
Vol:.(1234567890)

Int J Syst Assur Eng Manag (June 2023) 14(3):878–893
https://doi.org/10.1007/s13198-023-01887-3

1 3

ORIGINAL ARTICLE

Investigating the impact of effort slippages in software
development project

Rajat Arora1 · Rubina Mittal2 · Anu Gupta Aggarwal1 · P. K. Kapur3

Received: 27 November 2022 / Revised: 4 February 2023 / Accepted: 22 February 2023 / Published online: 1 April 2023
© The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and
The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2023

Abstract In today’s highly competitive market, it is very
crucial for the software development team to provide on-
time delivery of its product. To achieve this, development
teams spend considerable time in planning the schedule
for software product incorporating stated requirements but
practically they are persistently plagued by schedule slip-
page. The objective of this study is to inspect the progress
of the software project and to examine its schedule status
on regular basis. The present paper integrates the concept
of slippage and management evaluation into an effort-based
Software Reliability Growth Model incorporating the appli-
cation characteristics such as complexity of code, testing
environment etc. The study also investigates the optimal
release policies for the software. Our research assumes that
the review process is scheduled by the management team
during testing. This crucial evaluation assist in providing
critical information regarding the additional effort required
to meet the reliability objective within scheduled time or by
keeping the effort expenditure fixed, reschedule the delivery
of the project. For theoretical validation of results, numerical

illustration is presented on a real-life software fault dataset
under perfect debugging and imperfect debugging environ-
ment. The results obtained are beneficial in decision making
for both the development team and the managers. Our study
has relevance in wide range of industries handling diverse
projects.

Keywords Software Reliability Growth Model · Testing
effort · Software development project · Penalty cost ·
Schedule slippage · Management evaluation · Optimal
release policy

1 Introduction and literature overview

1.1 Motivation

In last four decades, numerous research studies have been
carried out in areas of Software reliability engineering
for reliability assessment of software applications, their
cost modeling, optimal release planning under perfect and
imperfect debugging environment, resource allocation to
name a few (Li and Pham 2017; Verma et al. 2020). But
most of these studies are based on the assumption of on-
time delivery of the software. This implies each stage of
software development is covered as per planned schedule
by utilizing only the planned effort expenditure in terms of
budget, execution hours, man hours etc. However, in real life
situation, this assumption sounds very unrealistic as many
factors during development of software product do not allow
the process to move in a planned way. This may be attributed
to code complexity, unexpected additional time taken for
debugging, optimistic schedule estimates, unforeseen issues
with technology, changing requirements and specifications,
environment mismatch and the list is endless. The present

 * Anu Gupta Aggarwal
 anuagg17@gmail.com

 Rajat Arora
 arorarajat87@yahoo.com

 Rubina Mittal
 drmittal@keshav.du.ac.in

 P. K. Kapur
 pkkapur1@gmail.com
1 Department of Operational Research, University of Delhi,

Delhi 110007, India
2 Keshav Mahavidyalaya, University of Delhi, Delhi 110034,

India
3 Amity Center for Interdisciplinary Research, Amity

University, Noida, Uttar Pradesh 201301, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-023-01887-3&domain=pdf
http://orcid.org/0000-0001-5448-9540

879Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

research aims to investigate the ongoing progress of the pro-
ject through regular review of the development process and
to identify the direction in which rework needs to be done
to avoid slippage in time and resource schedules. Adherence
to time schedules may be achieved by spending additional
effort whereas resource schedules may be saved either by
extending the duration of project or revising the quality
aspirations. To understand the requirement for additional
efforts or the additional time requirements to avoid slippage
in development process, we make use of an analytical model
integrating management evaluation and development process
to design future policies and make release decisions. The
software failure process is described through NHPP based
SRGM incorporating application characteristics.

1.2 Literature overview

1.2.1 Testing effort based SRGMs

The growing use of software in diverse fields necessitates
continual improvement in technologies by introducing inno-
vative features as per demand. SRGMs are used to describe
the failure and fault removal phenomenon of a software
application. These models provide appropriate estimates
about the fault content level, fault removal rate, reliability
levels achieved, time to stop debugging etc. [Kapur et al.
(2011a, b)]. The initial models describing reliability growth
assuming homogeneity of faults were proposed by Goel
and Okumoto (1979), Jelinski and Moranda (1972). Later,
Yamada et al. 1984 introduced an inflexion S-shaped SRGM
assuming the dependent nature of faults. Pachauri et al.
(2015) introduced S-shaped Fault Reduction Factor (FRF)
for multi-release software systems. Chatterjee and Shukla
(2016) proposed SRGM under imperfect debugging incorpo-
rating concept of fault dependency and fault reduction factor.
Aggarwal et al. (2019) proposed the dual concept of FRF
and error generation in SRGM for multi-release software
models. The earlier SRGMs assumed constant rate of con-
sumption of testing effort. Later, it was realized that the con-
sumption pattern of resources is not uniform throughout and
it was imperative to track the progress in reliability of the
software system with respect to testing effort expenditure.

Various models have been proposed in the reliability liter-
ature integrating the dynamic theories of testing and debug-
ging. The relationship between testing time, effort spent
and number of faults discovered was exploited in SRGMs
proposed by Yamada et al. (1993) and Huang et al. (2007)
to name a few. Inoue and Yamada (2018) discussed in detail
the testing effort expending problems. With time, research
in testing effort dependent SRGM incorporated concept of
fault reduction factor (Arora and Aggarwal 2020; Verma and
Anand 2020). Kapur et al. (2019) proposed joint release and
testing stop time policy with testing effort and change point.

Verma et al. (2022) proposed a unified framework for soft-
ware reliability assessment and release policy in presence of
fault reduction factor and fault removal efficiency.

During testing and debugging of the software, the goal
of team is to identify, isolate and remove maximum number
of faults. But this process is not always perfect. Instances
occur when some faults remain hidden in the software while
some other faults are introduced during debugging process.
This scenario is termed as imperfect debugging. Many
researchers have proposed SRGM under imperfect debug-
ging scenario. Ohba and Chou (1989) proposed an expo-
nential SRGM with a fixed rate of error generation. Recent
researches considering imperfect debugging include two
phase SRGM with fault dependency and imperfect debug-
ging (Zhu and Pham 2018). Kumar and Sahni (2020) pre-
sented a software model in which errors are corrected at pre-
specified debugging times. These SRGM’s have practical
utility in cost optimization and determining optimal release
policies for the software product.

1.2.2 Software release planning model

The developers aim to minimize development costs and gain
advantage over its competitors by making first entry into the
market whereas users demand faster delivery, affordable, and
reliable product. This requires trade-off between conflicting
objectives of users and developers. The performance of the
system during operational phase is largely dependent on time
and effort spent during testing. Larger the effort spent dur-
ing testing, better is the performance. Effort based release
policy was discussed by Majumdar et al. (2019).The cost of
fixing a bug during testing is much less than fixing an error
during operation. Kapur et al. (2021) studied whether testing
be continued after release of software. But, on the contrary,
large time spent on testing cause project slippage and incurs
extra cost. Here, we will club together these conflicting goals
into a cost model and determine the optimum release time
and optimum testing duration.

Various cost components constituting the total develop-
ment cost of the software include cost of testing, cost of
detecting and removing faults before release and post-release
and market opportunity cost. The cost of testing is directly
proportional to its duration. The opportunity cost is a penalty
for not delivering the software product on time. Lai et al.
(2011) studied the effect of imperfect debugging on develop-
ment cost. Kapur and Garg (1989) incorporated the risk cost
for late delivery. Practically, the constraints and objectives
on software release are decided by the management depend-
ing on the prevailing market conditions, available resources
and other competitive factors. Cao et al. (2020) proposed
a continuous time stochastic control approach for optimal
selection and release problem in software testing process.

880 Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

1.2.3 Software development project

Efficient management of resources and time are the key pre-
requisites for successful development of a software product.
Software projects frequently suffer from unanticipated modi-
fications, reworks and subsequent delays. Project scheduling is
a typical work for the managers and plays an important role in
managing the development process in order to meet the dead-
lines and budget (Iqbal and Shahzad 2006). Later, Chen and
Shen (2016) formulated a multi-objective project scheduling
problem incorporating uncertainties during the development.
The scheduling process integrates various tasks viz. identifica-
tion of activities, their dependencies, estimate resources to be
allocated to the constituent activities so as to meet the required
objectives of project subject to given constraints (Luna et al.
2014; Minku et al. 2013). Few factors affecting consumption
of resources and schedule planning include learning rate of
team, project development environment, testing environment
and scheduled deadline. Padberg (2006) did his work in deter-
mining optimal schedules for sample software projects and
studied how the project characteristics have influence on opti-
mal schedule decisions.

A project is characterized by fixed duration, finite resources,
and uniqueness and is evaluated by its performance and on-
time delivery. SDP are assemblies of large programs with vari-
ous interactions and dependencies. The presence of uniqueness
element in each project gives rise to uncertainty. Also there is a
vast difference between planned and actual progress primarily
due to continuously changing requirements, dynamic market
conditions. Changes in planned design impact the resource
consumption directly in terms of CPU time and memory con-
sumed (Seacord 2014). Besides these phases, other factors
affecting SDP includes complexity and size measured in terms
of lines of codes. The development of software is a complex
process due to the presence of uncertainty involved in inputs,
environment and estimates. Hence the team usually is unable
to meet the deadlines. This makes it mandatory for manage-
ment to track and review the progress of the project on regular
basis and communicate their evaluation report to development
team for meeting the project deadlines. The project manager
and the technical team work consistently to face the challenges
that the project entails.

Mtsweni and Maveterra (2018) presented a report on
various issues affecting application of tacit knowledge in
SDP. Subriadi et al. (2019) developed a cost model for SDP.
Akgün (2020) introduced the concept of team wisdom in
SDP and its impact on project performance.

1.2.4 Slippage and rescheduling

In organizations concerned with the development of project,
slippage may be defined as the act of missing the scheduled
deadline.

Slippage management needs to be properly integrated
with different phases of SDP. S-curves are graphical tools
that are used to track the progress of the projects and update
them accordingly by adjusting the effort utilization. The
relation between effort spent and fault content removed is
depicted by S-curve in Fig. 1.

In this paper, an algorithm for overcoming project slip-
page is presented. It makes use of rescheduling the work
in progress by estimating additional amount of resources
required in case the software project lags behind the planned
development schedule.

Here, we present two possible solutions to tackle slip-
page. Let us consider a situation where software is tested for
time Tr(time of review) < Td(scheduled time of delivery) . At
this time, the testing efforts consumed and the reliability
level achieved by testing team are analyzed to review the
progress of the project. If the debugging process is ineffi-
cient and slow and in case the manager, after review, is not
satisfied with the progress of the testing then, the testing
process needs to be accelerated by putting in extra efforts in
terms of CPU execution time, man-hours and skilled person-
nel. At this stage, we need to determine how much surplus
efforts are needed to achieve the stated level of reliability
in a pre-stated time interval. On the other hand, if the avail-
ability of testing effort is fixed and can’t be increased, the
delivery of software product is rescheduled with a risk that
competitors may offer early release and prospective rev-
enue is lost. The purpose of review is to safeguard on-time
delivery (and target reliability) by working out additional
resources, if required or to reschedule the delivery keeping
the effort consumption at the same rate.

Fig. 1 S-curve incorporating management evaluation

881Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

1.2.5 Significance of management evaluation

In real life scenario, for testing of the software product, man-
agers are given targets for the desired reliability and bug
content to be corrected within the specified scheduled time.
The managers are also faced with other challenges to be
dealt with during testing namely fierce market competition,
competitive pressures, satisfactory level of quality, changing
requirements of customer. But due to constraints on cost and
time, it is very difficult to continuously inspect the progress.
Therefore, reviews are done at certain time points during
testing phase. Evaluation of the project is done by the man-
agement to note down the flaws that might have crept in
at any stage of development process. Based on the review
comments, suggestions are incorporated and rescheduling is
done, if needed. Kluender et al. (2017) studied the relevance
of team meetings on regular basis for software development.
Kabeyi (2019) discussed in detail the significance of pro-
ject monitoring and evaluation by the management team.
Recently, the mediating role of Big data analytics between
project performance and management was studied by Man-
gla et al. (2021). Managerial Reviews at regular intervals
during testing are mandatory to deal with the stated chal-
lenges and for efficiently managing, tracking and gauging
the progress of testing.

These reviews are helpful in making the development pro-
cess as time, effort and cost efficient, by tackling the flaws
at early stage, ensuring quality and incorporating required
changes before final delivery of the product.

1.2.6 Novelty in our proposed model

In this paper, a software reliability growth model incorporat-
ing application characteristics, modeled by power function
of effort expenditure is used. The SRGM considers practi-
cal aspects viz. error generation and internal characteristics
of software such as complexity of code, testing environ-
ment etc. The process of introduction of errors during fault
removal process in testing phase is referred to as error gen-
eration. This is one of the significant factors affecting reli-
ability growth and is extensively used by researchers (Kapur
et al. 2011a, b). In this study, we have compared models
under perfect and imperfect debugging environment with
constant rate of error generation.

In real life, the progress of the project does not confirm
with the planned schedule because of various real life chal-
lenges leading to schedule slippage or effort slippage. This
gives rise to the need for regular assessment of the progress
of project by management team to inspect whether the pro-
ject is moving as per expectations within given time frame
and resources. The suggestions and review of management
team further assist developers to take actions accordingly to
meet the desired objective. In our study, we will elaborate

on the concept of slippage and management evaluation taken
to counter this critical problem faced by software industry.
We focus our attention on the significance of managerial
review on tracking the projects recurrently by the inspec-
tion team and giving their inputs to manager. This paper
proposes a rescheduling model incorporating feedback for
proper resource management for addressing troubles and
unexpected events faced during SDP. Incorporating the idea
of management evaluation into optimization model aids in
making decisions regarding additional effort required to
meet reliability objective within stipulated time or resched-
uling the project delivery time. Using the model we further
elaborate on economic effects by investigating diminishing
returns to the testing time and efforts employed.

1.2.7 Research questions

Q1. What is the significance of management evaluation in
achieving SDP goals?

Q2. To what extent SDP can deviate from initial plan with
respect to cost and schedule?

Q3. To analyze the returns to scale for reliability improve-
ment with respect to effort consumption?

Q4. What are theoretical and managerial implications of
increased resources or delayed delivery?

The remainder of the paper is structured as follows. The
assumptions and notations used in the suggested model are
discussed in Sect. 2. The comprehensive optimization model
for release policy based on effort based SRGM is presented
in Sect. 3. Section 4 discusses in detail the rescheduling
model employed by the management team followed by a
numerical illustration in Sect.5. Managerial and theoretical
implications are presented in Sect. 6. Next, we discussed
threats to validity in Sect. 7. Section 8 concludes the paper
followed by limitations and scope for future research in
Sect. 9.

2 Model development

Basic assumptions and notations are described in the fol-
lowing subsections.

2.1 Assumptions (for SRGM model incorporating
application characteristics)

The model considered in this study is based on the following
set of assumptions.

(1) The occurrence of faults in the software, its correspond-
ing correction and detection is modeled by NHPP.

(2) A variable quantifying application characteristics of the
software is incorporated explicitly.

882 Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

(3) The software project is subject to random failure due to
presence of hidden faults.

(4) The expected number of faults detected by small
amount of testing effort dw is proportional to the num-
ber of remaining faults.

(5) The model takes into consideration the dependent
nature of faults implying exclusion of faults will result
in exclusion of various other faults.

(6) Fault once detected is instantaneously removed without
any delay.

(7) The operational phase is included in the lifespan of
software.

(8) The environment during testing and operational phase
is identical.

2.2 Notations

The following notations are used for the SRGM:

Notations Meaning

a The fault content in the software application at the
outset

m(W(t))orm(W) Expected fault content observed till time t utilizing
effort W

b(W) Fault detection rate with respect to effort W
q Rate at which left over errors are noted
s Variable measuring application characteristics
W(t) or W Testing effort consumption by time t
k Constant
g Rate of error generation in case of imperfect debug-

ging and is constant

2.3 Mathematical model

This section presents SRGM integrating application charac-
teristics of the software which will be further used for our
slippage analysis.

2.3.1 Weibull testing effort model

Since there is always a limit to the amount of resources avail-
able for testing, it is reasonable to assume that instantaneous
testing effort expenditure is proportional to amount of efforts
available to be expended at that time (Yamada et al. 1993).

In our study, the effort utilization is modeled using
Weibull curve. The advantage of using Weibull function over
others is that it is flexible in nature and can adapt itself to
several effort consumption data. It models very nicely to the
initial rise and then subsequent decay in effort consumption
behavior. The testing effort expended up to time t charac-
terized by Weibull curve is given in equation 1 as follows:

where, W : effort availability, c, � ∶ shape and scale param-
eters of Weibull effort function;𝛼 > 0, c > 0

Also, the instantaneous rate of effort consumption is:

2.3.2 Testing effort dependent SRGM

Here, we will discuss the proposed model under perfect and
imperfect debugging environment.

Case 1. Perfect debugging
Under perfect debugging environment, all the detected

faults are removed with certainty without additional errors
being introduced in the system. Under this scenario, the rate
of change of mean value function with respect to testing
effort expended is specified by the following differential
equation:

For the sake of simplicity of expressions, we will be writ-
ing W(t) as W .

So above differential equation may be written as

Here, the factor s(W) is testing effort dependent func-
tion that quantifies the influence of software characteristics
namely code size, factors related to development and debug-
ging environment, application type etc.

Taking s(W) as power function of effort represented as

On solving (3) us ing boundar y condi t ion
m(0) = 0andW(0) = 0,weget ∶

Case 2. Imperfect debugging with error generation
Under imperfect debugging with error generation, each

detected fault is removed with certainty but removal may
lead to introduction of additional errors in the system. Under
this setting, we assume that faults get introduced at a fixed

(1)W(t) = W ×
(
1 − e−�t

c)

(2)
d

dt
W(t) = W�ctc−1e−�t

c

dm(W(t))∕dt

dW(t)∕dt
= s(W(t)) ∗

(
p(a − m(W(t))) + q

m(W)

a
(a − m(W(t)))

)

(3)

dm(W)

dW
= s(W) ∗

(
p(a − m(W)) + q

m(W)

a
(a − m(W))

)

(4)s(W) = sWk

(5)m(W) = a

⎡
⎢⎢⎢⎣
1 − e

−(p+q)
sWk+1

k+1

1 +
q

p
e
−(p+q)

sWk+1

k+1

⎤⎥⎥⎥⎦

883Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

rate denoted by ‘ g ’ and is proportional to the expected num-
ber of faults removed with testing effort W. Therefore the
fault content is no longer constant but is a function of testing
effort W and it may increase with more effort expenditure
owing to error introduction. Huang et al. (2000) proposed
testing effort based SRGM with constant rate of error gen-
eration. Here,

In this case, the rate of change of mean value function
with respect to testing effort expended is modified and the
equation thus obtained is not solvable. Therefore we will use
alternate expression derived in following steps.

Alternatively,
The Fault detection rate can be written as:

Substituting expression for (b(W)) from (8) in
(10) and solving (10) using boundary condition
m(0) = 0 andW(0) = 0, we get ∶

3 Cost model

The quality and performance of the software product to a
great extent, is influenced by time and effort spent during
testing. There should be optimum trade-off between test-
ing cost and cost incurred during operational phase. Before
delivering the product to the end-users, a critical decision
from economic point of view has to be taken whether to stop
testing or to continue it.

(6)a(W) = a + g ∗ m(W)

(7)b(W) =

d

dw
(m(W))

a − m(W)

(8)b(W) =
p(p + q)sWk

p + qe
−(p+q)sWk+1

k+1

(9)
dm(W)

dw
= b(W) ∗ ((a(W) − m(W)))

(10)= b(W) ∗ ((a + (g − 1) ∗ m(W)))

(11)m(W) =
a

(1 − g)

⎛
⎜⎜⎜⎝
1 −

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝

p + q

pe
(p+q)sWk+1

k+1 + q

⎞⎟⎟⎠

(1−g)⎞
⎟⎟⎟⎠

⎞⎟⎟⎟⎠

Any adjustments in the schedule will have subsequent
impact on costs. If the schedule is delayed, penalties are
faced by developer. This penalty cost is directly proportional
and rises exponentially with delivery time.

3.1 Assumptions for cost model

(1) The cost of fixing a fault during testing remains con-
stant throughout the testing period.

(2) The cost of fixing a bug post-release remains constant
throughout the operational phase i.e., there is no effect
of inflation on costs.

(3) Cost of testing varies linearly with effort spent.
(4) Penalty cost is incurred for not delivering the product

as per schedule. This cost includes market opportunity
cost, goodwill loss etc.

(5) Penalty cost is a function of the time for which the
product is delayed.

3.2 Additional notations for cost model

C1 : Testing cost per unit effort.
C2 : Cost of fixing unit fault during testing phase of SDP.
C3 : Cost of fixing unit fault after the product is released

(C3 > C2).
Cp : Penalty cost per unit delay for not delivering the soft-

ware on time.
R0 : Target reliability.
T : Testing duration.
Td : The scheduled time for delivery of software.
W∗ = W(T) : Effort expenditure during testing.
Wd = W

(
Td
)
 : The amount of testing effort spent by sched-

uled delivery time.
TEC : Total Expected Cost.
IW ∶ Indicator function defined as:

3.3 Cost model formulation

In our research framework, we will consider the cost model
incorporating the following four components:

(1) Cost of testing which varies directly with the testing
effort expenditure W. It is presumed that testing cost
is a linear function of testing effort W. It can be repre-
sented as:

(2) Cost of detecting and removing faults during testing
phase.

IW =

{
1; W ≥ Wd

0; otherwise

Expected testing cost = C1W
∗

884 Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

The expected cost of debugging errors using effort W
during software testing is given as:

(3) Cost of detecting and removing faults during opera-
tional phase.

The expected cost of debugging errors using effort W
during operational phase is given as:

(4) Penalty cost/opportunity cost/risk cost due to delayed
delivery of software product.

This cost may be due to several reasons like competitors
updated product launch, the software product may become
obsolete to name a few.

The unknown parameters of Mean value function m (W)
are obtained using least square methods on SPSS.

The total expected cost as a function of testing effort W
can be obtained by adding the above four components and
is represented as:

In the following section, we will be presenting con-
strained and unconstrained optimization models under both
Perfect and Imperfect Debugging environment and deter-
mine the optimal release policy.

4 Optimization model for release policy

Here, the issue of deciding the best time when testing can
be stopped and the software can be delivered to end-users
for operational use is taken into consideration. This deci-
sion is influenced by various factors such as failure phe-
nomenon and performance criteria used for evaluating the
system readiness (Kapur et al. 1999). We address this prob-
lem of determining optimal release by considering the effort
dependent fault detection rate model of Kapur and Garg
incorporating application characteristics based on the crite-
rion of expected cost. An optimum release policy for uncon-
strained and constrained problem is derived on the basis of

Expected cost of fault removal during testing = C2m(W
∗)

Expected cost of fault removal post release = C3(a − m(W∗))

Penalty cost due to product slippage = IWCp

(
W∗ −Wd

)2

(12)
TEC1(W∗) = C1m(W∗) + C2(a − m(W∗))

+ C3W∗ + IWCp
(

W∗ −Wd
)2

reliability criterion and sensitivity analysis is deliberated for
the model parameters. The results are separately obtained
under perfect and imperfect debugging environment. The
outcomes are demonstrated using numerical examples.

Optimal release policy based on reliability criterion
The release policy for our model will be discussed in

following two cases:

Case 1: Perfect debugging environment
Taking the expression of m(W) from Eq. (5)
Subcase 1: Unconstrained optimization

Subcase 2: Constrained optimization

where, R(x∕W) denotes the reliability of the software and
is given by

Case2: Imperfect debugging environment
Taking expression of m(W) from Eq. (11),
Subcase 1: Unconstrained optimization

Subcase 2: Constrained optimization

(13)Minimize TEC1(W
∗); W ≥ 0 by using Eq.(12)

Minimize TEC1(W
∗)

subjectto

(14)R(x∕W) ≥ RO

(15)W ≥ 0

(16)e(−m(W+x)−m(W))

(17)

MinimizeTEC2(W
∗) =C1m(W) + C2(a − (1 − g)m(W))

+ C3W + IWCp

(
W −Wd

)2
; W ≥ 0

(using equations (6)and (12))

Minimize TEC2(W∗) = C1m(W) + C2(a − (1 − g)m(W))

+ C3W + IWCp
(

W −Wd
)2

(using equations (6)and (12))

subjectto

(18)R(x∕W) ≥ RO

(19)W ≥ 0

885Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

5 Rescheduling model

5.1 Notations

In this subsection, we will present the notations used in the
rescheduling modeling framework.

W Effort expenditure.
Tr Time point where evaluation by management took

place.
Wr Effort expended by time Tr , when the review was done.
Td Scheduled delivery time pre-decided by management.
Wd Effort utilization till the scheduled delivery of the

software.
R0 Reliability level to be achieved at time of scheduled

delivery.

5.2 Assumptions

• The failure phenomenon in SRGM is built on Non-
Homogeneous Poisson process.

• The failure phenomenon during testing depends on the
remaining fault content and faults identified by current
effort level at that time.

• SRGM takes into account factor considering application
characteristics represented by power function.

• There is no time lag between detection and correction of
faults.

• While removing the faults causing failure, some addi-
tional faults are also removed.

• Undetected faults in the software have influence on fail-
ure rate.

• In case of imperfect debugging, constant rate of errors
are introduced into the system at fixed rate. The no. of
faults introduced are directly related to already detected
faults (a + g ∗ m(W)) by utilizing effort W.

Fig. 2 Flow-diagram depicting methodology followed by management team

886 Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

• The review is conducted by the management team during
testing phase at time Tr.

• Management has pre-decided the scheduled delivery of
the software project at time Td by spending Wd effort.

Figure 2 below demonstrates the flowchart correspond-
ing to the methodology followed by the management team.

5.3 Model for evaluation of testing progress
by management team

Before the beginning of software development, the manage-
ment team fixes the scheduled delivery time based on the fea-
sibility and client’s need. Besides that, when testing has been
done for a considerable time period, the management evaluates
the progress of the project and presents its observations and
suggestions to development team to avoid schedule slippage.

6 Numerical illustration

Let’s consider a situation where testing has already been
done for time Tr (time of review) using effort Wr , and the
scheduled delivery time set by management team is Td . At
time Tr , the review is conducted by the management team
to track the progress of testing. The failure data is consid-
ered for the period (0, Tr) and the Weibull testing effort
function is estimated by non-linear regression technique on
SPSS. Further using this data, parameters of the proposed
SRGM are estimated under perfect and imperfect debug-
ging environment. After parameters are estimated for the
proposed model using failure data for time Tr , the additional
effort requirement for the period (Tr , Td) is computed and
in the situation of uniform effort rate, the probable delay is
examined.

Table 1 Description of dataset used

Dataset Reference Description Test-
ing time
(Weeks)

Execution
time(CPU
hours)

Faults

DS-1 Wood
(1996)

Tandem
comput-
ers

20 10,000 100

Table 2 Estimation results for
Weibull TEF (14 weeks data)

Parameter
estimation

DS [Wood (1996)]

W 9306.64

� 0.019
c 1.715

Table 3 Estimated parameters
for the two models

Models for comparison Estimated values of parameters

a p q s k g

Perfect debugging 100 0.023 0.016 0.008 0.001 –
Imperfect debugging 93 0.215 0.001 0.001 0.001 0.264

Fig. 3 Goodness of fit curves for the two model

887Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

6.1 Estimation of Weibull TEF (data taken till time
of review)

For the dataset by Wood (1996) given in Table 1, the time
of review is set to 14 weeks i.e., Tr = 14. The parameters
of effort function are estimated using non-linear regression
technique and are presented in Table 2.

6.2 Model validation and performance criteria used

For evaluating the performance of the suggested SRGM on
the basis of predicted Weibull effort function, the parameters
for the mean value function given by expressions (5) and
(11) are estimated. The results obtained through least square
estimation on SPSS are provided in Table 3. Also, the good-
ness of fit curves are presented in Fig. 3.

Performance criteria used are R square, Mean Square
Error (MSE), Root mean square error (RMSE), Predictive
Ratio risk (PRR) and Predictive power (PP). For both the
datasets low MSE and high R2 indicates a good fit. The
results of various performance measures for the two models
are shown in Table 4.

6.3 Optimization results

In order to determine the optimal release policy, we will find
the optimal level of effort consumption and corresponding
minimum cost in the following steps:

Step 1. Consider the optimization problem formulated in
sub-Sect. 3.4 and determine the release policy by first ignor-
ing the penalty cost for delayed delivery (by taking IW = 0 in
total expected cost function).

Step 2. In the second step include the penalty cost for
delayed delivery in the objective function of the opti-
mization problem (by taking IW = 1 in total expected
cost function). The results of optimization problem
are provided in Table 5. In case of perfect debug-
ging, we have assumed the values of cost coefficients as
C1 = 60, C2 = 100, C3 = 1500 and CP = 30. The t a r-
get reliability level is set at 0.90 and scheduled effort
is taken as 10,000 CPU hours. In imperfect debug-
ging environment, the cost coefficients are assumed as
C1 = 90, C2 = 120, C3 = 2500 and CP = 60. The cost
coefficients in imperfect debugging are greater than perfect
debugging owing to the error generation as the introduction
of new faults require extra cost for their removal. Also, the
research studies in literature have incorporated cost coef-
ficients in the similar manner (Kapur et al. 2008; Verma
et al. 2019). Using these estimated parameters, cost coef-
ficients and reliability goal, we obtained the optimal results
for unconstrained and constrained optimization problem for-
mulated using expressions (13–19) in Sect. 3.4. On solving
the software release problem on Maple software, the results
obtained are presented in Table 5 below.

6.4 Estimation of additional testing efforts

Assuming that for the considered dataset, the scheduled
delivery is set at time Td = 20 weeks at which point the test-
ing terminates. The goal of management is to release the
product at planned time achieving the target reliability level
of 0.90. Taking the expression of reliability using Eq. (16),
mean value function given by Eqs. (5) and (11) in Sect. 3 and
estimated parameters from Table 3, the reliability achieved
by time of review, Tr is estimated. If the efforts continue to

Table 4 Performance measures for the two models

Models for comparison Performance measures

R2 MSE RMSE PRR PP

Perfect debugging 0.952 30.2869 5.5033 35.2929 15.362
Imperfect debugging 0.964 22.5573 4.7495 33.6176 18.9364

Table 5 Release policy optimization results

Model Optimal effort consumption(in
CPU Hours)

Minimum expected
software cost (in
INR)

Ignoring penalty cost Perfect debugging_ Unconstrained 9863.772 1.453197 × 107

Perfect debugging_ Constrained 10068.075 1.51083902 × 107

After adding penalty cost Perfect debugging_ Unconstrained 9975.001 1.498754 × 107

Perfect debugging_ Constrained 12337.820 1.8247497 × 108

Ignoring penalty cost Imperfect Debugging_ Unconstrained 9875.18 2.469996 × 107

Imperfect debugging_ Constrained 14106.607 3.52747 × 107

After adding penalty cost Imperfect debugging_ Unconstrained 9979.168 2.4982094 × 107

Imperfect debugging_ Constrained 14106.6075 1.0471278 × 109

888 Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

be expended at the same existing rate till scheduled deliv-
ery time,Td, then the reliability level attained at the release
time is estimated. But if management is aspiring for higher
reliability, then additional efforts need to be expended. In
order to obtain the values of additional effort requirement,
W# to attain desired reliability target, we use the following
algorithm. Tables 6 and 7 shows the estimated values of
additional effort required corresponding to different levels
of reliability.

Step-wise procedure for estimating requirement of addi-
tional efforts

Step1. Utilize failure dataset till effort expenditure Wr for
estimating the parameters for the Reliability growth model
presented in Sect. 3.2.

Step2. Assuming the same testing environment contin-
ues, use the above parameter values to estimate the level
of reliability achieved by cumulative effort Wr by time Tr .
Denote this by R

(
Tr
)
 . In addition, compute the reliability

level attained at the scheduled delivery time Td . Denote this
by R

(
Td
)
.

Step 3. If the aspired level of reliability time Td is RO.
Two cases arise:

Case 1: If RO < R (Td), then nothing to worry about and
with same rate of testing the product will be delivered by
schedule delivery time.

Case 2: If RO > R (Td), then there is a need to expedite
testing process by employing more effort. Our objective is to
estimate the additional testing efforts required in time inter-
val (Tr, Td) in order to attain reliability level RO at time Td.

Table 6 Additional effort
requirement

Reliabil-
ity = R(x∕W)

Effort required, W Additional effort requirement
from time of review

Additional effort requirement
per unit increase in reliability

Perfect debugging
0.86 8839.2227 1177.316 –
0.89 9721.2374 2059.331 314.3924
0.92 10843.0439 3181.137 410.2655
0.95 12440.6575 4778.751 613.389
0.98 15449.1974 7787.291 1319.6133
Imperfect debugging
0.76 8137.3719 – –
0.79 9086.5997 949.2278 328.4855
0.8 9428.795 1291.4231 342.1953
0.84 10967.7024 2830.3305 414.2513
0.88 12902.1307 4764.7588 533.5974
0.92 15563.6502 7426.2783 766.9879
0.94 17420.7707 9283.3988 992.5146

Table 7 Estimation of probable
delay in software delivery

RO (aspired level of reliability to be
achieved by time Td)

W# additional effort requirement from
time of review Tr)

Probable delay using
Weibull function (in
weeks)

Perfect debugging
0.86 0 0
0.89 882.0147 2.6270
0.92 2003.8212 4.4141
0.95 3601.4348 6.6476
0.98 6609.9747 11.4249
Imperfect debugging
0.76 0 0
0.79 949.2278 2.7482
0.84 2830.3305 5.5813
0.88 4764.7588 8.3087
0.92 7426.2783 13.2601
0.94 9283.3988 28.6458

889Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

From the dataset used and estimated values of the param-
eters, we can compute W# denoting the additional efforts
required to avoid slippage, corresponding to different levels
of reliability.

In the case of perfect debugging, the reliability level
achieved at time of review Tr (after 14 weeks) is R (Tr
) = 0.81.If the efforts are continued to be expended at the
existing rate then, reliability level achieved at scheduled
delivery time Td is 0.86. If the target reliability level, RO
is greater than 0.86, then additional efforts need to be
employed. Taking the value of increment, x as 50 in the defi-
nition of reliability given by Eq. (16), the additional effort
required are computed on MAPLE software and the results
are presented in Table 6 given below.

In the case of Imperfect debugging environment, the reli-
ability level achieved at time of review Tr , (after 14 weeks) is
0.72. If the efforts are continued to be expended at the exist-
ing rate then, reliability level achieved at scheduled delivery
time Td is 0.76. If the target reliability level, RO is greater
than 0.76, than additional efforts need to be employed. Tak-
ing the value of increment,x as 50 in the definition of reli-
ability given by Eq. (16), the additional effort required are
computed on MAPLE software and the results are presented
in Table 6 given below. From Table 6, it can be inferred
that as the aspired reliability level increases, the effort
requirement to achieve the additional unit of reliability also
increases.That is, the marginal effort requirement increases
with each additional reliability level achieved. This may be
regarded as diminishing returns to effort consumption. This
may be attributed to the fact that few latent faults are very
hard to detect and require exceptionally more resources and
time to detect and remove them.

Figure 4 below depict the total effort consumption
with respect to reliability improvement estimated at time
of review for perfect debugging and imperfect debugging
respectively.

6.5 Estimation of probable delay if effort utilization
is kept fixed at a uniform rate

Step 1. Determine the surplus efforts to be expended in time
interval (Tr, Td) to achieve level RO as given by expression
(16).

Step 2. Using the Weibull function of testing effort given
in expression (1), the surplus effort can yield the correspond-
ing time delay.

The estimated values of probable delay corresponding
to different levels of reliability are presented in Table 7 for
perfect and imperfect debugging environment respectively.
Graphically, their curves are shown in Fig. 5.

Further, from Table 7 and corresponding Fig. 5, it can
be observed that as the aspired reliability level increases,
if the usage of the effort is kept at the same rate,then there

is probable delay in the release of software project and this
delay is an increasing function of aspired reliability level.
Also the graphs clearly demonstrates the diminishing returns
to scale that is, in order to achieve each successive unit of
reliability,the delay in time is greater than the previous unit.
This may be attributed to the fact that to improve the qual-
ity or reliability of the software after a certain level, large
amount of resources in terms of manpower, time are needed
to debug hard and complex faults.

7 Implications

7.1 Theoretical implications

This study yields various theoretical implications which have
noteworthy influences in the field of software development.
This paper combines SRGM with management evaluation to
appropriately reschedule the development process to avoid
schedule slippage. The marginal analysis of effort towards on-
time delivery is presented which gives an idea to development
team about trade-off between efforts and scheduled delivery of
software with respect to reliability level attained during testing.

In Kapur and Garg model, we have taken a factor to incor-
porate application characteristics of the software which is
more practical and suitable to study fault removal process.
Moreover, throughout SDP, testing is very crucial and
requires timely review for efficient utilization of time and
resources. This facilitates developers to reschedule deliv-
ery or modify resource consumption to overcome slippage
in software projects. Management evaluation are integral
component of development standards for SDP specified
by International organizations (Suryn et al. 2003). In our
research we have studied managerial reviews during test-
ing in SRGM incorporating application characteristics. The
application characteristics incorporated in the SRGM assist
in achieving the actual failure behavior of software project.
For numerical illustration, we have taken failure dataset of
Tandem computers (Wood 1996) which shows testing for
20 weeks in removing 100 faults consuming 10,000 CPU
hours of effort. The parameters of SRGM are estimated on
this dataset when testing has been done for 14 weeks. At
this point of time, management evaluation was done. The
fault content at this time showed that development process
was running slow and needs to be taken care of, otherwise it
may lead to opportunity loss and hence profit loss. Using this
SRGM in perfect debugging environment, it was observed
that 0.81 reliability level is attained in 14 weeks and if the
development process continue at the same pace then, the
reliability level achieved will be 0.86 end of testing phase
i.e., 20 weeks. But, if we desire to achieve higher reliability
level, then the process has to be expedited by expending
more testing efforts or to postpone the release seeing around

890 Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

competitive environment. Similarly, in case of imperfect
debugging, the determination of reliability attained at the
time of review revealed that the development was lagging.

The development team must decide appropriately as
delayed delivery may have serious consequences including
goodwill loss (Verma et al. 2020). It is apparent from the
graphs shown in Fig. 4 that unlimited testing and resources
can’t be employed to make software 100 percent bug free.
The diminishing returns to effort and time employed show
that after certain point of time, the results achieved are no
more profitable. Cost–benefit analysis has to be done simul-
taneously during project development to determine optimal
values of testing time and efforts. Different research stud-
ies are carried out to demonstrate diminishing returns in
interdisciplinary fields viz. economic analysis (Jordan 2017),
project management (Mahmoudi and Feylizadeh 2018) etc.
Similar behavior is shown in software development projects.
Therefore, SDP needs to be examined cautiously to guaran-
tee optimal use of time and efforts.

7.2 Managerial implications

The outcomes of our present research have great impact on the
actions taken by management team of a software organization.
The observations that are resulted from outcomes of the study
have significant implications for the management as well as
development teams in software development organizations.
The suggestions given by the management to the development
team after examining the progress are valuable in identify-
ing the bottlenecks in the process which may be the cause
for the slippage in software projects. These flaws are initially
identified and the actions are taken to correct them (Wang
et al. 2008). The development process of software is charac-
terized by S-shaped curve signifying that the fault isolation
and removal is slow in the beginning and with learning of the
testing team, it speeds up in the middle and again follows a
slow pace towards the termination of its useful life. By incor-
porating management evaluation, the delay in the project can

be controlled to match the planned one by adjusting the testing
effort consumption. Taking care of the competitive conditions
and client’s urgency, the management team may decide to alter
the scheduled delivery by keeping the same effort utilization.
But this is not always the feasible option since it may lead to
opportunity loss to developers and organization may incur loss
due to obsolescence.

The present study assists the managers to take fundamental
decision concerning scheduled delivery and effort consump-
tion as the testing evolves. The time for assessing the progress
of ongoing project is set during the later stage of testing and
before the final delivery. If the progress doesn’t match the
planned one then either the effort consumption is increased or
the scheduled delivery is shifted but each decision has its own
pros and cons. Increasing the effort consumption is feasible
only if efforts are available and higher costs are affordable, on
the other hand delayed delivery is possible only to the extent
that it doesn’t cause opportunity loss and discontented cli-
ents. It is one of the major concerns of management to decide
about the optimal testing duration. Figure 4 show the improve-
ment in reliability with respect to efforts and testing duration
respectively.

8 Threats to validity

Several types of threats to validity have been described in
previous studies depending on the nature of research. Here,
we will discuss the threats to validity in our present study. In
our study, the Software Reliability Growth model is devel-
oped to discuss the fault removal phenomenon under com-
bined effect of effort expenditure and time assuming con-
stant fault detection rate (FDR) but in real life, it may change
with time because of learning phenomenon and change in
severity of faults. In optimization, we have considered cri-
teria corresponding to cost and reliability but in real-life,
other key criteria like code coverage and functional coverage
may influence the release planning. Also, in our schedule

Fig. 4 Additional effort requirement

891Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

planning, it has been assumed that the project will continue
at the current pace only but practically there are numerous
factors related to the testing conditions and environment
which may change in the post-review period. The threats
to validity include the environmental influences compris-
ing administrative and human factors on the testing process
which may not be taken care of by the model parameters.

Last, but not the least, the model has been validated on
a single real failure dataset.The threats to external validity
may be minimized by validating the model on other datasets.

9 Conclusion

In our research, Kapur and Garg model incorporating testing
effort function and factor for application characteristics has
been assessed under both perfect and imperfect debugging
environment. The SRGM takes into consideration the practi-
cal aspects faced by the development team. This works on
the assumption that hazard rate is dependent on both the
remaining fault content and proportion of faults discovered.
Furthermore, the incorporation of constant for error genera-
tion improved the performance of model by yielding lower
MSE and higher R square. Also, the major contribution of
present research is the significance of management evalu-
ation during the later duration of testing phase, when the
scheduled delivery of the software product is approaching.
The assessment is done to track the progress of the pro-
ject and analyze additional effort requirement to avoid slip-
page or to quantify the probable delay if effort consumption
remains the same. This worked as a beneficial tool for the
manager to plan and workout the requirement for surplus
efforts during testing so that the software product is deliv-
ered as per schedule. The analysis in this paper provides
awareness about current level of development during testing
and aids in estimating additional efforts required to achieve

the goal. It facilitates the software development organization
in retaining its goodwill and clientage, beating the intense
competition by delivering the reliable software product on
time. The present research demonstrates the additional effort
(keeping scheduled delivery time fixed) and possible slip-
page (keeping effort consumption fixed) in Tables 6 and 7
respectively. Furthermore, the corresponding Figs. 4 and 5
reveal the diminishing returns to efforts employed.

This study addresses the process of rescheduling in
SDP. Organizations are confronted with several risks and
uncertainties such as unanticipated modification, rework
and delays. These have great impact on feasibility and opti-
mality of schedules and thus encourage rescheduling. This
paper proposes a procedure to handle slippage. This practice
assists the developer in choosing an appropriate response by
evaluating the impact on feasibility of schedule and effort
available for rescheduling. The process contributes to tradi-
tional scheduling frames, models and supports the sensible
choice and use of rescheduling approaches in development
process.

10 Limitations and future scope

Each research has its limitations which are necessary to be
highlighted. This provides route for further research. In our
present study, the dynamicity of projects is not taken into
consideration as they need to undergo continuous updates
and adapt itself to the environment they are exposed to.
This may be extended to multi-release scenario. In case of
complex software projects, testing usually takes longer than
expected and there is possibility that FDR get changed due to
change in testing environment, changes in skilled personnel,

Fig. 5 Probable delay

892 Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

number of test cases, new testing tools and techniques,
changing strategies etc. In this scenario, the proposed model
can be extended to incorporate single or multiple change
points.

Also we have considered a case where review is done at
one point of time during the later phase of testing. This can
be extended to multiple review points during testing.

Acknowledgments This research work was supported by FRP grant
received from Institution of Eminence, University of Delhi, India (Ref.
No./IoE/2021/12/FRP).

Declarations

Conflict of interest The authors declared that they have no compet-
ing interests and have no conflicts of interest among them.

Informed consent All the authors have approved the manuscript and
agree with its submission to the International Journal of System Assur-
ance Engineering and Management.

Human and animals rights Human participants and/or animals are
not involved in this proposed work.

References

Aggarwal AG, Gandhi N, Verma V, Tandon A (2019) Multi-release
software reliability growth assessment: an approach incorporating
fault reduction factor and imperfect debugging. Int J Math Oper
Res 15(4):446–463

Akgün AE (2020) Team wisdom in software development projects and
its impact on project performance. Int J Inf Manag 50:228–243

Arora R, Aggarwal AG (2020) Testing effort based software reliability
assessment incorporating FRF and change point. Yugosl J Oper
Res 30:273–288

Cao P, Yang K, Liu K (2020) Optimal selection and release problem
in software testing process: a continuous time stochastic control
approach. Eur J Oper Res 285(1):211–222

Chatterjee S, Shukla A (2016) Modeling and analysis of software fault
detection and correction process through Weibull-type fault reduc-
tion factor, change point and imperfect debugging. Arab J Sci Eng
41(12):5009–5025

Chen R-M, Shen Y-M (2016) Dynamic search control-based particle
swarm optimization for project scheduling problems. Adv Mech
Eng 8(4):1687814016641837

Goel AL, Okumoto K (1979) Time-dependent error-detection rate
model for software reliability and other performance measures.
IEEE Trans Reliab 28(3):206–211

Huang C-Y, Kuo S-Y, Lyu MR (2007) An assessment of testing-effort
dependent software reliability growth models. IEEE Trans Reliab
56(2):198–211

Huang C-Y, Kuo S-Y, Lyu MR (2000) Effort-index-based software
reliability growth models and performance assessment. In: Paper
presented at the proceedings 24th annual international computer
software and applications conference. COMPSAC2000

Inoue S, Yamada S (2018) Optimal software testing effort expend-
ing problems. System reliability management. CRC Press, Boca
Raton, pp 51–64

Iqbal J, Shahzad B (2006) Iterative project scheduling-a time bound
technique. In: Paper presented at the 2006 international confer-
ence on computing & informatics

Jelinski Z, Moranda P (1972) Software reliability research. Statistical
computer performance evaluation. Academic Press, Amsterdam,
pp 465–484

Jordan LP (2017) Introduction: understanding migrants’ economic pre-
carity in global cities. Urban Geograph 38(10):1455–1458

Kabeyi MJB (2019) Evolution of project management, monitoring and
evaluation, with historical events and projects that have shaped
the development of project management as a profession. Int J Sci
Res 8(12):63–79

Kapur P, Garg R (1989) Cost–reliability optimum release poli-
cies for a software system under penalty cost. Int J Syst Sci
20(12):2547–2562

Kapur PK, Kumar S, Garg R (1999) Contributions to hardware and
software reliability, vol 3. World Scientific Press, Singapore

Kapur P, Gupta D, Gupta A, Jha P (2008) Effect of introduction of fault
and imperfect debugging on release time. Ratio Math 18(1):62–90

Kapur P, Pham H, Anand S, Yadav K (2011a) A unified approach
for developing software reliability growth models in the pres-
ence of imperfect debugging and error generation. IEEE Trans
Reliab 60(1):331–340

Kapur P, Pham H, Gupta A, Jha P (2011b) Software reliability
assessment with OR applications. Springer, London

Kapur P, Panwar S, Singh O, Kumar V (2019) Joint release and test-
ing stop time policy with testing-effort and change point. Risk
based technologies. Springer, Singapore, pp 209–222

Kapur P, Panwar S, Kumar V (2021) Should software testing con-
tinue after release of a software: a new perspective. Handbook
of advanced performability engineering. Springer, Cham, pp
709–737

Kluender J, Unger-Windeler C, Kortum F, Schneider K (2017) Team
meetings and their relevance for the software development pro-
cess over time. In: Paper presented at the 2017 43rd Euromicro
conference on software engineering and advanced applications
(SEAA)

Kumar V, Sahni R (2020) Dynamic testing resource allocation mod-
eling for multi-release software using optimal control theory and
genetic algorithm. Int J Qual Reliab Manag 37:1049–1069

Lai R, Garg M, Kapur P, Liu S (2011) A study of when to release
a software product from the perspective of software reliability
models. JSW 6(4):651–661

Li Q, Pham H (2017) NHPP software reliability model considering the
uncertainty of operating environments with imperfect debugging
and testing coverage. Appl Math Model 51:68–85

Luna F, González-Álvarez DL, Chicano F, Vega-Rodríguez MA (2014)
The software project scheduling problem: a scalability analysis of
multi-objective metaheuristics. Appl Soft Comput 15:136–148

Mahmoudi A, Feylizadeh MR (2018) A grey mathematical model for
crashing of projects by considering time, cost, quality, risk and
law of diminishing returns. Grey Syst: Theor Appl 8(3):272–294

Majumdar R, Kapur P, Khatri SK, Shrivastava A (2019) Effort-based
software release and testing stop time decisions. Int J Reliab Saf
13(3):179–193

Mangla SK, Raut R, Narwane VS, Zhang Z, Priyadarshinee P (2021)
Mediating effect of big data analytics on project performance of
small and medium enterprises. J Enterp Inf Manag 34(1):168–198

Minku LL, Sudholt D, Yao X (2013) Improved evolutionary algorithm
design for the project scheduling problem based on runtime analy-
sis. IEEE Trans Softw Eng 40(1):83–102

Mtsweni ES, Maveterra N (2018) Issues affecting application of tacit
knowledge within software development project. Procedia Com-
put Sci 138:843–850

893Int J Syst Assur Eng Manag (June 2023) 14(3):878–893

1 3

Ohba M, Chou X-M (1989) Does imperfect debugging affect software
reliability growth? In: Paper presented at the proceedings of the
11th international conference on software engineering

Pachauri B, Dhar J, Kumar A (2015) Incorporating inflection S-shaped
fault reduction factor to enhance software reliability growth. Appl
Math Model 39(5–6):1463–1469

Padberg F (2006) A study on optimal scheduling for software projects.
Softw Process: Improv Pract 11(1):77–91

Seacord RC (2014) The CERT C coding standard: 98 rules for develop-
ing safe, reliable, and secure systems. Pearson Education

Subriadi AP, Muqtadiroh FA, Dewi RS (2019) A model of owner esti-
mate cost for software development project in Indonesia. J Softw:
Evol Process 31(10):e2175

Suryn W, Abran A, April A (2003) ISO/IEC SQuaRE: the second
generation of standards for software product quality. Acta Press,
Calgary

Verma V, Anand S (2020) Two-dimensional release policy for software
systems incorporating FRF, opportunity cost and environment fac-
tor. ICDSMLA 2019. Springer, Singapore, pp 879–885

Verma V, Anand S, Aggarwal AG (2019) Software warranty cost opti-
mization under imperfect debugging. Int J Qual Reliab Manag
37:1233–1257

Verma V, Neha N, Aggarwal AG (2020) Software release planning
using grey wolf optimizer. Soft computing methods for system
dependability. IGI Global, Hershey, PA, pp 1–44

Verma V, Anand S, Kapur P, Aggarwal AG (2022) Unified framework
to assess software reliability and determine optimal release time

in presence of fault reduction factor, error generation and fault
removal efficiency. Int J Syst Assur Eng Manag 13(5):2429–2441

Wang ET, Ju P-H, Jiang JJ, Klein G (2008) The effects of change con-
trol and management review on software flexibility and project
performance. Inf Manag 45(7):438–443

Wood A (1996) Predicting software reliability. Computer 29(11):69–77
Yamada S, Ohba M, Osaki S (1984) S-shaped software reliabil-

ity growth models and their applications. IEEE Trans Reliab
33(4):289–292

Yamada S, Hishitani J, Osaki S (1993) Software-reliability growth with
a Weibull test-effort: a model and application. IEEE Trans Reliab
42(1):100–106

Zhu M, Pham H (2018) A two-phase software reliability modeling
involving with software fault dependency and imperfect fault
removal. Comput Lang Syst Struct 53:27–42

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	Investigating the impact of effort slippages in software development project
	Abstract
	1 Introduction and literature overview
	1.1 Motivation
	1.2 Literature overview
	1.2.1 Testing effort based SRGMs
	1.2.2 Software release planning model
	1.2.3 Software development project
	1.2.4 Slippage and rescheduling
	1.2.5 Significance of management evaluation
	1.2.6 Novelty in our proposed model
	1.2.7 Research questions

	2 Model development
	2.1 Assumptions (for SRGM model incorporating application characteristics)
	2.2 Notations
	2.3 Mathematical model
	2.3.1 Weibull testing effort model
	2.3.2 Testing effort dependent SRGM

	3 Cost model
	3.1 Assumptions for cost model
	3.2 Additional notations for cost model
	3.3 Cost model formulation

	4 Optimization model for release policy
	5 Rescheduling model
	5.1 Notations
	5.2 Assumptions
	5.3 Model for evaluation of testing progress by management team

	6 Numerical illustration
	6.1 Estimation of Weibull TEF (data taken till time of review)
	6.2 Model validation and performance criteria used
	6.3 Optimization results
	6.4 Estimation of additional testing efforts
	6.5 Estimation of probable delay if effort utilization is kept fixed at a uniform rate

	7 Implications
	7.1 Theoretical implications
	7.2 Managerial implications

	8 Threats to validity
	9 Conclusion
	10 Limitations and future scope
	Acknowledgments
	References

