayes.NaiveBayes 83.3 82.5 82.6 90.6
Bayes.NaiveBayesMultinomialText 56.8 100 72.4 50
Bayes.NaiveBayesUpdateable 83.3 82.5 82.6 90.6
Lazy.IBk 83.1 83.1 83.1 84.9
Rules.DecisionTable 84 84 83.8 89.4
Rules.Zero-R 56.8 100 72.4 50
Rules.JRip 84 84 84 85.8
Rules.OneR 79.3 77.6 77.7 78.6
Rules.PART​ 85.5 85.6 85.6 90.4
Trees.J48 85.2 85.2 85.2 89.6
Trees.RepTree 84.5 84.6 84.5 89.6
Trees.RandomForest 85.4 85.4 85.4 92
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Table 8   Performance of bgging 
ensemble learning technique 
using conventional classifiers on 
netbeans project

Project Classifier Precision Recall F1-score ROC

Netbeans Bayes.BayesNet 77.5 82.4 77.2 72.4
Bayes.NaiveBayes 77.5 82.2 77.6 71.3
Bayes.NaiveBayesMultinomialText 82.5 100 80 50
Bayes.NaiveBayesUpdateable 77.5 82.2 77.6 71.3
Lazy.IBk 79.7 82.6 80.3 69
Rules.DecisionTable 80.8 83.6 79 65.2
Rules.Zero-R 82.5 100 80 50
Rules.JRip 84.7 82.6 74.8 50.9
Rules.OneR 77 82.5 75.2 52.1
Rules.PART​ 82.2 85 82 77.4
Trees.J48 83 84.7 80.9 71.2
Trees.RepTree 82.7 84.7 81.3 74.2
Trees.RandomForest 82.6 84.5 83.1 77.4

Table 9   Performance of bgging 
ensemble learning technique 
using conventional classifiers on 
eclipse project

Project Classifier Precision Recall F1-score ROC

Eclipse Bayes.BayesNet 77.3 83 78.2 76.1
Bayes.NaiveBayes 78 82.1 79.2 75.9
Bayes.NaiveBayesMultinomialText 83.7 100 80 50
Bayes.NaiveBayesUpdateable 78 82.1 79.2 75.9
Lazy.IBk 82.3 85 82.2 76.6
Rules.DecisionTable 83.8 85.6 81.9 78.6
Rules.Zero-R 83.7 100 80 50
Rules.JRip 84 85.1 80.2 58.9
Rules.OneR 83.7 83.7 83.7 50.1
Rules.PART​ 84.1 87 84.2 82.5
Trees.J48 84.3 86 82.7 79.3
Trees.RepTree 83.9 85.8 82.8 81.4
Trees.RandomForest 83.1 87.1 84.4 82.1

Table 10   Performance of 
bgging ensemble learning 
technique using conventional 
classifiers on mozilla firefox 
project

Project Classifier Precision Recall F1-score ROC

Mozilla firefox Bayes.BayesNet 84.9 84.8 84.8 91.6
Bayes.NaiveBayes 83.3 82.5 82.6 90.6
Bayes.NaiveBayesMultinomialText 56.8 100 72.4 50
Bayes.NaiveBayesUpdateable 83.3 82.5 82.6 90.6
Lazy.IBk 83.1 83.1 83.1 84.9
Rules.DecisionTable 84.6 84.6 84.5 90.2
Rules.Zero-R 56.8 100 72.4 50
Rules.JRip 84.8 84.8 84.7 89.8
Rules.OneR 79.3 77.6 77.7 78.6
Rules.PART​ 86.5 86.5 86.5 92.8
Trees.J48 86 86 86 91.9
Trees.RepTree 85.4 85.4 85.4 91.9
Trees.RandomForest 86.5 86.6 86.6 93
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6 � Results and analysis

This section discusses the results obtained corresponding to 
four research questions addressed in this work.

RQ1: Performance of traditional machine learning 
approaches

Tables 5, 6 and 7 examines the performance of thirteen 
base classifiers: Bayes Net, Naive Bayes, Naive Bayes Multi-
nomial Text, Naive Bayes Updateable, IBk, Decision Table, 
Zero-R, JRip, OneR, PART, J48, Rep Tree and Random 
Forest from four families: Bayes, lazy, rules and trees to 
find the best fixation prediction classifier. Various evalua-
tion metrics such as Precision, Recall, F1-Score and ROC 
has been computed for comparison purposes. For F1-Score, 
the experimental findings show that the PART classifier 
surpasses all other classifiers. PART classifier scored the 
greatest F1-Score of 81.3%, 82.8%, and 85.6% on NetBeans, 
Eclipse, and Mozilla Firefox projects, respectively.

RQ2: performance of ensemble learning approaches

To address this RQ ensemble learning models have been 
created using three techniques: Bagging, Boosting and 
Stacking. Tables 8, 9 and 10 presents the results of bagging 
ensemble models using thirteen base classifiers on three con-
sidered projects. The experimental results reveal that Bag-
ging using Random Forest algorithm performs better than 
other classifiers when considered F1-Score evaluation metric 
for comparison. The highest F1-Score of 83.1%, 84.4% and 
86.6% was achieved by Bagging ensemble learners on Net-
Beans, Eclipse and Mozilla Firefox projects respectively. 
An improvement of 1.8%, 1.6% and 1% was achieved by 
Bagging models on NetBeans, Eclipse and Mozilla Firefox 
projects respectively as compared to best performing indi-
vidual classifier performance (PART).

Tables 11, 12 and 13 presents the results of boosting 
ensemble models using thirteen base classifiers on three con-
sidered projects. The experimental results reveal that Boost-
ing using Random Forest algorithm performs better than 
other classifiers when considered F1-Score evaluation metric 

Table 11   Performance of 
boosting ensemble learning 
technique using conventional 
classifiers on netbeans project

Project Classifier Precision Recall F1-score ROC

Netbeans Bayes.BayesNet 77.4 82.4 77.2 69.2
Bayes.NaiveBayes 77.5 82.3 77.7 68.5
Bayes.NaiveBayesMultinomialText 82.5 100 80 50
Bayes.NaiveBayesUpdateable 77.5 82.3 77.7 68.5
Lazy.IBk 79.7 82.6 80.3 69
Rules.DecisionTable 81.7 84.2 80.9 71.3
Rules.Zero-R 82.5 100 80 50
Rules.JRip 85.2 82.7 75.2 53
Rrules.OneR 77.8 82.6 76.5 71.2
Rules.PART​ 82.1 84.7 82.1 74
Rrees.J48 80.9 83.4 81.4 72.6
Rrees.RepTree 82.5 84.5 81 73.9
trees.RandomForest 83.2 86.1 84.8 89.2

Table 12   Performance of 
boosting ensemble learning 
technique using conventional 
classifiers on eclipse project

Project Classifier Precision Recall F1-score ROC

Eclipse Bayes.BayesNet 80.4 83.5 81.2 77.4
Bayes.NaiveBayes 80.6 83.5 81.4 77.4
Bayes.NaiveBayesMultinomialText 83.7 100 80 50
Bbayes.NaiveBayesUpdateable 80.6 83.5 81.4 77.4
Lazy.IBk 82.3 85 82.2 76.6
Rules.DecisionTable 83.5 85.6 82.6 80.4
Rules.Zero-R 83.7 100 80 50
Rules.JRip 82.7 85.2 81.6 79.9
Rules.OneR 81.5 84 77.5 77.6
Rules.PART​ 84 86.5 83.9 81.8
Trees.J48 83.3 85.5 82.8 80.3
Trees.RepTree 81.2 83.7 81.4 72.7
Trees.RandomForest 84.9 87.8 86.2 84.1
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for comparison. The highest F1-Score of 84.8%, 86.2% and 
87.2% was achieved by Boosting on NetBeans, Eclipse and 
Mozilla Firefox proj- ects respectively. An improvement of 
3.5%, 3.4% and 1.6% was achieved by Boosting models on 
NetBeans, Eclipse and Mozilla Firefox projects respectively 
as compared to best performing individual classifier perfor-
mance (PART).

For stacking ensemble learning technique, all possible 
combinations of thirteen base classifiers have been used 

to learn the models. The experiments have been initialized 
from size three of base classifiers. In total, 8100 different 
model combinations corresponding to each considered pro-
ject have been learned. Logistic Regression has been used as 
meta classifier. The performance and improvement of best 
model combination corresponding to each project has been 
reported in Table 14. The highest F1-Score of 86.1%, 85.1% 
& 87.5% was achieved by Stacking ensemble learning tech-
nique on NetBeans, Eclipse and Mozilla Firefox projects 

Table 13   Performance of 
boosting ensemble learning 
technique using conventional 
classifiers on mozilla firefox 
project

Project Classifier Precision Recall F1-score ROC

Mozilla firefox Bayes.BayesNet 84.8 84.5 84.7 91.3
Bayes.NaiveBayes 84.5 84.5 84.5 89.5
Bayes.NaiveBayesMultinomialText 56.8 100 72.4 50
Bayes.NaiveBayesUpdateable 84.5 84.5 84.5 89.3
Lazy.IBk 83.1 83.1 83.1 84.9
Rules.DecisionTable 85.1 85.1 85.1 91.5
Rules.Zero-R 56.8 100 72.4 50
Rules.JRip 85.3 85.3 85.3 91.8
Rules.OneR 79.3 77.6 77.7 78.6
Rules.PART​ 85 85 85 90.9
Trees.J48 84.8 84.9 84.8 91
Trees.RepTree 85.2 85.2 85.2 89.7
Trees.RandomForest 87.1 87.3 87.2 94.1

Table 14   Performance of ensemble learning techniques using conventional classifiers on three considered projects

BIC represents best individual classifier

Project Technique Precision Recall F1-score ROC

Netbeans BIC (Part) 81.6 84.2 81.3 72.9
Bagging (random forest) 82.6 84.5 83.1 77.4
Improvement with BIC (+ 1%) (+ 0.3%) (+ 1.8%) (+ 4.5%)
Boosting (random forest) 83.2 86.1 84.8 89.2
Improvement with BIC (+ 1.6%) (+ 1.9%) (+ 3.5%) (+ 16.3%)
Stacking (PART, random forest, reptree, Naive Bayes, J48) 85.5 87.2 86.1 83.2
Improvement with BIC (+ 3.9%) (+ 3%) (+ 4.8%) (+ 10.3%)

Eclipse BIC (Part) 83.7 85.7 82.8 80.7
Bagging (random forest) 83.1 87.1 84.4 82.1
Improvement with BIC (−0.6%) (+ 1.4%) (+ 1.6%) (+ 1.4%)
Boosting (random forest) 84.9 87.8 86.2 84.1
Improvement with BIC (+ 1.2%) (+ 2.1%) (+ 3.4%) (+ 3.4%)
Stacking (Part, reptree, JRip, Naive Bayes, decision table) 84.4 86.3 85.1 84.2
Improvement with BIC (+ 0.7%) (+ 0.6%) (+ 2.3%) (+ 3.5%)

Mozilla firefox BIC (part) 85.5 85.6 85.6 90.4
Bagging (random forest) 86.5 86.6 86.6 93
Improvement with BIC (+ 1%) (+ 1%) (+ 1%) (+ 2.6%)
Boosting (random forest) 87.1 87.3 87.2 94.1
Improvement with BIC (+ 1.6%) (+ 1.7%) (+ 1.6%) (+ 3.7%)
Stacking (PART, reptree, Naive Bayes, decision table) 87.6 87.2 87.5 94.8
Improvement with BIC (+ 2.1%) (+ 1.6%) (+ 1.9%) (+ 4.4%)
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respectively. An improvement of 4.8%, 2.3% and 1.9% was 
achieved by Stacking technique on NetBeans, Eclipse and 
Mozilla Firefox projects respectively as compared to best 
performing individual classifier performance (PART). For 
NetBeans project, stacking with base classifier combination 
of PART, Random Forest, REPTREE, Naive Bayes and J48 
obtained best performance. For Eclipse project, stacking 
with base classifier having combination of PART, REP-
TREE, JRip, Naive Bayes and Decision Table obtained best 
performance. For Mozilla Firefox project, stacking with base 
classifier combination of PART, REPTREE, Naive Bayes 
and Decision Table obtained best performance.

RQ3: performance of ensemble learning approaches with 
feature selection

To address this RQ, Classifier Attribute Evaluator has 
been used for feature selection before applying ensemble 
learning techniques for prediction. Table 15 summarizes the 
performance and improvement of various ensemble learn-
ing algorithms along with feature selection technique. The 
highest F1-Score of 83.1%, 84.4% and 86.6% was achieved 
by Bagging on NetBeans, Eclipse and Mozilla Firefox pro-
jects respectively. The highest F1-Score of 84.8%, 86.2% and 
87.2% was achieved by Boosting on NetBeans, Eclipse and 
Mozilla Firefox projects respectively. The highest F1-Score 
of 87.4%, 87.8% and 88.3% was achieved by Stacking on 
NetBeans, Eclipse and Mozilla Firefox projects respectively. 

An improvement of 6.1%, 5% & 2.7% was achieved by 
Stacking on NetBeans, Eclipse and Mozilla Firefox projects 
respectively as compared to best performing individual clas-
sifier performance.

7 � Threats to validity

Despite the fact that the experiments were structured in such 
a way that there are few risks to validity, there are still a 
number of decisions that might impact the findings of this 
paper. Various dangers to the validity of reported work are 
examined in this section.

7.1 � External validity

The generalizability of generated outcomes is referred to as 
external validity. The bug reports included in this work’s 
experimental assessments came from three open-source 
Bugzilla repository projects: NetBeans, Eclipse, and Moz-
illa Firefox. Bug reports from these projects may differ from 
those from other open-source and closed-source projects. 
As a result, the findings of the paper might not apply to 
other open-source and commercial software projects. Other 
open-source and closed-source projects, as well as those that 
employ other development approaches, will require more 

Table 15   Performance of ensemble learning techniques with feature selection using conventional classifiers on three considered projects

BIC represents best individual classifier

Project Technique Precision Recall F1-score ROC

Netbeans BIC (Part) 81.6 84.2 81.3 72.9
Bagging (random forest) 82.6 84.5 83.1 77.4
Improvement with BIC (+ 1%) (+ 0.3%) (+ 1.8%) (+ 4.5%)
Boosting (random forest) 83.2 86.1 84.8 89.2
Improvement with BIC (+ 1.6%) (+ 1.9%) (+ 3.5%) (+ 16.3%)
Stacking (part, random forest, RepTree, Naive Bayes, J48) 87.7 87.1 87.4 86.5
Improvement with BIC (+ 6.1%) (+ 2.9%) (+ 6.1%) (+ 13.6%)

Eclipse BIC (Part) 83.7 85.7 82.8 80.7
Bagging (random forest) 83.1 87.1 84.4 82.1
Improvement with BIC (−0.6%) (+ 1.4%) (+ 1.6%) (+ 1.4%)
Boosting (random forest) 84.9 87.8 86.2 84.1
Improvement with BIC (+ 1.2%) (+ 2.1%) (+ 3.4%) (+ 3.4%)
Stacking (Part, rep tree, JRip, Naive bayes, decision table) 86.2 88.4 87.8 85.7
Improvement with BIC (+ 2.5%) (+ 2.7%) (+ 5%) (+ 5%)

Mozilla firefox BIC (PART) 85.5 85.6 85.6 90.4
Bagging (random forest) 86.5 86.6 86.6 93
Improvement with BIC (+ 1%) (+ 1%) (+ 1%) (+2.6%)
Boosting (random forest) 87.1 87.3 87.2 94.1
Improvement with BIC (+ 1.6%) (+ 1.7%) (+ 1.6%) (+ 3.7%)
Stacking (Part, rep tree, Naive Bayes, decision table) 87.9 88.5 88.3 95.7
Improvement with BIC (+ 2.4%) (+ 2.9%) (+ 2.7%) (+ 5.3%)
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research. Despite the fact that big open-source initiatives 
covering a wide range of topics have been investigated, there 
may be additional projects adopting diverse software tech-
niques in the future. As a result, the conclusions may not 
apply to everyone.

7.2 � Internal validity

The bias and mistakes in the experimental setting are 
referred to as internal validity. The data acquired from a bug 
repository was deemed to be ideal in this paper. However, 
there is a chance that the extracted data contains mistakes 
or noise, which might impact the paper’s conclusions. To 
counteract this risk, the dataset included in this work has 
been drawn from widely used projects if Bugzilla repository. 
These projects have a lengthy history and are continuously 
maintained, therefore the retrieved data should be considered 
acceptable (if not optimal). The input parameters used to 
train diverse machine learning models pose another danger 
to internal validity. In this paper, nine bug parameters were 
employed as input features for model training (eight numeri-
cal and one textual parameter). However, there may be an 
alternative collection of qualities that will produce superior 
results. However, there may be an other collection of char-
acteristics that perform better for predicting NR fixability. 
A list of stop words offered by the Python NLTK toolkit 
was utilised to pre-process textual contents (http://​www.​
nltk.​org/). The Porter Stemmer tool from the Python NLTK 
toolbox was used to stem textual contents. For comparable 
procedures, this toolbox has been frequently utilised in the 
literature. Other stop word lists and stemming tools, on the 
other hand, may have an impact on prediction accuracy. To 
reduce the risk of code and experimental setup problems, 
the source code and experimental setup have been double-
checked. However, there is still the risk of mistakes. In the 
experiments, 10 fold cross validation was utilised to elimi-
nate bias.

7.3 � Construct validity

The experimental constructs or the adequacy of the assess-
ment measures utilised in the study are referred to as con-
struct validity. The F1-Score was reported in this paper. This 
measure has been extensively used in the literature to assess 
the performance of machine learning classifiers, hence there 
is no concern about construct validity in this paper.

8 � Conclusion

The bug management is onerous task for software engi-
neers due to the unpredictable nature of bug fixes. The 
complexity of this perplexing indexing is exacerbated by 

non-reproducible faults. To address Non-reproducible bugs, 
a novel fixability prediction framework named NRPredic-
tor is proposed in this paper. Thirteen traditional machine 
learning classifiers along with three ensemble learning 
approaches (Bagging, Boosting, and Stacking) and one 
feature selection technique have been leveraged in NRPre-
dictor. The experimental evaluation shows that traditional 
machine learning algorithm, PART scored the greatest 
F1-Score of 81.3%, 82.8% and 85.6% on NetBeans, Eclipse, 
and Mozilla Firefox projects, respectively. Ensemble learn-
ing techniques outperforms traditional machine learning 
approaches, achieving F1-Scores of up to 86.1, 85.1, and 
87.5% for NetBeans, Eclipse, and Mozilla Firefox applica-
tions, respectively. Feature selection with ensemble learn-
ing techniques achieves F1-Scores of up to 87.4, 87.8, and 
88.3% for NetBeans, Eclipse, and Mozilla Firefox applica-
tions, respectively.

9 � Future research directions

The performance of proposed framework, NRPredictor, may 
be investigated in future on closed-source applications. Col-
laboration with firms that use open-source and closed-source 
bug repositories to analyse the proposed framework, NRPre-
dictor, in an industrial context is also possible. This will aid 
in further generalisation of findings. Text mining techniques 
such as topic modelling may also be used and integrated into 
the framework. In addition, a fix recommendation tool may 
be developed, which provide tokens for non-reproducible 
issues that might be solved. Another area of future study 
is the creation of a tool for software developers to aid in 
the prediction of NR bugs. Although the present study aids 
in the prediction of difficult-to-reproduce bugs that can be 
labelled as NR. However, NR issues continue to offer a sig-
nificant barrier to the bug-fixing process; as a result, new 
ways for resolving NR-marked bug reports can be created.
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