
Vol.:(0123456789)1 3

Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009
https://doi.org/10.1007/s13198-023-01902-7

ORIGINAL ARTICLE

NRPredictor: an ensemble learning and feature selection based
approach for predicting the non‑reproducible bugs

Kulbhushan Bansal1  · Gopal Singh2 · Sunesh Malik3 · Harish Rohil4

Received: 10 February 2022 / Revised: 24 June 2022 / Accepted: 29 March 2023 / Published online: 8 May 2023
© The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and
The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2023

Abstract  Software maintenance is essential and signifi-
cant phase of software development life cycle. In software
projects, issue tracking systems are used to collect, catego-
rise, and track filed issues. The distinct bug reports are not
being able to reproduced by software developers and hence,
marked as non-reproducible. Non-reproducible problems are
a major performance issue in bug repositories since they
take up a lot of time and effort from developers. The goal
of this paper is to create a prediction model for detecting
non-reproducible bugs. Due to sheer unexpected nature of
bug fixation, bug management is frequently a painful under-
taking for software engineers. Non reproducible bugs add
to the difficulty of this vexing indexing. This paper deals
with the development of a early prediction model for iden-
tification of non-reproducible bugs. In this work, a novel
framework named NRPredictor, has been proposed which
uses three ensemble learning and one feature selection algo-
rithm for Non-Reproducible bug prediction. The prediction

performance of the proposed framework has been examined
using projects of Bugzilla bug tracking system. Three open-
source projects viz. Mozilla Firefox, Eclipse and NetBeans
have been used for evaluating the prediction performance.
While forecasting the fixability of bug reports, the experi-
mental findings reveal that NRPredictor surpasses traditional
machine learning techniques. For Mozilla Firefox, Eclipse,
and NetBeans projects, NRPredictor, delivers performance
(in terms of F1-score) up to 88.3, 87.8, and 87.4% respec-
tively. An improvement in performance up to 6.1, 5 and 2.7%
has been obtained for NetBeans, Eclipse, and Mozilla Fire-
fox projects, respectively as compared to the best performing
standalone machine learning classifier.

Keywords  Non-reproducible bugs · Reproducible bugs ·
Machine learning · Classification · Ensemble learning ·
Feature selection · Fixability prediction · Mining software
repositories

1  Introduction

The emergence of numerous project management tools and
approaches have attributed to the increased project complex-
ity and team-based initiatives. The use of bug tracking tools
is an important aspect of open-source project management.
Bug reports and their debugging procedures have become an
unavoidable part of software development during the previ-
ous few decades (Kamkar 1998). Software developers work
hard to ensure that the software entity is bug-free (Fagan
2002). However, in actuality, a high number of defect reports
are encountered by any software. For collecting, organis-
ing, and monitoring of incoming bug reports, large software
companies use bug tracking systems (Breu et al. 2010). Bug
tracking systems (BTS) are also termed as issue tracking

 *	 Kulbhushan Bansal
	 kul_bansal@yahoo.co.in

	 Gopal Singh
	 gsbhoria@gmail.com

	 Sunesh Malik
	 suneshmlk@gmail.com

	 Harish Rohil
	 harishrohil@gmail.com
1	 Department of CSE, Chaudhary Devi Lal University, Sirsa,

Haryana, India
2	 Department of CSA, Maharshi Dayanand University, Rohtak,

Haryana, India
3	 Maharaja Surajmal Institute of Technology, Delhi, India
4	 Department of CSE, Chaudhary Devi Lal University, Sirsa,

Haryana, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-023-01902-7&domain=pdf
http://orcid.org/0000-0003-3874-8949

990	 Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009

1 3

systems (ITS), hence, they have been used interchange-
ably in this paper. Past works have produced a multitude of
research endeavours to ensure genuine treatment of bugs.
Out of these, most works are concerned with bug summary
generation (Gupta and Gupta 2021), meta-field prediction
(such as severity, priority, etc.) (Kumari et al. 2020; Sharma
et al. 2021), duplicate identification (Neysiani et al. 2020;
Isotani et al. 2021), developer recommendation (Goyal and
Sardana 2016; Ye et al. 2020), reopening (Tagra et al. 2021),
fixing time (Lee et al. 2020; Kumari et al. 2020), localization
(Li et al. 2021) etc. These methods collect numerous bug
report parameters/ meta-fields from bug repositories and use
them to create the prediction models for certain tasks.

In basic scenario, various stakeholders of BTS (such as
end users, developers, and testers) file the problems found
to BTS (Anvik 2006). Bug triager checks the bug’s exist-
ence and if found as valid, assigns the bug to the developer
(Zhang et al. 2014). The developer uses information sup-
plied by reporter in the bug report to reproduce the problem
(Shokripour et al. 2015). However, if the developer is unable
to replicate the bug, it is designated as Non-Reproducible
(NR) (Joorabchi et al. 2014). In bug repositories, NR bug
reports are a significant performance issue since they occupy
a significant amount of developer’s time and effort. NR bugs
create delay in bug fixing and they may even lead to the
release of software project with critical bugs (Rahman et al.
2020). Hence, the detection of NR bugs in early bug life
cycle is an open research problem requiring investigation.

Joorabchi et al. (Joorabchi et al. 2014) published first
characterization study on NR bugs. They addressed four
research questions related to quantitative and qualitative
analysis of NR bugs. They manually mined the cause catego-
ries and transition patterns of about 1600 NR bugs. Further,
they studied the NR bugs which eventually got fixed. After
conducting an exploratory investigation on 6 bug tracking
repositories, they discovered that 17% of all bug reports are
resolved as NR. The cause categories for 1,643 NR bugs
are defined as Interbug Dependencies (45%), Environmen-
tal Differences (24%), Insufficient Information (14%), Con-
flicting Expectations (12%), Non-deterministic Behaviour
(3%) and Others (2%). Furthermore, only around 2% of all
NR bug reports get fixed with code fixes in the end, while
the other half are implicitly repaired. This work puts some
light on the factors leading to make bugs NR, however, it
does not provide any mitigation strategy. It does not provide
any mechanisms to improve the bug fixing process. Further,
(Goyal and Sardana 2017) presented a sentiment analysis
based study of developers who worked on NR issue fixes.
They discovered that developer comments posted in NR bug
reports are more negative than standard defects. Machine
learning classifiers are then used to forecast fixable issues
from NR flagged bugs. Our work is different from this work
as we do not study developer sentiments as bug reports are

technical documents and they constitute technical keywords
which lack any kind of sentiment. Secondly, the prediction
model proposed by Goyal and Sardana (2017) deals with the
prediction of reopened bugs whereas our work deals with
the prediction of new bugs. Hence, the work presented in
this paper attempts to fill the research gap present in the
literature “ to provide a mitigation strategy to early predict
the NR bugs”.

To the best of our knowledge, there does not exist any
work on early prediction of NR bugs. A unique NRPredictor
framework is provided in this paper to forecast the fixability
of bug reports. For fixability prediction, the proposed model
combines feature selection and ensemble learning methods.
Ensemble-based approaches use the capabilities of several
different basic classifiers to improve classification accuracy
(Alzubi 2015). In this method, the training data is first sep-
arated into many disjoint groups, and then each subset is
trained using a base classifier. Feature selection algorithms
try to reduce the complexity of the system.

The following are the current work’s key research con-
tributions (RC):

1.	 The early fixability problem in bug reports has been
examined. In this RC, the problem of prediction of bug
type (R or NR) when a new bug is filed to BTS has been
examined.

2.	 A novel framework, NRPredictor, based on feature
selection and ensemble machine learning algorithms,
has been proposed. In this RC, a novel framework has
been proposed which predicts whether a new bug report
will get fixed or it will be marked as NR.

3.	 Thirteen machine learning classifiers (Bayes Net, Naive
Bayes, Naive Bayes Multinomial Text, Naive Bayes
Updateable, IBk, Zero-R, JRip, OneR, PART, Decision
Table, J48, Rep Tree and Random Tree) along with three
ensemble learning techniques (Bagging, Boosting and
Stacking) and one feature selection technique (Classi-
fier Attribute Evaluator) has been utilized in proposed
framework, NRPredictor. In this RC, traditional and
advanced machine learning algorithms have been uti-
lized for prediction of a newly reported bug as Fixable
or NR.

4.	 The proposed framework, NRPredictor has been tested
on three large-scale, well-known, long lived, open-
source Bugzilla repository projects, namely NetBeans,1
Eclipse,2 and Mo-zilla Firefox.3 In this RC, bug reports
from three long lived software projects have been col-

1  https://​netbe​ans.​org/​bugzi​lla/.
2  https://​bugs.​eclip​se.​org/​bugs/.
3  https://​bugzi​lla.​mozil​la.​org/.

https://netbeans.org/bugzilla/
https://bugs.eclipse.org/bugs/
https://bugzilla.mozilla.org/

991Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009	

1 3

lected and processed to be fed into NRPredictor frame-
work for prediction purposes.

5.	 Four evaluation metrics (Precision, Recall, F1-Score,
Area under Receiver Operating Ch-aracteristic Curve)
have been used for comparison. The experimental find-
ings reveal that the proposed framework, NRPredictor
outperforms traditional machine learning techniques
consistently. F1-scores up to 88.3, 87.8 and 87.4% for
Mozilla Firefox, Eclipse and NetBeans projects has been
obtained respectively. In this RC, performance evalua-
tion of proposed framework is conducted using various
performance evaluation metrics.

The paper is organised as per the roadmap defined in Fig. 1.
Section 2 goes through the background information which
includes NR bug report structure, the bug report life cycle,
and the ensemble and feature selection approaches used
in this paper. The relevant past work across three domains
(reproducibility, prediction and ensemble techniques) is dis-
cussed in Sect. 3. The architecture of proposed NRPredictor
framework is detailed in Sect. 4. The experimental details
are presented in Sect. 5. The results and analysis of the

experimental evaluation are presented in Sect. 6. The risks
to validity are discussed in Sect. 7. Finally, Sect. 8 brings the
work to a close by providing conclusion. Section 9 discusses
future research prospects.

2 � Background

This section covers the necessary background information
for this research, such as the fundamental layout of a bug
report, the normal life-cycle of an issue, and various ensem-
ble learning & feature selection methodologies used.

2.1 � Bug report structure

A bug report is a record that contains complete information
concerning a problem. It contains a number of bug meta-
fields as well as some textual material. Bug id, product,
component, platform, hardware, version, operating system,
severity and priority, milestone, status, resolution, reporter’s
name, time-stamp of report submission, assignee, and so
on are all included in the meta-fields. A quick summary

Fig. 1   The roadmap for article

992	 Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009

1 3

or tagline, a detailed explanation of the error, and com-
ments provided by the reporter, developer, or testers are
all included in the textual information. Figure 2 displays
an example of an Eclipse Project’s NR bug report (Bug id:
13747).4

In Fig. 2, the unique serial number assigned for every
problem is referred to as the "Bug ID". The term "Product"
refers to the wide region from which the bug sprang. The
term "Component" refers to the product’s next level of cat-
egorisation. One or more components can be found in a sin-
gle product. The term "Version" refers to the software prod-
uct version in which a defect was discovered. The "Status"
parameter indicates where the bug is in its life cycle. The
name of the developer who has been assigned task for fixing
the fault is referred to as "Assigned-to." The term "Sum-
mary" refers to a one-sentence explanation of the reported
defect. "Description" refers to the bug report’s whole com-
prehensive specification, which is often written by reporter.
Description usually consists of 3 main elements: noticed

behaviour, reproducible processes, and predicted software
behaviour (Chaparro et al. 2017). The term "Comments"
refers to an open-ended discussion among developers to find
viable remedies for bug solving.

Along with particular meta-fields and textual contents,
bug report contains attachments, URLs, and automatically
produced notes. Extra information about the problem is com-
monly included in these columns, like test cases, patch filed,
user-supplied screen shots, the URL of website containing
issue, similar duplicate bugs, and so on.

2.2 � Bug life‑cycle

A bug progresses via various phases throughout its exist-
ence. Figure 3 shows life-cycle of a bug report in Bugzilla
repository.5 For different projects, life-cycle stages may vary
slightly but the mainstream order remains same. Initially,
any bug’s existence is UNCONFIRMED. A bug reporter
has reported the problem thus far, but its existence has yet

Fig. 2   An example of a NR bug report

4  https://​bugs.​eclip​se.​org/​bugs/​show_​bug.​cgi?​id=​13747. 5  https://​www.​bugzi​lla.​org/​docs/2.​18/​html/​lifec​ycle.​html.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=13747
https://www.bugzilla.org/docs/2.18/html/lifecycle.html

993Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009	

1 3

to be validated. The existence of an unconfirmed issue is
confirmed by the bug triager, who then labels the validated
bug as NEW. Because it is presumed that a bug submitted
by an expert is real and existent, it may reach NEW state
immediately. The bug triager assigns a verified bug to the
developer and labels the resolution with ASSIGNED. The
allocated developer investigates the problem, reproduces it,
and performs appropriate modifications for fixing it.

There are numerous bug report resolutions available in
the RESOLVED status, including fixed, duplicate, won’t
fix, worksforme (NR), invalid, remind, and later. The
resolution of the problem is indicated as fixed once the
assigned developer has successfully made relevant source
code adjustments. However, the assigned developer does
not have to always discover a valid remedy to the reported
issue. A software developer may discover that the claimed

Fig. 3   Life-cycle of a typical bug report in Bugzilla Repository

994	 Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009

1 3

problem is not unique when investigating a bug report. It
might be a duplicate of an existing or fixed problem, or
it could have the same basic cause as another bug. In this
case, the bug’s resolution is marked as duplicate (Sureka
and Jalote 2010). The resolution of a bug report that out-
lines a non-rectified issue is set as won’t fix. The prob-
lem is marked as NR or worksforme if it cannot be recre-
ated using the information given in the bug report. When
additional information is added to the NR bug, it may be
reopened, which may aid in replicating the problem. A
bug is marked as resolving invalid when it is proven to
be illegible or spam. Invalid bugs are considered as not
real problems (Yuan et al. 2021). Bugs that force third-
party software or websites to make changes, for example,
constitute a breach of legal and contractual obligations. If
bug requires further information and cannot be addressed
immediately, then it is marked with resolution remind or
later (Abou et al. 2021).

2.3 � Ensemble learning/ classification

The classification refers to division or category in a system
that organises or categorises objects. Initially, manual clas-
sification of items was popular. Manual classification, on the
other hand, has the drawbacks of being exceedingly time-
consuming and fundamentally subjective in nature (Bauer
et al. 1999; Alzubi et al. 2018). As a result, automatic classi-
fication algorithms were developed. Automatic classification
is more objective, quicker, and scalable. It can be effective
in more complicated, nuanced circumstances, such as busi-
ness-specific material, because it provides companies with
a more systematic and consistent classification. Artificial
intelligence techniques are excessively used in computing
for training, forecasting and evaluation purposes (Movassagh
et al. 2021). Automatic document categorization can benefit
from machine learning and artificial intelligence techniques
to improve speed and efficiency.

Ensemble classification approaches are a type of meta
machine learning algorithm that has recently gained popu-
larity. To improve predictive performance, these strategies
aggregate predictions from different learning algorithms
(Dietterich et al. 2000). Distinct machine learning classi-
fiers have different fundamental principles and training data
sensitivity. As a result, various categorization systems make
different predictions based on the data. These various out-
comes are used by ensemble machine learning algorithms
to produce a superior prediction output (Alzubi et al. 2020).
These strategies aim to reduce prediction model bias and
variance while also attempting to improve prediction accu-
racy using only one of the constituent learning algorithms.
Three alternative ensemble classification approaches were
investigated in this paper.

1.	 Bagging: Bagging also referred as "Bootstrap Aggregat-
ing" is a meta-estimator that uses several random subsets
of the original dataset to fit a base classifier. The original
dataset is re-sampled via replacement, and the predic-
tions of several learners are combined for generating
final result. Breiman demonstrates bagging approach is
helpful for unstable learners (Breiman 1996).

2.	 Boosting: This approach combines various weak classi-
fiers to produce a powerful classifier. If the model has
a large error rate, it is deemed weak (0.5 or more for
binary classification). The ensemble classifier is con-
structed to reduce the mistakes obtained in the previous
step throughout each iteration. Iterations are repeated
till the point of maximum iterations or till whole train-
ing dataset is correctly predicted (Freund and Schapire
1995).

3.	 Stacking: Stacked generalisation, is an ensemble strat-
egy which uses a training dataset to train several base
classifiers and then uses these base classifiers to build
a new dataset. Then, using combiner machine learning
approach, this new dataset is incorporated (Wolpert
1992).

2.4 � Feature selection techniques

Raw machine learning data is made up of a variety of
attributes, some of which are useful for making predictions
and others that aren’t. Feature selection approaches assist
in identifying a set of relevant traits from a large number
of options. The Classifier Attribute Evaluator was used to
select features in this paper. The attribute evaluator is a
tool for evaluating each attribute (also known as a column
or feature) in your dataset in relation to the output variable
(e.g. the class).

3 � Literature review

Since the previous two decades, the study of software
flaws has been a hot topic of research. (Perry and Stieg
1993) presented a preliminary research on the investiga-
tion of reported problems in major software projects. The
authors performed a poll to find out what kinds of diffi-
culties users report, how they are discovered, and at what
point of testing they are filed to BTS. Since then, various
studies have been done that examine different buggy loca-
tions. This section goes into previous research in these
buggy domains, which are divided into three categories:
reproducing bug reports, prediction models in bug fixing,
and ensemble learning in bug fixing.

995Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009	

1 3

3.1 � Reproducing bug reports

A bug report comprises 3 key elements: procedures for rep-
lication of problem, what reporter anticipated to observe,
and what reporter actually observed (Chaparro et al. 2017).
The above listed 3 elements aid software developers in veri-
fying, finding, and replicating the problematic scenario, as
well as understanding the fundamental cause of the fault.
After that, the allocated developer fixes the problem by mak-
ing modifications to the source code. Reproducing a bug
report is famously difficult since engineers are only given
limited information about the failure, such as a memory
dump. ReCrash is an automated approach to construct test-
cases for simulating a software failure introduced by Artzi
et al. (2008). CRASHDROID was created by White et al.
(2015) for Android apps to automate system of replicating
problems. Jin and Orso (2012) established BugRedux, an
approach to gather extra information from the buggy ground
and transmits the collected information to developers for
repeating the failure circumstance. Despite the fact that stud-
ies exist to assist developers in recreating problem reports,
their in-field performance is quite poor. RecrashJ, the Java
version of ReCrash, for example, has a performance over-
head of 13–64%.

If a developer is unable to replicate an issue, the resolu-
tion is marked as NR. It is often perplexing and time-con-
suming for engineers to manage NR problems. An empirical
analysis over 32,000 NR bugs was given by Joorabchi et al.
(2014) which discovered that resolution NR is assigned to
17% of all bug reports, and that just 3% of NR-assigned
bug reports get repaired. Further, 1,643 NR issue reports are
manually sorted into six different cause groups, including
inter-bug dependencies, environmental differences, insuffi-
cient information, conflicting expectations, non-determinis-
tic bugs, and others. Goyal and Sardana (2017) did a senti-
ment study of developers who worked on NR issue fixes.
They discovered that developer comments posted in NR bug
reports are more negative than standard defects. Machine
learning classifiers are also used to forecast fixable issues
from NR flagged bugs.

Table 1 presents the review of literature in the broad
domain of NR bugs. From Table 1 it has been observed that
these works put some light on the factors leading to make
bugs NR, however, they do not provide any concrete miti-
gation strategies. Joorabchi et al. (2014) does not provide
any mechanisms to improve the bug fixing process. Goyal
and Sardana (2017) presented a sentiment analysis based
model to forecast fixable issues from NR flagged bugs. How-
ever, their work deals with the prediction of re-opened bugs
whereas the current manuscript deals with the prediction of
new bugs. Hence, the work presented in this paper attempts
to fill the research gap present in the literature “to provide a
mitigation strategy to early predict the NR bugs". Ta

bl
e 

1  
R

ev
ie

w
 o

f p
as

t w
or

ks
 o

n
no

n-
re

pr
od

uc
ib

le
 b

ug
s

Re
fe

re
nc

e
O

bj
ec

tiv
e

of
 st

ud
y

Te
ch

ni
qu

e
Em

pl
oy

ed
D

at
as

et
s u

se
d

Re
su

lts

Jo
or

ab
ch

i e
t a

l.
(J

oo
ra

bc
hi

 e
t a

l.
20

14
),

20
14

Em
pi

ric
al

 a
na

ly
si

s o
n

N
R

 b
ug

s
Q

ua
nt

ita
tiv

e
an

d
qu

al
ita

tiv
e

an
al

ys
is

M
oz

ill
a

fir
ef

ox
, e

cl
ip

se
, m

ed
ia

w
ik

i,
m

oo
dl

e,
 fi

re
fo

x
an

dr
oi

d,
 in

du
str

ia
l

da
ta

se
t

17
%

 re
po

rte
d

bu
gs

 a
re

 N
R

. C
au

se

ca
te

go
rie

s:
 in

te
rb

ug
 d

ep
en

de
nc

ie
s

(4
5%

),
En

vi
ro

nm
en

ta
l d

iff
er

en
ce

s
(2

4%
),

In
su

ffi
ci

en
t i

nf
or

m
at

io
n

(1
4%

),
C

on
fli

ct
in

g
ex

pe
ct

at
io

ns
 (1

2%
),

N
on

-
de

te
rm

in
ist

ic
 b

eh
av

io
ur

 (3
%

)
G

oy
al

 &
 S

ar
da

na
 (G

oy
al

 a
nd

 S
ar

da
na

20

17
),

20
17

Fi
xa

bi
lit

y
pr

ed
ic

tio
n

of
 N

R

bu
gs

 (r
e-

op
en

in
g

pr
ed

ic
tio

n)
Em

pi
ric

al
 a

na
ly

si
s &

 M
L

M
oz

ill
a

fir
ef

ox
, e

cl
ip

se
de

ve
lo

pe
r’s

 a
re

 re
lu

ct
an

t t
o

w
or

k
on

 N
R

bu

gs
. M

L
ba

se
d

m
od

el
s c

an
 p

re
di

ct

fix
ab

le
 N

R
 b

ug
s w

ith
 p

er
fo

rm
an

ce
 u

p
to

 7
5%

R
ah

m
an

 e
t a

l.
(R

ah
m

an
 e

t a
l.

20
20

),
20

20
Em

pi
ric

al
 a

na
ly

si
s o

n
N

R
 b

ug
s

U
se

r s
tu

dy
M

oz
ill

a
fir

ef
ox

, e
cl

ip
se

K
ey

 fa
ct

or
s:

 b
ug

 d
up

lic
at

io
n,

 in
te

rm
it-

te
nc

y,
 m

is
si

ng
 in

fo
rm

at
io

n,
 a

m
bi

gu
ou

s
sp

ec
ifi

ca
tio

ns
, t

hi
rd

-p
ar

ty
 d

ef
ec

ts
, e

tc
G

oy
al

 &
 S

ar
da

na
 (G

oy
al

 a
nd

 S
ar

da
na

20

18
),

20
18

C
ha

ra
ct

er
iz

at
io

n
stu

dy
 o

f
de

ve
lo

pe
rs

 in
vo

lv
ed

 in
 fi

xa
-

tio
n

of
 N

R
 b

ug
s

Q
ua

nt
ita

tiv
e

an
al

ys
is

M
oz

ill
a

fir
ef

ox
de

ve
lo

pe
rs

 w
ho

 fi
x

N
R

 b
ug

s p
os

se
ss

hi

gh
er

 e
xp

er
tis

e
in

 re
la

te
d

to
pi

cs
 a

s
co

m
pa

re
d

to
 d

ev
el

op
er

s w
ho

 fi
x

R
bu

gs

996	 Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009

1 3

3.2 � Prediction models in bug fixing

In the arena of software engineering research, debugging
is a well-known concept. A lot of research and prediction
models have been established for bug summarization (Koh
et al. 2021), bug triaging (Mohan et al. 2016; Goyal and
Sardana 2017), duplicate detection (Rocha and Carvalho
2021), fix time prediction (Yuan et al. 2021), blocking
bug prediction (Cheng et al. 2020), reopened bugs (Shihab
et al. 2013), etc. Garcia and Shihab (2014) developed a
bug-blocking prediction model. They inspected the per-
formance of decision tree, Naive Bayes, kNN, random for-
est, and Zero-R classifiers using 14 bug attributes to dis-
criminate between blocking and non-blocking bug reports.
Using 10-fold cross validation, they were able to reach an
F-measure of 15 − 42% . Xia et al. (2015) expanded on this
research to address the problem of class imbalance in the
blocking problem prediction. It has been found that ensem-
ble learners successfully operate upon the phenomena of
class imbalance and, as a result, may increase minority
class prediction accuracy. Our forecasting is based on
the same principles. Shihab et al. (2013) took care of the
reopened bug reports. For bug report classification, they
employed 22 distinct characteristics divided into four cat-
egories: developer work habits, bug report, problem fix,
and team. While predicting reopened bugs, they reported
accuracy values 52.1–78.6% and recall values 0.5–94.1%
for reopened bug finding. Comment text and last status
were discovered to be the most important elements.

Hewett and Kijsanayothin (2009) built a model that antic-
ipated how long it would take to fix software bugs. On a
medical software system dataset, the suggested model has an
accuracy of 93.44%. Guo et al. (2010) presented an architec-
ture for predicting fixability of a freshly discovered problem.
On Microsoft Windows Vista project, the suggested model
achieved accuracy values of up to 68% and recall values of
up to 64%. Zimmermann et al. (2012) analysed and evalu-
ated reopened bug complaints to determine likely causes
of reopening and to assess their effect. Table 2 presents the
review of literature related to prediction models in different
phases of bug handling. Meta-heuristic algorithms such as
AHP, TOPSIS, etc. are also used in bug handling processes
nowadays (Goyal and Sardana 2017). Research is in progress
to further optimise the meta-heuristic algorithms (Agushaka
et al. 2022; Abualigah et al. 2021, 2022; Oyelade et al. 2022;
Abualigah et al. 2021; Sethuraman et al. 2019).

Various studies have showed that machine learning
classifiers are successful in predicting different buggy
locations(Garcia and Shihab 2014; Ahmed et al. 2021; Mal-
hotra et al. 2021; Rashmi and Kambli 2020). Our research
focuses on NR defects, as opposed to many prediction mod-
els present in past works relating to software debugging pro-
cedures. The tests were carried out on bug reports identified

with the classes Reproducible (R) and NR. The goal is to
forecast which bug reports can be fixed.

3.3 � Ensemble learning in bug fixing

In the literature of machine learning classification, ensemble
learning plays an essential role. Numerous ensemble based
classifiers have been suggested to increase the performance
of a traditional machine learning classifiers (López et al.
2013). The effectiveness of ensembling technique may be
attributed to the diversity of their base learners (Guo et al.
2008). As a result, ensemble classifiers use a group of basis
classifiers to build a prediction model. There are many dif-
ferent forms of ensemble models, e.g., bagging (Breiman
1996), boosting (Freund and Schapire 1995), stacking
(Wolpert 1992), etc. The bagging approach uses the same
basic classifier to train several classifiers, which are then
combined using an unweighted majority voting mechanism.
The majority of votes determines the final forecast. Bagging
approaches typically outperform single model algorithms by
a wide margin. It is never considerably insufficient since it
mitigates the classifiers’ volatility by raising the victory pro-
portion (Phua et al. 2004). Boosting is an iterative method
which provides a weight value to the training dataset in each
iteration. During 1st run, all weights are put equal (Freund
and Schapire 1995). The weights of improperly categorised
instances are raised with each repetition. This helps weak
learners to concentrate on the training set’s difficult cases.
Using a meta-classifier like Logistic Regression, stacking
combines numerous classifiers (Wolpert 1992). Multiple
basic classifiers are used to classify a single test case. The
output of these several basic classifiers is fed into a meta-
classifier, which produces the ultimate prediction.

In the literature on software debugging, ensemble learn-
ers have been employed in a number of studies. Stacking
ensemble approach for automated bug triaging was assessed
by Jonsson et al. (2016). Stacking beats standard machine
learning techniques for the multi-class issue of developer
selection, according to their findings. Goyal and Sardana
(2019) provided an empirical study on bug triaging strat-
egies using ensemble classification algorithms (bagging,
boosting, majority voting, average voting, and stacking).
Ensemble classifiers outperformed standard machine learn-
ing algorithms in the identification of an appropriate devel-
oper to handle the bug report, according to the researchers.

Limsettho et al. (2018) presented a SMOTE-based tech-
nique to predict cross-project defects. Laradji et al. (2015)
found that ensemble learning had a favourable influence
on software fault prediction. Xia et al. (2015) proposed
ELBlocker, an ensemble learning approach for predict-
ing blocking problems. They demonstrated that orthodox
machine learning methods perform poorly for severely
unbalanced datasets, but ensemble-based strategies aid in the

997Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009	

1 3

Ta
bl

e 
2  

R
ev

ie
w

 o
f p

as
t w

or
ks

 o
n

pr
ed

ic
tio

n
m

od
el

s i
n

bu
g

fix
in

g

Re
fe

re
nc

es
O

bj
ec

tiv
e

of
 st

ud
y

D
at

as
et

s u
se

d
M

L
te

ch
ni

qu
es

Re
su

lts

Fa
n

et
 a

l.
Fa

n
et

 a
l.

(2
01

8)
, 2

02
0

Va
lid

 b
ug

 p
re

di
ct

io
n

Ec
lip

se
, n

et
be

an
s,

m
oz

ill
a,

 fi
re

fo
x,

th

un
de

rb
ird

SV
M

, r
an

do
m

 fo
re

st
A

re
a

un
de

r r
ec

ei
ve

r o
pe

ra
tin

g
ch

ar
ac

-
te

ris
tic

 c
ur

ve
 u

p
to

 0
.8

1
Sh

ih
ab

 e
t a

l.
Sh

ih
ab

 e
t a

l.
(2

01
3)

,
20

13
Re

op
en

ed
 b

ug
 p

re
di

ct
io

n
Ec

lip
se

, a
pa

ch
e,

 o
pe

n
offi

ce
D

ec
is

io
n

tre
e

re
ca

ll
up

 to
 9

4.
1%

X
i e

t a
l.

 X
i e

t a
l.

(2
01

9)
, 2

01
9

B
ug

 tr
ia

gi
ng

Ec
lip

se
, m

oz
ill

a,
 g

en
to

o
SV

M
, C

N
N

ac
cu

ra
cy

 u
p

to
 0

.7
3

N
ey

si
an

i a
nd

 B
ab

am
ir

N
ey

si
an

i a
nd

B

ab
am

ir
(2

02
0)

, 2
02

0
D

up
lic

at
e

de
te

ct
io

n
A

nd
ro

id
k-

ne
ar

es
t n

ei
gh

bo
ur

, S
V

M
, L

in
ea

r
re

gr
es

si
on

ac
cu

ra
cy

 u
p

to
 9

7%

Ta
m

ra
w

i e
t a

l.
 T

am
ra

w
i e

t a
l.

(2
01

1)
,

20
11

B
ug

 tr
ia

gi
ng

Ec
lip

se
, m

oz
ill

a
fir

ef
ox

N
ai

ve
 b

ay
es

, C
4.

5,
 S

V
M

A
cc

ur
ac

y
up

 to
 8

8.
8%

Ek
an

ay
ak

e
Ek

an
ay

ak
e

(2
02

1)
, 2

02
1

Se
ve

rit
y

pr
ed

ic
tio

n
U

ni
x

ke
rn

el
N

ai
ve

 b
ay

es
, l

og
ist

ic
 re

gr
es

si
on

, d
ec

i-
si

on
 tr

ee
A

re
a

un
de

r r
ec

ei
ve

r o
pe

ra
tin

g
ch

ar
ac

-
te

ris
tic

 c
ur

ve
 u

p
to

 0
.6

5
Sh

at
na

w
i a

nd
 A

la
zz

am
 S

ha
tn

aw
i a

nd

A
la

zz
am

 (2
02

2)
, 2

02
2

Pr
io

rit
y

an
d

se
ve

rit
y

pr
ed

ic
tio

n
Ec

lip
se

M
ul

ti-
no

m
in

al
 n

ai
ve

 b
ay

es
, r

an
do

m

fo
re

st,
 b

ag
gi

ng
, a

da
bo

os
t,

SV
M

,
K

N
N

, l
in

ea
r S

V
M

A
cc

ur
ac

y
up

 to
 1

00
%

D
ao

 a
nd

 Y
an

g
D

ao
 a

nd
 Y

an
g

(2
02

1)
,

20
21

Pr
io

rit
y

Pr
ed

ic
tio

n
Ec

lip
se

, m
oz

ill
a,

 o
pe

n
offi

ce
R

an
do

m
 fo

re
st,

 su
pp

or
t v

ec
to

r
m

ac
hi

ne
, a

nd
 M

ul
tin

om
ia

l N
aï

ve

B
ay

es

M
ac

ro
 p

re
ci

si
on

 2
6.

84
%

Zh
ou

 e
t a

l.
Zh

ou
 e

t a
l.

(2
01

9)
, 2

01
9

So
ftw

ar
e

de
fe

ct
 p

re
di

ct
io

n
N

A
SA

, P
RO

M
IS

E,
 A

EE
EM

, r
el

in
k

N
ai

ve
 b

ay
es

, s
up

po
rt

ve
ct

or
 m

ac
hi

ne
,

ra
nd

om
 fo

re
st,

 lo
gi

sti
c

re
gr

es
si

on
A

re
a

un
de

r r
ec

ei
ve

r o
pe

ra
tin

g
ch

ar
ac

-
te

ris
tic

 c
ur

ve
 u

p
to

 0
.8

0

998	 Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009

1 3

development of stronger prediction models. They found that
employing an ensemble-based method improved F1-Score
by 14.69% when compared to traditional machine learn-
ing classifiers. Lal, et al. (2017) introduced an ensemble-
based model for logging predictions called ECLogger. To
deal with the problem of class imbalance, they employed
bagging and voting ensemble approaches. Using ensemble-
based approaches, they were able to obtain better prediction
performance. Motivated by these studies (Jonsson,Borg,B
roman,Sandahl,Eldh and Runeson, 2016; Lal et al., 2017;
Xia,Lo,Shihab,Wang and Yang, 2015) the issue of fixability
prediction has been addressed. Ensemble based techniques
along with feature selection techniques has been used to pre-
dict the fixable and NR bugs optimally.

4 � NRPredictor framework

This section describes the architecture of proposed frame-
work, NRPredictor as shown in Fig. 4. The framework,
NRPredictor, is divided into two phases: model building
and prediction.

PHASE 1: model building phase
Initially, previous bug reports from the bug repository

with known labels (R or NR) are used as input. Following
that, different characteristics are retrieved and pre-process-
ing techniques are used. Machine learning is then used to
learn multiple models based on the retrieved information.
Finally, this step generates hybrid models for forecasting
the class for bug reports that haven’t been tagged. The

following are the phases in model building phase of pro-
posed framework, NRPredictor:

1.	 Dataset acquisition: First, bug reports with class labels
(R and NR) are collected from various projects of Bug-
zilla repositories in this stage. A bug report is considered
as NR if it is marked as NR or "worksforme" during the
life.

2.	 Feature extraction: Next, 9 different features are drawn
out from the collected bug reports. Among the 9 fea-
tures, 8 are numerical (component, severity, priority,
operating system, hardware, version, number of com-
ments and cc count) and 1 is textual in nature. All of the
features along with their descriptions which are utilised
in this paper are listed in Table 3.

3.	 Data pre-processing: The bug reports’ textual contents
are evaluated in this stage to build a feature vector con-
taining critical keywords. This stage entails cleaning up
the contents of the text. The bug report’s textual descrip-
tion is received first. The phrases are then tokenized,
with all concatenated terms being broken up and further
their case changed to the lower version. Stop words have
been eliminated because their frequency is higher but
they do not constitute any information. Python Natural
Language Processing ToolKit (NLTK) has been used to
leverage the stop word list. Porter stemming (supplied
by Python NLTK) is then used to transform the remain-
ing tokens to their root phrase. Stemming is the pro-
cess of combining closely similar phrases (for example,

Fig. 4   Architecture of proposed framework: NRPredictor

999Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009	

1 3

stemming converts the two words likes and likely to root
terms like).

4.	 Feature vector creation: Next, the frequency of each
token has been determined after data preprocessing,
and a textual feature vector has been constructed. In this
stage, the top 100 tokens derived from textual character-
istics with the highest overall frequency were considered
for textual features.

5.	 Feature selection/ reduction: Feature selection tech-
niques help to obtain a set of relevant features from
the list of all available features. In this work, Classifier
Attribute Evaluator has been used for feature selection.
The attribute evaluator is a method for evaluating each
attribute in your dataset (also known as a column or
feature) in relation to the output variable (e.g. the class).

6.	 Classifier learning: Various NRPredictor models were
created in this stage. First, 13 machine learning algo-
rithms (Bayes Net, Naive Bayes, Naive Bayes Multi-
nomial Text, Naive Bayes Updateable, IBk, Zero-R,
JRip, OneR, PART, Decision Table, J48, Rep Tree and
Random Tree) from four families: Bayes, trees, rules
and lazy were used to learn the models. Comparison
of the performances of 13 machine learning classifiers
was used to conduct an empirical investigation. Then,
employing 13 machine learning classifiers, three ensem-
ble learning strategies were used. To create prediction
models for fixability prediction, three ensemble-based
strategies (bagging, boosting, and stacking) are utilised.

PHASE 2: prediction phase
This phase accepts the bug report as input for which

the class label has to be anticipated. Then it draws out
the bug report’s characteristics, uses pre-processing tech-
niques, and predicts label using the hybrid models created
during the model building phase (Phase 1). The following

step is involved in the prediction phase of the NRPredictor
framework:

Classification In this step, first, 9 features for test bug
report are extracted. Then, pre-processing is done by apply-
ing tokenization, casing, removal of punctuation, stop word
removal and stemming corresponding to the test bug report.
The pre-processed feature vector is then supplied to the
proposed framework, NRPredictor. On the basis of various
learned hybrid models, the test bug report is classified and
a label is predicted corresponding to it (label is either R
or NR). Next, the predicted label by proposed framework,
NRPredictor and the ground truth label is considered and
various evaluation metrics are computed to evaluate the
prediction performance of learned models and NRPredictor
framework.

5 � Experimental details

The subject systems, implementation details, assessment
measures, and research issues addressed in this paper are
detailed in this section. The experimental setup constitutes
MacBook Pro with 8 GB of memory and a 2.7 GHz Intel
Core i5 processor running Mac OS X 10.13.1. However,
few machine learning algorithms were not able to be run
in the given platform. The time threshold of 8 hrs has been
used. The requirement of high computing power has been
considered for all such combinations. Hence, all such algo-
rithm combinations have been run on a GPU equipped with
NVIDIA Tesla V100 with 16GB RAM (5120 CUDA Cores).
Four such cores in parallel manner have been used for this
work. For experimentation, Python programming language
has been used with Jupyter Notebook as Integrated Develop-
ment Environment (IDE). Scikit machine learning library

Table 3   Feature/ parameter list used in NRPredictor framewore

Name of parameter Description

Component Component where the problem first appeared
Severity The intensity of the bug’s influence on the software system. The reporter of the bug report assigns

this field. Minor, Major, Normal, Trivial, and blocking are all possible values
Priority Measure of quickness required for addressing the bug. The developers in charge of resolving the

problem assign this field. Priority is usually determined by the severity field. Values that might
be used: P1 (highest priority: urgent addressing is required), P2, P3, P4, and P5 (lowest priority:
urgent addressing is required) (lowest priority)

Operating system The operating system where the problem first appeared
Hardware Hardware of the system where the problem first appeared
Version The software’s version
Number of comments Before designating a bug report as NR, the number of comments submitted by developers is counted
CC Count The number of developers on the bug report’s CC list
Keywords Terms derived from the bug report’s textual content

1000	 Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009

1 3

has been used for building conventional and ensemble clas-
sification models.

5.1 � Subject systems

This research examined bug reports obtained from three pro-
jects of Bugzilla BTS: NetBeans, Eclipse, and Mozilla Fire-
fox. NetBeans is an open source development environment,
tooling platform, and application framework for creation of
programs using modules.6 It is a Java application. Eclipse
is a framework that contains a number of tools for creating
a Java integrated development environment (IDE).7 It was
introduced in 2001 and is the most extensively used Java
IDE. It is primarily written in Java. Mozilla Firefox is an
open-source web browser launched in 2002.8 The popular
web browser is available for a variety of systems. It is writ-
ten in C++.

Since a huge number of bug reports are sent on a daily
basis, the Bugzilla dataset’s different projects are capable of
assessing trends and evaluating recommended techniques.
While choosing experimental projects, it was attempted
to cover a wide variety of disciplines. These projects have

been used frequently in the past studies Anvik and Murphy
(2011); Bhattacharya and Neamtiu (2010); Tamrawi et al.
(2011). These projects’ popularity and maturity makes it
ideal for researching any novel bug-handling techniques. A
total of 261551 bug reports were gathered and divided into
two groups (R and NR). The distribution of bug reports into
R and NR categories is depicted in Table 4.

5.2 � Implementation details

The proposed framework, NRPredictor has been evaluated
using bug reports obtained from three long lived projects of
Bugzilla BTS: NetBeans, Eclipse, and Mozilla Firefox. The
general procedure of implementation is depicted in Fig. 5.
First, the bug reports from the bug repository with known
labels (R or NR) are collected and are considered as ground
truth. Next, 8 numerical (component, severity, priority,
operating system, hardware, version, number of comments
and cc count) and 1 textual feature is extracted from bug

Fig. 5   General procedure of proposed framework: NRPredictor

Table 4   Distribution of bug reports in R and NR categories

Project Total bugs R bugs NR bugs

NetBeans 114,177 94,173 20,004
Eclipse 90,788 76,006 14,782
Mozilla firefox 56,586 32,113 24,473

6  https://​en.​wikip​edia.​org/​wiki/​NetBe​ans.
7  https://​en.​wikip​edia.​org/​wiki/​Eclip​se(softw​are).
8  https://​en.​wikip​edia.​org/​wiki/​Firef​ox.

https://en.wikipedia.org/wiki/NetBeans
https://en.wikipedia.org/wiki/Eclipse(software)
https://en.wikipedia.org/wiki/Firefox

1001Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009	

1 3

reports. The textual feature is then preprocessed by using
five procedures: tokenization, case conversion, punctuation
removal, stopword removal and stemming. Next, the fre-
quency of each token has been determined and 100 most
frequent tokens are considered for feature vector creation.
Further, feature selection technique called Classifier Attrib-
ute Evaluator has been used to further reduce the complexity
of dataset. Finally, various NRPredictor models have been
created using three machine learning algorithms (Bayes Net,
Naive Bayes, Naive Bayes Multinomial Text, Naive Bayes
Updateable, IBk, Zero- R, JRip, OneR, PART, Decision
Table, J48, Rep Tree and Random Tree) and three ensemble
learning strategies (bagging, boosting, and stacking) for each
considered project. Finally the built models are evaluated by
passing new bug reports as input. The proposed framework,
NRPredictor, outputs a class label (R or NR) corresponding
to the testing bug report.

5.3 � Evaluation metrics

Four common performance assessment criteria were utilised
to estimate the achieving power of NRPredictor framework:
Precision, Recall, F1-Score, and Area under Receiver Oper-
ating Characteristic (ROC) curve. All of the above assess-
ment criteria have been extensively utilised in the software
debugging area (Hewett and Kijsanayothin 2009; Shihab
et al. 2013; Xia et al. 2015). When utilising NRPredictor
models to predict class label, there are four possible out-
comes: (1) A bug is predicted as NR bug when it is truly NR
(True Positive: tp), (2) Predicted as NR but is truly R (False
Positive: fp), (3) Predicted as R when it is truly NR (False
Negative: fn), or (4) Predicted as R when it is truly R (True
Negative: tn). Different metrics such as accuracy, recall,
F1-Score, and ROC are computed using these four values:

1.	 Precision: It denotes the proportion of relevant occur-
rences found among the overall number of examples
found. Equation 1 shows the formula for precision.

2.	 Recall: It denotes the percentage of relevant occurrences
found out of all relevant examples. Equation 2 shows the
formula for recall.

3.	 F1- Score: There is a trade-off between precision and
recall measurements. An rise in one statistic frequently
results in a drop in the other. As a result, evaluating pre-
diction performance using accuracy and recall is prob-
lematic. The F1-Score measure combines the advantages

(1)Precision =
tp

tp + fp

(2)Recall =
tp

tp + fn

of accuracy and recall metrics. The weighted harmonic
mean of precision and recall is represented by the
F1-Score. It’s a frequently used metric for evaluating
performance (Lal, et al. 2017; Xia et al. 2015). Equa-
tion 3 shows the formula for F1-Score.

 when � is equal to 1, F1-Score is calculated as shown
in Equation 4

4.	 Area under ROC curve: The ROC (Receiver Operat-
ing Characteristic) curve is a graph of the true posi-
tive rate (tpr) vs the false positive rate (fpr). The area
under the resulting ROC plot is represented by the area
under the ROC curve. It assesses the possibility of an
NR bug report being assigned a greater likelihood than
an R problem report. The ROC value might be anything
between 0 and 1. A larger number in ROC value shows
better prediction performance of the developed model
of NRPredictor framework.

The effectiveness of NRPredictor models was assessed
using the cross validation approach. When just a small num-
ber of data examples are present, cross validation is employed
to provide an impartial estimate of the model’s performance.
Data is separated into k equal-sized subgroups in k-fold cross-
validation. As a result, the model is generated k times, each
time utilising (k − 1) sets of data examples for training the
learning classifier and one subset for testing predictions.

5.4 � Research questions

The following set of research questions (RQs) are examined
in this paper:

•	 Research Question 1: What is the performance of tradi-
tional machine learning approaches for predicting bug
report reproducibility?

•	 Research Question 2: What is the performance of ensem-
ble machine learning approaches for predicting bug report
reproducibility?

•	 Research Question 3: What is the performance of ensemble
machine learning techniques after applying feature selec-
tion for predicting bug report reproducibility?

(3)F1 − Score =
(�2 + 1) ∗ Precision ∗ Recall

�2 ∗ Precision + Recall

(4)F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall

1002	 Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009

1 3

Table 5   Performance of
conventional classifiers on
NetBeans project

Project Classifier Precision Recall F1-score ROC

Netbeans Bayes.BayesNet 77.4 82.4 77.2 72.4
Bayes.NaiveBayes 77.5 82.3 77.7 71.4
Bayes.NaiveBayesMultinomialText 82.5 100 80 50
Bayes.NaiveBayesUpdateable 77.5 82.3 77.7 71.4
Lazy.IBk 79.7 82.6 80.3 69
Rules.DecisionTable 83.2 84.5 80.1 71.6
Rules.Zero-R 82.5 100 80 50
Rules.JRip 85 82.6 74.8 50.3
Rules.OneR 77.5 82.5 75.3 50.9
Rules.PART​ 81.6 84.2 81.3 72.9
Trees.J48 83.7 84.4 79.7 69.4
Trees.RepTree 82.8 84.5 80.7 71.7
Trees.RandomForest 80.3 83 80.9 72.8

Table 6   Performance of
conventional classifiers on
eclipse project

Project Classifier Precision Recall F1-score ROC

Eclipse Bayes.BayesNet 77.3 83 78.1 76.2
Bayes.NaiveBayes 78 82.1 79.2 75.9
Bayes.NaiveBayesMultinomialText 83.7 100 80 50
Bayes.NaiveBayesUpdateable 78 82.1 79.2 75.9
Lazy.IBk 82.3 85 82.2 76.6
Rules.DecisionTable 84 85.7 82.1 80.3
Rules.Zero-R 83.7 100 80 50
Rules.JRip 83.5 85.2 80.9 57.1
Rules.OneR 70.1 83.7 76.3 50
Rules.PART​ 83.7 85.7 82.8 80.7
Trees.J48 84.4 85.9 82.3 77.8
Trees.RepTree 84 85.8 82.5 80.3
Trees.RandomForest 82.4 85 82.4 78.8

Table 7   Performance of
conventional classifiers on
mozilla firefox project

Project Classifier Precision Recall F1-score ROC

Mozilla firefox Bayes.BayesNet 84.9 84.8 84.8 91.6
Bayes.NaiveBayes 83.3 82.5 82.6 90.6
Bayes.NaiveBayesMultinomialText 56.8 100 72.4 50
Bayes.NaiveBayesUpdateable 83.3 82.5 82.6 90.6
Lazy.IBk 83.1 83.1 83.1 84.9
Rules.DecisionTable 84 84 83.8 89.4
Rules.Zero-R 56.8 100 72.4 50
Rules.JRip 84 84 84 85.8
Rules.OneR 79.3 77.6 77.7 78.6
Rules.PART​ 85.5 85.6 85.6 90.4
Trees.J48 85.2 85.2 85.2 89.6
Trees.RepTree 84.5 84.6 84.5 89.6
Trees.RandomForest 85.4 85.4 85.4 92

1003Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009	

1 3

Table 8   Performance of bgging
ensemble learning technique
using conventional classifiers on
netbeans project

Project Classifier Precision Recall F1-score ROC

Netbeans Bayes.BayesNet 77.5 82.4 77.2 72.4
Bayes.NaiveBayes 77.5 82.2 77.6 71.3
Bayes.NaiveBayesMultinomialText 82.5 100 80 50
Bayes.NaiveBayesUpdateable 77.5 82.2 77.6 71.3
Lazy.IBk 79.7 82.6 80.3 69
Rules.DecisionTable 80.8 83.6 79 65.2
Rules.Zero-R 82.5 100 80 50
Rules.JRip 84.7 82.6 74.8 50.9
Rules.OneR 77 82.5 75.2 52.1
Rules.PART​ 82.2 85 82 77.4
Trees.J48 83 84.7 80.9 71.2
Trees.RepTree 82.7 84.7 81.3 74.2
Trees.RandomForest 82.6 84.5 83.1 77.4

Table 9   Performance of bgging
ensemble learning technique
using conventional classifiers on
eclipse project

Project Classifier Precision Recall F1-score ROC

Eclipse Bayes.BayesNet 77.3 83 78.2 76.1
Bayes.NaiveBayes 78 82.1 79.2 75.9
Bayes.NaiveBayesMultinomialText 83.7 100 80 50
Bayes.NaiveBayesUpdateable 78 82.1 79.2 75.9
Lazy.IBk 82.3 85 82.2 76.6
Rules.DecisionTable 83.8 85.6 81.9 78.6
Rules.Zero-R 83.7 100 80 50
Rules.JRip 84 85.1 80.2 58.9
Rules.OneR 83.7 83.7 83.7 50.1
Rules.PART​ 84.1 87 84.2 82.5
Trees.J48 84.3 86 82.7 79.3
Trees.RepTree 83.9 85.8 82.8 81.4
Trees.RandomForest 83.1 87.1 84.4 82.1

Table 10   Performance of
bgging ensemble learning
technique using conventional
classifiers on mozilla firefox
project

Project Classifier Precision Recall F1-score ROC

Mozilla firefox Bayes.BayesNet 84.9 84.8 84.8 91.6
Bayes.NaiveBayes 83.3 82.5 82.6 90.6
Bayes.NaiveBayesMultinomialText 56.8 100 72.4 50
Bayes.NaiveBayesUpdateable 83.3 82.5 82.6 90.6
Lazy.IBk 83.1 83.1 83.1 84.9
Rules.DecisionTable 84.6 84.6 84.5 90.2
Rules.Zero-R 56.8 100 72.4 50
Rules.JRip 84.8 84.8 84.7 89.8
Rules.OneR 79.3 77.6 77.7 78.6
Rules.PART​ 86.5 86.5 86.5 92.8
Trees.J48 86 86 86 91.9
Trees.RepTree 85.4 85.4 85.4 91.9
Trees.RandomForest 86.5 86.6 86.6 93

1004	 Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009

1 3

6 � Results and analysis

This section discusses the results obtained corresponding to
four research questions addressed in this work.

RQ1: Performance of traditional machine learning
approaches

Tables 5, 6 and 7 examines the performance of thirteen
base classifiers: Bayes Net, Naive Bayes, Naive Bayes Multi-
nomial Text, Naive Bayes Updateable, IBk, Decision Table,
Zero-R, JRip, OneR, PART, J48, Rep Tree and Random
Forest from four families: Bayes, lazy, rules and trees to
find the best fixation prediction classifier. Various evalua-
tion metrics such as Precision, Recall, F1-Score and ROC
has been computed for comparison purposes. For F1-Score,
the experimental findings show that the PART classifier
surpasses all other classifiers. PART classifier scored the
greatest F1-Score of 81.3%, 82.8%, and 85.6% on NetBeans,
Eclipse, and Mozilla Firefox projects, respectively.

RQ2: performance of ensemble learning approaches

To address this RQ ensemble learning models have been
created using three techniques: Bagging, Boosting and
Stacking. Tables 8, 9 and 10 presents the results of bagging
ensemble models using thirteen base classifiers on three con-
sidered projects. The experimental results reveal that Bag-
ging using Random Forest algorithm performs better than
other classifiers when considered F1-Score evaluation metric
for comparison. The highest F1-Score of 83.1%, 84.4% and
86.6% was achieved by Bagging ensemble learners on Net-
Beans, Eclipse and Mozilla Firefox projects respectively.
An improvement of 1.8%, 1.6% and 1% was achieved by
Bagging models on NetBeans, Eclipse and Mozilla Firefox
projects respectively as compared to best performing indi-
vidual classifier performance (PART).

Tables 11, 12 and 13 presents the results of boosting
ensemble models using thirteen base classifiers on three con-
sidered projects. The experimental results reveal that Boost-
ing using Random Forest algorithm performs better than
other classifiers when considered F1-Score evaluation metric

Table 11   Performance of
boosting ensemble learning
technique using conventional
classifiers on netbeans project

Project Classifier Precision Recall F1-score ROC

Netbeans Bayes.BayesNet 77.4 82.4 77.2 69.2
Bayes.NaiveBayes 77.5 82.3 77.7 68.5
Bayes.NaiveBayesMultinomialText 82.5 100 80 50
Bayes.NaiveBayesUpdateable 77.5 82.3 77.7 68.5
Lazy.IBk 79.7 82.6 80.3 69
Rules.DecisionTable 81.7 84.2 80.9 71.3
Rules.Zero-R 82.5 100 80 50
Rules.JRip 85.2 82.7 75.2 53
Rrules.OneR 77.8 82.6 76.5 71.2
Rules.PART​ 82.1 84.7 82.1 74
Rrees.J48 80.9 83.4 81.4 72.6
Rrees.RepTree 82.5 84.5 81 73.9
trees.RandomForest 83.2 86.1 84.8 89.2

Table 12   Performance of
boosting ensemble learning
technique using conventional
classifiers on eclipse project

Project Classifier Precision Recall F1-score ROC

Eclipse Bayes.BayesNet 80.4 83.5 81.2 77.4
Bayes.NaiveBayes 80.6 83.5 81.4 77.4
Bayes.NaiveBayesMultinomialText 83.7 100 80 50
Bbayes.NaiveBayesUpdateable 80.6 83.5 81.4 77.4
Lazy.IBk 82.3 85 82.2 76.6
Rules.DecisionTable 83.5 85.6 82.6 80.4
Rules.Zero-R 83.7 100 80 50
Rules.JRip 82.7 85.2 81.6 79.9
Rules.OneR 81.5 84 77.5 77.6
Rules.PART​ 84 86.5 83.9 81.8
Trees.J48 83.3 85.5 82.8 80.3
Trees.RepTree 81.2 83.7 81.4 72.7
Trees.RandomForest 84.9 87.8 86.2 84.1

1005Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009	

1 3

for comparison. The highest F1-Score of 84.8%, 86.2% and
87.2% was achieved by Boosting on NetBeans, Eclipse and
Mozilla Firefox proj- ects respectively. An improvement of
3.5%, 3.4% and 1.6% was achieved by Boosting models on
NetBeans, Eclipse and Mozilla Firefox projects respectively
as compared to best performing individual classifier perfor-
mance (PART).

For stacking ensemble learning technique, all possible
combinations of thirteen base classifiers have been used

to learn the models. The experiments have been initialized
from size three of base classifiers. In total, 8100 different
model combinations corresponding to each considered pro-
ject have been learned. Logistic Regression has been used as
meta classifier. The performance and improvement of best
model combination corresponding to each project has been
reported in Table 14. The highest F1-Score of 86.1%, 85.1%
& 87.5% was achieved by Stacking ensemble learning tech-
nique on NetBeans, Eclipse and Mozilla Firefox projects

Table 13   Performance of
boosting ensemble learning
technique using conventional
classifiers on mozilla firefox
project

Project Classifier Precision Recall F1-score ROC

Mozilla firefox Bayes.BayesNet 84.8 84.5 84.7 91.3
Bayes.NaiveBayes 84.5 84.5 84.5 89.5
Bayes.NaiveBayesMultinomialText 56.8 100 72.4 50
Bayes.NaiveBayesUpdateable 84.5 84.5 84.5 89.3
Lazy.IBk 83.1 83.1 83.1 84.9
Rules.DecisionTable 85.1 85.1 85.1 91.5
Rules.Zero-R 56.8 100 72.4 50
Rules.JRip 85.3 85.3 85.3 91.8
Rules.OneR 79.3 77.6 77.7 78.6
Rules.PART​ 85 85 85 90.9
Trees.J48 84.8 84.9 84.8 91
Trees.RepTree 85.2 85.2 85.2 89.7
Trees.RandomForest 87.1 87.3 87.2 94.1

Table 14   Performance of ensemble learning techniques using conventional classifiers on three considered projects

BIC represents best individual classifier

Project Technique Precision Recall F1-score ROC

Netbeans BIC (Part) 81.6 84.2 81.3 72.9
Bagging (random forest) 82.6 84.5 83.1 77.4
Improvement with BIC (+ 1%) (+ 0.3%) (+ 1.8%) (+ 4.5%)
Boosting (random forest) 83.2 86.1 84.8 89.2
Improvement with BIC (+ 1.6%) (+ 1.9%) (+ 3.5%) (+ 16.3%)
Stacking (PART, random forest, reptree, Naive Bayes, J48) 85.5 87.2 86.1 83.2
Improvement with BIC (+ 3.9%) (+ 3%) (+ 4.8%) (+ 10.3%)

Eclipse BIC (Part) 83.7 85.7 82.8 80.7
Bagging (random forest) 83.1 87.1 84.4 82.1
Improvement with BIC (−0.6%) (+ 1.4%) (+ 1.6%) (+ 1.4%)
Boosting (random forest) 84.9 87.8 86.2 84.1
Improvement with BIC (+ 1.2%) (+ 2.1%) (+ 3.4%) (+ 3.4%)
Stacking (Part, reptree, JRip, Naive Bayes, decision table) 84.4 86.3 85.1 84.2
Improvement with BIC (+ 0.7%) (+ 0.6%) (+ 2.3%) (+ 3.5%)

Mozilla firefox BIC (part) 85.5 85.6 85.6 90.4
Bagging (random forest) 86.5 86.6 86.6 93
Improvement with BIC (+ 1%) (+ 1%) (+ 1%) (+ 2.6%)
Boosting (random forest) 87.1 87.3 87.2 94.1
Improvement with BIC (+ 1.6%) (+ 1.7%) (+ 1.6%) (+ 3.7%)
Stacking (PART, reptree, Naive Bayes, decision table) 87.6 87.2 87.5 94.8
Improvement with BIC (+ 2.1%) (+ 1.6%) (+ 1.9%) (+ 4.4%)

1006	 Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009

1 3

respectively. An improvement of 4.8%, 2.3% and 1.9% was
achieved by Stacking technique on NetBeans, Eclipse and
Mozilla Firefox projects respectively as compared to best
performing individual classifier performance (PART). For
NetBeans project, stacking with base classifier combination
of PART, Random Forest, REPTREE, Naive Bayes and J48
obtained best performance. For Eclipse project, stacking
with base classifier having combination of PART, REP-
TREE, JRip, Naive Bayes and Decision Table obtained best
performance. For Mozilla Firefox project, stacking with base
classifier combination of PART, REPTREE, Naive Bayes
and Decision Table obtained best performance.

RQ3: performance of ensemble learning approaches with
feature selection

To address this RQ, Classifier Attribute Evaluator has
been used for feature selection before applying ensemble
learning techniques for prediction. Table 15 summarizes the
performance and improvement of various ensemble learn-
ing algorithms along with feature selection technique. The
highest F1-Score of 83.1%, 84.4% and 86.6% was achieved
by Bagging on NetBeans, Eclipse and Mozilla Firefox pro-
jects respectively. The highest F1-Score of 84.8%, 86.2% and
87.2% was achieved by Boosting on NetBeans, Eclipse and
Mozilla Firefox projects respectively. The highest F1-Score
of 87.4%, 87.8% and 88.3% was achieved by Stacking on
NetBeans, Eclipse and Mozilla Firefox projects respectively.

An improvement of 6.1%, 5% & 2.7% was achieved by
Stacking on NetBeans, Eclipse and Mozilla Firefox projects
respectively as compared to best performing individual clas-
sifier performance.

7 � Threats to validity

Despite the fact that the experiments were structured in such
a way that there are few risks to validity, there are still a
number of decisions that might impact the findings of this
paper. Various dangers to the validity of reported work are
examined in this section.

7.1 � External validity

The generalizability of generated outcomes is referred to as
external validity. The bug reports included in this work’s
experimental assessments came from three open-source
Bugzilla repository projects: NetBeans, Eclipse, and Moz-
illa Firefox. Bug reports from these projects may differ from
those from other open-source and closed-source projects.
As a result, the findings of the paper might not apply to
other open-source and commercial software projects. Other
open-source and closed-source projects, as well as those that
employ other development approaches, will require more

Table 15   Performance of ensemble learning techniques with feature selection using conventional classifiers on three considered projects

BIC represents best individual classifier

Project Technique Precision Recall F1-score ROC

Netbeans BIC (Part) 81.6 84.2 81.3 72.9
Bagging (random forest) 82.6 84.5 83.1 77.4
Improvement with BIC (+ 1%) (+ 0.3%) (+ 1.8%) (+ 4.5%)
Boosting (random forest) 83.2 86.1 84.8 89.2
Improvement with BIC (+ 1.6%) (+ 1.9%) (+ 3.5%) (+ 16.3%)
Stacking (part, random forest, RepTree, Naive Bayes, J48) 87.7 87.1 87.4 86.5
Improvement with BIC (+ 6.1%) (+ 2.9%) (+ 6.1%) (+ 13.6%)

Eclipse BIC (Part) 83.7 85.7 82.8 80.7
Bagging (random forest) 83.1 87.1 84.4 82.1
Improvement with BIC (−0.6%) (+ 1.4%) (+ 1.6%) (+ 1.4%)
Boosting (random forest) 84.9 87.8 86.2 84.1
Improvement with BIC (+ 1.2%) (+ 2.1%) (+ 3.4%) (+ 3.4%)
Stacking (Part, rep tree, JRip, Naive bayes, decision table) 86.2 88.4 87.8 85.7
Improvement with BIC (+ 2.5%) (+ 2.7%) (+ 5%) (+ 5%)

Mozilla firefox BIC (PART) 85.5 85.6 85.6 90.4
Bagging (random forest) 86.5 86.6 86.6 93
Improvement with BIC (+ 1%) (+ 1%) (+ 1%) (+2.6%)
Boosting (random forest) 87.1 87.3 87.2 94.1
Improvement with BIC (+ 1.6%) (+ 1.7%) (+ 1.6%) (+ 3.7%)
Stacking (Part, rep tree, Naive Bayes, decision table) 87.9 88.5 88.3 95.7
Improvement with BIC (+ 2.4%) (+ 2.9%) (+ 2.7%) (+ 5.3%)

1007Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009	

1 3

research. Despite the fact that big open-source initiatives
covering a wide range of topics have been investigated, there
may be additional projects adopting diverse software tech-
niques in the future. As a result, the conclusions may not
apply to everyone.

7.2 � Internal validity

The bias and mistakes in the experimental setting are
referred to as internal validity. The data acquired from a bug
repository was deemed to be ideal in this paper. However,
there is a chance that the extracted data contains mistakes
or noise, which might impact the paper’s conclusions. To
counteract this risk, the dataset included in this work has
been drawn from widely used projects if Bugzilla repository.
These projects have a lengthy history and are continuously
maintained, therefore the retrieved data should be considered
acceptable (if not optimal). The input parameters used to
train diverse machine learning models pose another danger
to internal validity. In this paper, nine bug parameters were
employed as input features for model training (eight numeri-
cal and one textual parameter). However, there may be an
alternative collection of qualities that will produce superior
results. However, there may be an other collection of char-
acteristics that perform better for predicting NR fixability.
A list of stop words offered by the Python NLTK toolkit
was utilised to pre-process textual contents (http://​www.​
nltk.​org/). The Porter Stemmer tool from the Python NLTK
toolbox was used to stem textual contents. For comparable
procedures, this toolbox has been frequently utilised in the
literature. Other stop word lists and stemming tools, on the
other hand, may have an impact on prediction accuracy. To
reduce the risk of code and experimental setup problems,
the source code and experimental setup have been double-
checked. However, there is still the risk of mistakes. In the
experiments, 10 fold cross validation was utilised to elimi-
nate bias.

7.3 � Construct validity

The experimental constructs or the adequacy of the assess-
ment measures utilised in the study are referred to as con-
struct validity. The F1-Score was reported in this paper. This
measure has been extensively used in the literature to assess
the performance of machine learning classifiers, hence there
is no concern about construct validity in this paper.

8 � Conclusion

The bug management is onerous task for software engi-
neers due to the unpredictable nature of bug fixes. The
complexity of this perplexing indexing is exacerbated by

non-reproducible faults. To address Non-reproducible bugs,
a novel fixability prediction framework named NRPredic-
tor is proposed in this paper. Thirteen traditional machine
learning classifiers along with three ensemble learning
approaches (Bagging, Boosting, and Stacking) and one
feature selection technique have been leveraged in NRPre-
dictor. The experimental evaluation shows that traditional
machine learning algorithm, PART scored the greatest
F1-Score of 81.3%, 82.8% and 85.6% on NetBeans, Eclipse,
and Mozilla Firefox projects, respectively. Ensemble learn-
ing techniques outperforms traditional machine learning
approaches, achieving F1-Scores of up to 86.1, 85.1, and
87.5% for NetBeans, Eclipse, and Mozilla Firefox applica-
tions, respectively. Feature selection with ensemble learn-
ing techniques achieves F1-Scores of up to 87.4, 87.8, and
88.3% for NetBeans, Eclipse, and Mozilla Firefox applica-
tions, respectively.

9 � Future research directions

The performance of proposed framework, NRPredictor, may
be investigated in future on closed-source applications. Col-
laboration with firms that use open-source and closed-source
bug repositories to analyse the proposed framework, NRPre-
dictor, in an industrial context is also possible. This will aid
in further generalisation of findings. Text mining techniques
such as topic modelling may also be used and integrated into
the framework. In addition, a fix recommendation tool may
be developed, which provide tokens for non-reproducible
issues that might be solved. Another area of future study
is the creation of a tool for software developers to aid in
the prediction of NR bugs. Although the present study aids
in the prediction of difficult-to-reproduce bugs that can be
labelled as NR. However, NR issues continue to offer a sig-
nificant barrier to the bug-fixing process; as a result, new
ways for resolving NR-marked bug reports can be created.

Funding  This study and all authors involved in this study have not
received any funding, including after the completion of the study.

Declarations 

Conflict of interest  The authors have no conflicts of interest to de-
clare that are relevant to the content of this article. The authors did not
receive support from any organization for the submitted work.

Human or animal rights  This tudy did not involve any human par-
ticipants or animals.

http://www.nltk.org/
http://www.nltk.org/

1008	 Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009

1 3

References

Abou Khalil Z, Constantinou E, Mens T, Duchien L (2021) On the
impact of release policies on bug handling activity: a case study
of eclipse. J Syst Softw 173:110882

Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH (2022)
Reptile search algorithm (RSA): a nature-inspired meta-heuristic
optimizer. Exp. Syst. Appl. 191:116158

Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH
(2021) The arithmetic optimization algorithm. Comput. Meth-
ods Appl. Mech. Eng. 376:113609

Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA,
Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic
optimization algorithm. Comput. Indus. Eng. 157:107250

Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose
optimization algorithm. Comput. Methods Appl. Mech. Eng.
391:114570

Ahmed HA, Bawany NZ, Shamsi JA (2021) CaPBug-a framework
for automatic bug categorization and prioritization using NLP
and machine learning algorithms. IEEE Access 9:50496–50512

Alzubi JA (2015) Optimal classifier ensemble design based
on cooperative game theory. Res J Appl Sci Eng Technol
11(12):1336–1343

Alzubi OA, Alzubi JA, Alweshah M, Qiqieh I, Al-Shami S, Ramachan-
dran M (2020) An optimal pruning algorithm of classifier ensem-
bles: dynamic programming approach. Neural Comput Appl
32(20):16091–16107

Alzubi OA, Alzubi JAA, Tedmori S, Rashaideh H, Almomani O (2018)
Consensus-based combining method for classifier ensembles. Int
Arab J Inf Technol 15(1):76–86

Anvik J (2006) Automating bug report assignment. In: Proceedings of the
28th International conference on software engineering, pp 937–940

Anvik J, Murphy GC (2011) Reducing the effort of bug report triage:
recommenders for development oriented decisions. ACM Trans
Softw Eng Method (TOSEM) 20(3):10

Artzi S, Kim S, Ernst MD (2008) Recrash: Making software failures
reproducible by preserving object states. In: European conference
on object-oriented programming. pp 542–565. Springer

Bauer C, Parkinson A, Scharl A (1999) Automated vs. manual classifica-
tion: a multi-methodological set of web analysis components. In:
Australasian conference on information systems, pp 54–64. Citeseer

Bhattacharya P, Neamtiu I (2010) Fine-grained incremental learning
and multi-feature tossing graphs to improve bug triaging. In: Soft-
ware maintenance (ICSM), 2010 IEEE international conference
on, pp 1–10. IEEE

Breiman L (1996) Bagging predictors. Machine Learn 24(2):123–140
Breu S, Premraj R, Sillito J, Zimmermann T (2010) Information needs

in bug reports: improving cooperation between developers and
users. In: Proceedings of the 2010 ACM conference on computer
supported cooperative work, pp 301–310

Chaparro O, Lu J, Zampetti F, Moreno L, Di Penta M, Marcus A,
Bavota G, and Ng V (2017) Detecting missing information in bug
descriptions. In Proceedings of the 2017 11th joint meeting on
foundations of software engineering, pp 396–407. ACM

Cheng X, Liu N, Guo L, Xu Z, Zhang T (2020) Blocking bug prediction
based on XGBoost with enhanced features. In: 2020 IEEE 44th
annual computers, software, and applications conference (COMP-
SAC), pp 902–911. IEEE

Dao A-H, Yang C-Z (2021) Improving priority prediction for bug
reports with comment features. In 2021 IEEE international con-
ference on software engineering and artificial intelligence (SEAI),
pp 58–62. IEEE

Dietterich TG (2000) Ensemble methods in machine learning. In:
International workshop on multiple classifier systems, pp 1–15.
Springer

Ekanayake J (2021) Bug severity prediction using keywords in imbal-
anced learning environment. Int J Inf Technol Comput Sci
(IJITCS) 13:53–60

Erfani Joorabchi M, Mirzaaghaei M, Mesbah A (2014) Works for me!
characterizing non-reproducible bug reports. In Proceedings of
the 11th working conference on mining software repositories, pp
62–71. ACM

Fagan M (2002) Design and code inspections to reduce errors in pro-
gram development. In Software pioneers, pp 575–607. Springer

Fan Y, Xia X, Lo D, Hassan AE (2018) Chaff from the wheat: char-
acterizing and determining valid bug reports. IEEE Trans Softw
Eng 46(5):495–525

Freund Y, Schapire RE (1995) A decision-theoretic generalization
of on-line learning and an application to boosting. In: European
conference on computational learning theory, pp 23–37. Springer

Goyal A, Sardana N (2016) Analytical study on bug triaging practices.
Int J Open Source Softw Process (IJOSSP) 7(2):20–42

Goyal A, Sardana N (2017) black optimizing bug report assignment
using multi criteria decision making technique. Intell Decision
Technol 11(3):307–320

Goyal A, Sardana N (2017) Machine learning or information retrieval
techniques for bug triaging: Which is better? e-Inform Softw Eng
J. https://​doi.​org/​10.​5277/e-​Inf17​0106

Goyal A, Sardana N (2017) Nrfixer: sentiment based model for predict-
ing the fixability of non-reproducible bugs. Inform Softw Eng J
11(1):109–122

Goyal A, Sardana N (2018) Characterization study of developers in
non-reproducible bugs. In: 2018 eleventh international conference
on contemporary computing (IC3), pp 1–6. IEEE

Goyal A Sardana N (2019) Empirical analysis of ensemble machine
learning techniques for bug triaging. In: 2019 twelfth international
conference on contemporary computing (IC3), pp 1–6. IEEE

Guo PJ, Zimmermann T, Nagappan N, Murphy B (2010) Character-
izing and predicting which bugs get fixed: an empirical study of
microsoft windows. In: Software engineering, 2010 ACM/IEEE
32nd international conference on, vol 1, pp 495–504. IEEE

X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou (2008) On the class
imbalance problem. In: Fourth international conference on natural
computation, 2008. ICNC’08., vol 4, pp 192–201. IEEE

Gupta S, Gupta SK (2021) An approach to generate the bug report
summaries using two-level feature extraction. Exp Syst Appl
176:114816

Hewett R, Kijsanayothin P (2009) On modeling software defect repair
time. Empir Softw Eng 14(2):165

Isotani H, Washizaki H, Fukazawa Y, Nomoto T, Ouji S, Saito S (2021)
Duplicate bug report detection by using sentence embedding and
fine-tuning. In: 2021 IEEE international conference on software
maintenance and evolution (ICSME), pp 535–544. IEEE

Jin W, Orso A (2012) Bugredux: reproducing field failures for in-house
debugging. In: 2012 34th international conference on software
engineering (ICSE), pp 474–484. IEEE

Jonsson L, Borg M, Broman D, Sandahl K, Eldh S, Runeson P (2016)
Automated bug assignment: ensemble-based machine learning in
large scale industrial contexts. Empir Softw Eng 21(4):1533–1578

Kamkar M (1998) Application of program slicing in algorithmic
debugging. Inform Softw Technol 40(11–12):637–645

Koh Y, Kang S, Lee S (2021) Bug report summarization using believ-
ability score and text ranking. In: 2021 international conference on
artificial intelligence in information and communication (ICAIIC),
pp 117–120. IEEE

Kumari M, Sharma M, Anand S, Singh V (2020) Predicting the fix time
of a reported bug using radoop: a big data approach. In: Decision
analytics applications in industry, pp 259–269. Springer

Kumari M, Singh UK, Sharma M (2020) Entropy based machine learn-
ing models for software bug severity assessment in cross project

https://doi.org/10.5277/e-Inf170106

1009Int J Syst Assur Eng Manag (June 2023) 14(3):989–1009	

1 3

context. In: International conference on computational science
and its applications, pp 939–953. Springer

Lal S, Sardana N, Sureka A (2017) Eclogger: cross-project catch-block
logging prediction using ensemble of classifiers. e-Inform Softw
Eng J. https://​doi.​org/​10.​5277/e-​Inf17​0101

Laradji IH, Alshayeb M, Ghouti L (2015) Software defect prediction
using ensemble learning on selected features. Inform Softw Tech-
nol 58:388–402

Lee Y, Lee S, Lee C-G, Yeom I, Woo H (2020) Continual prediction
of bug-fix time using deep learning-based activity stream embed-
ding. IEEE Access 8:10503–10515

Li Z, Jiang Z, Chen X, Cao K, Gu Q (2021) Laprob: a label prop-
agation-based software bug localization method. Inform Softw
Technol 130:106410

Limsettho N, Bennin KE, Keung JW, Hata H, Matsumoto K (2018)
Cross project defect prediction using class distribution estimation
and oversampling. Inform Softw Technol 100:87–102

López V, Fernández A, García S, Palade V, Herrera F (2013) An insight
into classification with imbalanced data: empirical results and
current trends on using data intrinsic characteristics. Inform Sci
250:113–141

Malhotra R, Dabas A, Hariharasudhan A, Pant M (2021) A study on
machine learning applied to software bug priority prediction. In:
2021 11th international conference on cloud computing, data sci-
ence & engineering (Confluence), pp 965–970. IEEE

Mohan D, Goyal A, Sardana N (2016) Visheshagya: Time based
expertise model for bug report assignment. In: 2016 ninth inter-
national conference on contemporary computing (IC3), pp 1–6.
IEEE

Movassagh AA, Alzubi JA, Gheisari M, Rahimi M, Mohan S, Abbasi
AA, Nabipour N (2021) Artificial neural networks training algo-
rithm integrating invasive weed optimization with differential
evolutionary model. J Ambient Intel Human Comput. https://​doi.​
org/​10.​1007/​s12652-​020-​02623-6

Neysiani BS, Babamir SM (2020) Automatic duplicate bug report
detection using information retrieval-based versus machine learn-
ing-based approaches. In: 2020 6th international conference on
web research (ICWR), pp 288–293. IEEE

Neysiani BS, Babamir SM, Aritsugi M (2020) Efficient feature extrac-
tion model for validation performance improvement of duplicate
bug report detection in software bug triage systems. Inform Softw
Technol 126:106344

Oyelade ON, Ezugwu AE-S, Mohamed TI, Abualigah L (2022) Ebola
optimization search algorithm: a new nature-inspired metaheuris-
tic optimization algorithm. IEEE Access 10:16150–16177

Perry DE, Stieg CS (1993) Software faults in evolving a large, real-time
system: a case study. In: European software engineering confer-
ence, pp 48–67. Springer

Phua C, Alahakoon D, Lee V (2004) Minority report in fraud detection:
classification of skewed data. Acm Sigkdd Explorations Newslet-
ter 6(1):50–59

Rahman MM, Khomh F, Castelluccio M (2020) Why are some bugs
non-reproducible?: An empirical investigation using data fusion.
In: 2020 IEEE international conference on software maintenance
and evolution (ICSME), pp 605–616. IEEE

Rashmi P, Kambli P (2020) Predicting bug in a software using ann
based machine learning techniques. In: 2020 IEEE International
Conference for Innovation in Technology (INOCON), pp 1–5.
IEEE

Rocha TM, Carvalho ALDC (2021) SiameseQAT: a semantic context-
based duplicate bug report detection using replicated cluster infor-
mation. IEEE Access 9:44610–44630

Sethuraman J, Alzubi JA, Manikandan R, Gheisari M, Kumar A (2019)
Eccentric methodology with optimization to unearth hidden
facts of search engine result pages. Recent Patents Comput Sci
12(2):110–119

Sharma M, Kumari M, Singh V (2021) Bug priority assessment in
cross-project context using entropy-based measure. In: Advances
in machine learning and computational intelligence, pp 113–128.
Springer

Shatnawi MQ, Alazzam B (2022) An assessment of eclipse bugs’ prior-
ity and severity prediction using machine learning. Int J Commun
Netwo Inform Security (IJCNIS) 14(1):62–69

Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Has-
san AE, Matsumoto K-I (2013) Studying re-opened bugs in open
source software. Empir Softw Eng 18(5):1005–1042

Shokripour R, Anvik J, Kasirun ZM, Zamani S (2015) A time-based
approach to automatic bug report assignment. J Syst Softw
102:109–122

Sureka A, Jalote P (2010) Detecting duplicate bug report using char-
acter n-gram-based features. In: 2010 17th Asia pacific software
engineering conference (APSEC), pp 366–374. IEEE

Tagra A (2021) Studying reopened bugs in open source software sys-
tems. PhD thesis

Tamrawi A, Nguyen TT, Al-Kofahi J, Nguyen TN (2011) Fuzzy set-
based automatic bug triaging: nier track. In: Software engineering
(ICSE), 2011 33rd international conference on, pp 884–887. IEEE

Tamrawi A, Nguyen TT, Al-Kofahi JM, Nguyen TN (2011) Fuzzy
set and cache-based approach for bug triaging. In: Proceedings
of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, pp 365–375

Valdivia Garcia H, Shihab E (2014) Characterizing and predicting
blocking bugs in open source projects. In: Proceedings of the 11th
working conference on mining software repositories, pp 72–81.
ACM

White M, Linares-Vásquez M, Johnson P, Bernal-Cárdenas C, Poshy-
vanyk D (2015) Generating reproducible and replayable bug
reports from android application crashes. In: 2015 IEEE 23rd
international conference on program comprehension (ICPC), pp
48–59. IEEE

Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259
Xi S-Q, Yao Y, Xiao X-S, Xu F, Lv J (2019) Bug triaging based on

tossing sequence modeling. J Comput Sc Technol 34(5):942–956
Xia X, Lo D, Shihab E, Wang X, Yang X (2015) Elblocker: predicting

blocking bugs with ensemble imbalance learning. Inform Softw
Technol 61:93–106

Ye L, Jinxiao H, Yutao M (2020) An automatic method using hybrid
neural networks and attention mechanism for software bug triag-
ing. J Comput Res Develop 57(3):461

Yuan W, Xiong Y, Sun H, and Liu X (2021) Incorporating multiple
features to predict bug fixing time with neural networks. In: 2021
IEEE international conference on software maintenance and evo-
lution (ICSME), pp 93–103. IEEE

Zhang T, Yang G, Lee B, Lua EK (2014) A novel developer ranking
algorithm for automatic bug triage using topic model and devel-
oper relations. In: 2014 21st Asia-pacific software engineering
conference, vol 1, pp 223–230. IEEE

Zhou T, Sun X, Xia X, Li B, Chen X (2019) Improving defect predic-
tion with deep forest. Inform Softw Technol 114:204–216

Zimmermann T, Nagappan N, Guo PJ, Murphy B (2012) Character-
izing and predicting which bugs get reopened. In: Proceedings
of the 34th international conference on software engineering, pp
1074–1083. IEEE Press

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.5277/e-Inf170101
https://doi.org/10.1007/s12652-020-02623-6
https://doi.org/10.1007/s12652-020-02623-6

	NRPredictor: an ensemble learning and feature selection based approach for predicting the non-reproducible bugs
	Abstract
	1 Introduction
	2 Background
	2.1 Bug report structure
	2.2 Bug life-cycle
	2.3 Ensemble learning classification
	2.4 Feature selection techniques

	3 Literature review
	3.1 Reproducing bug reports
	3.2 Prediction models in bug fixing
	3.3 Ensemble learning in bug fixing

	4 NRPredictor framework
	5 Experimental details
	5.1 Subject systems
	5.2 Implementation details
	5.3 Evaluation metrics
	5.4 Research questions

	6 Results and analysis
	7 Threats to validity
	7.1 External validity
	7.2 Internal validity
	7.3 Construct validity

	8 Conclusion
	9 Future research directions
	References

