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1 Introduction

In recent years load demands are dynamically increasing 
as a result of which some of the transmission lines carries 
power above the normal capacity. Fulfilling the required 
demand by constructing new transmission lines or by plac-
ing the static capacitors is not feasible due to political and 
economic factors, also static capacitor once charged suffers 
from sub synchronous resonance condition. The system 
capacity may be increased by improving performance of the 
lines and minimizing the losses. In last few decades, FACTS 
devices provide the best solution in this aspect due to its 
unique features such as increased transmission capacity, 
maintenance of electrical and thermal stability and mitiga-
tion of sub synchronous resonance. The ORPD ensures the 
security, reliability operation of power system. In this work 
two FACTS devices, namely, Static Var Compensator (SVC) 
and Thyristor Controlled Series Compensator (TCSC), have 
been incorporated in IEEE- 14, -30 and -57 bus system.

The existing transmission line become overloaded with 
day-to-day increased load demand, which causes stability 
problems in power system. Voltage stability is maintained 
using SVC and TCSC using sequential quadratic program-
ming (Aghaei et al. 2012). The congestion issue has been 
solved by optimally coordination of FACTS devices as well 
as demand response to attain reduced market operation and 
re-dispatch cost (Yousefi et al. 2012). The control parameter 
and location of FACTS devices generally varies based on the 
different approaches. Pricing and sensitivity-based approach 
with interior point method has been chosen to find the loca-
tion for the placement of Unified Power Flow controller 
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(UPFC) and thereby helps to minimize the real power loss 
and operating cost (Singh 2016). Brain storm optimiza-
tion algorithm has been applied to find the location of SVC 
and TCSC for enhancement of voltage profile and stability 
(Dash et al. 2020). JAYA blended MFO which is a hybrid 
form of MFO (Moth Flame Optimization) is used in Jordehi 
(2015) for reducing active power loss. The minimization 
of cost and maximization of annual benefit is achieved by 
hybrid PSO using FACTS devices in Wibowo et al. (2011). 
The efficacy of Moth Flame Optimization (MFO) has been 
shown over Symbiotic organism Search (SOS) and PSO to 
reduce real power loss using SVC and TCSC is shown in Kar 
et al. (2020). Gravitational search algorithm (GSA) has been 
reduced active loss and cost with increased active and reac-
tive loadings on line of test bus systemin (Bhattacharyya and 
Kumar 2016). The optimal power flow problem (OPF) has 
been solved using GSA (Duman et al. 2012). The load ability 
of lines has been improved using TCSC, SVC and Thyristor 
controlled phase shifting transformer (TCPST) (Nagalak-
shmi and Kamaraj 2012). In (Mohanty and Tripathy 2016), 
teaching and learning based optimization technique (TLBO) 
has been used to configure and locate distributed generator. 
The TLBO method has been used to solve bigger size non-
linear problem (Rao et al. 2012). SVC, TCSC, tap settings 
and var generations have been ameliorated using GSA to 
reduce congestion (Bhattacharyya and Kumar 2016). GSA 
and PSO results have been compared for TCSC and SVC 
values to plan reactive power flow in lines (Bhattacharyya 
and Kumar 2015). Multiple objectives related to conges-
tion have been optimized using FACTS using pareto solu-
tion set in Esmaili et al. (2014). The best VAR reserve for a 
given period is calculated for a forecasted load using IEEE 
6 and 57 bus systems (El-Araby and Yorino 2018), but dif-
ferent loading conditions has not been considered. Using 
autonomous groups PSO, the ideal location and size of the 
SVC in IEEE 14 and 30 bus systems has been determined 
in Shehata et al. 2021. In (Hassan et al. 2013), GA has been 
used to reduce damping ratio using UPFC by controlling its 
parameters. The load ability of lines has been improved by 
optimizing the values of TCSC, TCPST, thyristor controlled 
var regulator (TCVR) using GA in Gerbex et al. (2001). 
The optimal power flow problem was handled using multi-
FACTS devices (Biswas et al. 2021), which provided a solu-
tion for fixed loading but did not consider active or reactive 
loading. Optimal power flow using multiple UPFC has been 
achieved using GSA and results are compared with vari-
ous metaheuristic algorithms (Sarker and Goswami 2014). 
The hybrid form of multi objective PSO is utilized in Rose-
lyn et al. (2018) to manage the reactive power for stability 
improvement under the normal and stressed conditions. To 
investigate the impact of FACTS devices, the OPF prob-
lem with the UPFC model was solved via lightning attach-
ment procedure optimization (Taher et al. 2020). The bio 

inspired optimization techniques were tested under differ-
ent operation cases such as an increase in load, with and 
without FACTS and renewable energy sources, and differ-
ent renewable energy source locations on the network to 
consider and address the challenges of the OPF in modern 
power network models (Nusair et al. 2021). The ideal posi-
tions of phasor measurement unit (PMUs) are found using 
a voltage indicator approach in Babu et al. (2020), which 
is determined using a revolutionary deterministic method 
based on a linear logic programme model. To reduce the 
quantity of PMUs in the electrical market, a modified branch 
and bound algorithm (Babu et al. 2021a) is utilised. Also, 
a non—linear programming-based approach (Babu et al. 
2021b) is proposed to solve optimal PMU location issue for 
overall power network observability with considering the 
contingency. Along these lines, to reach their objective the 
authors have utilized various optimization techniques such 
as particle swarm optimization (PSO) (Kumar et al. 2021; 
Kar et al. 2021), biogeography-based optimization (BBO) 
(Bhattacharya and Chattopadhyay 2011), and Krill heard 
Algorithm (KHA) (Mukherjee and Mukherjee 2015).

In recent times several methods have been applied to 
improve the performance of the system in terms of reduc-
tion of the power losses and operating cost. But, since these 
methods are stochastic in nature, there is always a chance of 
improvement. In this work, the better performance of IEEE 
-14, -30 and -57 bus system is achieved using the TLBO 
technique.

2  Objective function

The main aim of this work is to relieve congestion from 
lines which in this paper is created with two cases of various 
loading conditions, first case by increasing reactive loading 
to 1.5 and 2 times the base loading and in second case by 
increasing both active and reactive loading to 1.1 and 1.2 
times of base loading. If lines are freed of reactive power, 
then more space can be fostered for active power flow which 
in turn could fulfill demands Also, if our active power loss 
is reduced then lines transfer capability will be alleviated. 
FACTS installation is a costly affair, but if overall operating 
cost of the system is reduced after FACTS placement, then 
also congestion problem is said to be solved. Loss function 
is given by Eq. (1),

PL is the active power loss of system, where gx is the 
conductance of line between buses ‘m’ and ‘n’ and �mn is 
the phase difference between these buses. Loss is function of 
line conductance and bus voltages which are influenced by 
TCSC and SVC. Overall operating cost is given by Eq. (2),

(1)PL =
∑q

x = (m,n)
gx
{

V2

m
+ V2

n
− 2VmVn cos �mn

}
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where Csystem is cost due to energy loss which is evaluated 
as PL × 0.06 × 100,000 × 8760.,CSVC is the cost of SVC which 
depends on the shunt susceptance value Bsvc and CTCSC is 
the cost of TCSC which again depends on its reactance value 
given by xtcsc . Energy cost is taken as 0.06 $/Kwhr and cost 
is referred from Bhattacharyya and Kumar (2016).

Constraints always come in picture for defining objective 
function boundaries. Some inequality constraints are shown 
for active power, reactive power, voltage magnitude, SVC 
value and TCSC value respectively from Eq. 5, 6, 7, 8, 9 
respectively.

3  Proposed approach

Congestion is created by increasing reactive loading for 
IEEE- 14, IEEE-30 and IEEE-57 bus systems to 1.5–2.0 
times base loadings and also by increasing active and reac-
tive loading to 1.1 to 1.2 times base loadings. The Power 
Flow studies has been achieved using Newton- Raphson’s 
load flow method. From this analysis, the lines carrying 
the maximum reactive power and weak buses are identi-
fied. The TCSC and SVC are placed in these lines and buses 
respectively. The existing KHA, PSO, BBO and proposed 
TLBO optimization techniques are used to configure SVC, 
TCSC, Tap changers and Var generations of generators for 
minimization of active power loss and operating cost as an 
objective function.

3.1  Teaching and learning based optimization 
technique (TLBO)

The problems of Loss and Cost functions are nonlinear func-
tions which could be properly solved by the meta-heuristic 

(2)Ctotal = Csystem + CSVC + CTCSC

(3)CSVC = 0.0003Bsvc2 − 0.3051Bsvc + 127.38US$pu

(4)CTCSC = 0.0015xtcsc2 − 0.7130xtcsc + 153.75US$pu

(5)Pmin
≤ P ≤ Pmax

(6)Qmin
≤ Q ≤ Qmax

(7)0.9pu ≤ V ≤ 1.1pu

(8)0.05pu ≤ Bsvc ≤ 0.15pu

(9)0.01pu ≤ xtcsc ≤ 0.06pu

optimization technique TLBO. It is based “on the influence 
of teacher on output of learner in a class” (Rao et al. 2012). 
Because the TLBO algorithm has few parameters, a fast con-
vergence capability, and a strong global search ability, the 
basic form of the TLBO algorithm was utilized in this study 
to answer the research objectives of optimal reactive power 
dispatch under various operating situations.

Teaching and learning principles define TLBO and output 
is result secured by students. A good teacher infuses great 
knowledge to his students who perform better when they 
properly interact with their mates. TLBO like other nature 
inspired algorithm is a population-based methodology; here 
mean result of learners is the considerable factor. First stu-
dents’ population is defined and later mean is calculated 
from this. The global best value of learner is obtained by 
calculations from both teacher’s and learners’ phase (that 
is both their contributions). Motion induced by other krill 
individuals ( Ni).

3.1.1  Teacher phase

Teacher aims to increase the mean but increasing mean is a 
random process. Xteach is the new mean and it is determined 
by best learner in class. So, the solution is updated as per 
the difference between the existing and new mean, this dif-
ference is

Tf  is the teaching factor that decides the mean value, ri is 
the random number that belongs to the number either 1 or 2. 
Mi and Ti are the mean and teacher at ith iteration and teacher 
tries to improve the mean to value Xteach.

Xnew,i is the modified solution and if it gives better fitness 
then it will be considered, otherwise it is discarded, Xo,i is 
the previous value of learners. After this, solution is again 
optimized by learner’s phase.

3.1.2  Learner phase

Learner learns fast when he shares his knowledge with fel-
low mates and it is achieved in this section. Another learner 
is selected from the population and if it gives better fitness 
then new solution is updated as

Otherwise, new solution is

(10)d = ri
(

Xteach − TfMi

)

(11)Tf = round[1 + rand(0, 1){2 − 1}]

(12)Xnew,i = Xo,i + d

(13)Xnew,i = Xo,i + ri
(

Xj − Xi

)
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This new solution is again tested for better fitness if it 
gives better result then, it is accepted least previous value 
is considered. The flowchart of proposed TLBO method for 
ORPD problem is depicted in Fig. 1.

3.2  Configuration of TCSC and SVC

The location for placement on IEEE-14, IEEE- 30 and 
IEEE-57 bus system is determined optimal power flow using 

(14)Xnew,i = Xo,i + ri
(

Xi − Xj

) Newton- Raphson’s load flow method. The lines and buses 
are keenly observed for maximum reactive flow and mini-
mum bus voltages respectively. For more convergence line 
that are connected to generator buses are not considered. 
Once location is ascertained the configuration of param-
eters are to be defined wisely which is done by optimiza-
tion techniques. For TLBO, initially population is defined: 
Var generations of generators, SVC, TCSC and tap changer 
settings are considered as learners. Mean of the values of 
population is calculated and the learner who gives minimum 
loss and minimum cost is considered as teacher. The new 

Fig. 1  Flowchart of proposed TLBO method



2676 Int J  Syst  Assur  Eng  Manag (October 2022) 13(5):2672–2682

1 3

solution is calculated using Eq. 13 and again tested for bet-
ter fitness. This ends teacher’s phase and for learner’s phase 
again a learner from defined population is compared with 
current learner to give better result. With respect to this, 
new solution is calculated using Eq. 13 and 14. Calculation 
for parameters value is also done using Krill Herd, BBO and 
PSO techniques to compare the results as to which technique 
is better in solving the objective function. Results are tested 
for different reactive loadings that are, 150% and 200% of 
base reactive loading and also for both active and reactive 
loading of 110% and 120% of base loading. Variables for 14 
bus system 3 tap changer, 4 generators, 3 SVCs on 10,13,14 
buses and 1 TCSC on line no. 7, for 30 bus system 4 tap 
changers, 5 generators, 4 SVCs on 7, 15, 17, 21 buses and 4 
TCSCs on 5, 25, 28, 41 lines and for 57 bus system 15 tap 
changer, 6 generators, 4 SVCs on 32, 25, 42 and 57 buses 
and 4 TCSCs on 20, 65, 55 and 44 lines.

4  Results and discussions

Table 1, 2 and 3 shows the loss reduction by incorporating 
FACTS controllers considering base or nominal loading, 
reactive loading and both active and reactive loadings for 
IEEE 14, IEEE 30 and IEEE 57 test bus systems respec-
tively. The real power losses are evaluated at base, 150 and 
200 percentage of reactive loading, and 110 and 120 percent-
age of active and reactive loadings. It is concluded from the 
analysis shown in the table, the TLBO technique outper-
forms the other methods like as KHA, BBO, and PSO in 
terms of loss reduction.

Table 4, 5 and 6 shows operating cost in absence and 
presence of FACTS controllers considering base loading, 
reactive loading, and active and reactive loading. Since the 
reactive power is properly optimized in lines and hence the 
losses are reduced. Net Savings (in $/p. u) is also shown 
which is the difference of the overall cost before and after 
using the FACTS controllers. It is noticed that incorporat-
ing FACTS controllers with TLBO technique gives better 

Table 1  Real power Loss with 
various loading scenarios in 
IEEE 14 bus system

Types of loading Loading (in %) Real power loss 
without FACTS (in 
p. u.)

Real power loss with FACTS using 
various methods (in p. u.)

KHA PSO BBO TLBO

Base loading 100 0.1346 0.1320 0.1335 0.1321 0.1046
Reactive loading 150 0.1461 0.1322 0.1336 0.1322 0.1105

200 0.1744 0.1326 0.1337 0.1325 0.1176
Active & Reactive loading 110 0.1709 0.1639 0.1649 0.1640 0.1332

120 0.2160 0.1998 0.2005 0.1997 0.1646

Table 2  Real power Loss with 
various loading scenarios in 
IEEE 30 bus system

Types of loading Loading (in %) Real power loss 
without FACTS (in 
p. u.)

Real power loss with FACTS using 
various methods (in p. u.)

KHA PSO BBO TLBO

Base loading 100 0.0711 0.0453 0.0448 0.0442 0.0420
Reactive loading 150 0.0742 0.0499 0.0499 0.0498 0.0468

200 0.0795 0.0572 0.0559 0.0569 0.0541
Active & Reactive loading 110 0.0917 0.0539 0.0540 0.0552 0.0428

120 0.1263 0.0949 0.0926 0.0929 0.0879

Table 3  Real power Loss with 
various loading scenarios in 
IEEE 57 bus system

Types of loading Loading (in %) Real power loss 
without FACTS (in 
p. u.)

Real power loss with FACTS using 
various methods (in p. u.)

KHA PSO BBO TLBO

Base loading 100 0.2799 0.2298 0.2325 0.2303 0.2239
Reactive Loading 150 0.2999 0.2398 0.2407 0.2381 0.2320

200 0.3326 0.2581 0.2576 0.2570 0.2567
Active & Reactive loading 110 0.4166 0.3265 0.3202 0.3130 0.3067

120 0.6107 0.3400 0.3227 0.3174 0.3160
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Table 4  Analysis of Operating cost before and after using FACTS for various types of loading in IEEE 14 bus system

Types of loading Loading (in %) Operating cost with consid-
ering energy loss in $ (A)

Methods Minimum operating cost after 
using FACTS devices in $ (B)

Net sav-
ing in $ 
[A—B]

Base loading 100 7,074,576 KHA 6,938,906 135,670
PSO 7,017,486 57,090
BBO 6,942,865 131,711
TLBO 5,497,776 1,576,800

Reactive loading 150 7,679,016 KHA 6,949,673 729,343
PSO 7,024,603 654,413
BBO 6,950,516 728,500
TLBO 5,810,508 1,868,508

200 9,166,464 KHA 6,970,698 2,195,766
PSO 7,026,474 2,139,990
BBO 6,966,009 2,200,455
TLBO 6,191,568 2,974,896

Active and Reactive loading 110 8,982,504 KHA 8,616,401 366,103
PSO 8,668,374 314,130
BBO 8,619,902 362,602
TLBO 7,000,992 1,981,512

120 11,352,960 KHA 10,499,557 853,403
PSO 10,536,406 816,554
BBO 10,498,521 854,439
TLBO 08,653,058 2,699,902

Table 5  Analysis of Operating cost before and after using FACTS for various types of loading in IEEE 30 bus system

Best values are presented in bold

Types of loading Loading (in %) Operating cost with consid-
ering energy loss in $ (A)

Methods Minimum operating cost after 
using FACTS devices in $ (B)

Net sav-
ing in $ 
[A—B]

Base loading 100 3,737,016 KHA 2.3802 × 10
6 1,356,806

PSO 2.3529 × 10
6 1,384,144

BBO 2.2345 × 10
6 1,412,516

TLBO 2.2082 × 10
6 1,514,016

Reactive loading 150 3,899,952 KHA 2.6239 × 10
6 1,276,089

PSO 2.6249 × 10
6 1,277,462

BBO 2.6188 × 10
6 1,281,132

TLBO 2.4577 × 10
6 1,442,238

200 4,178,520 KHA 3.0089 × 10
6 1,116,901

PSO 2.9368 × 10
6 1,241,729

BBO 2.9930 × 10
6 1,185,549

TLBO 2.8458 × 10
6 1,332,674

Active and Reactive loading 110 4,819,752 KHA 2.8337 × 10
6 1,986,055

PSO 2.9022 × 10
6 1,917,512

BBO 2.8358 × 10
6 1,983,903

TLBO 2.2513 × 10
6 2,568,495

120 6,638,328 KHA 4.9867 × 10
6 1,651,640

PSO 4.8677 × 10
6 1,770,651

BBO 4.8822 × 10
6 1,756,170

TLBO 4.6185 × 10
6 2,019,839
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savings as compared to other discussed techniques. An 
approximate of 30–50% savings in cost is achieved when 
the control variables are optimized using TLBO technique 
whereas 20–35% savings is obtained by KHA, BBO, and 
PSO in all the types of loading with IEEE- 14, 30 and 57 
test bus system. The cost of FACTS devices configured by 
TLBO is very cheap while the others method configured 
FACTS devices are expensive. As cost of FACTS depends 
on susceptance and reactance value, so smaller values for 
these parameters are chosen in the TLBO technique.

Table 7, 8 and 9 shows real power loss reduction at vari-
ous types of loading with different optimization techniques. 
It is noticed that incorporating FACTS controllers with 
TLBO technique gives better reduction in losses as com-
pared to other discussed techniques in all the cases such as at 
base loading, reactive loading or active and reactive loading 
in all the three-test bus system.

Figures 2, 3, 4, 5 and 6, Figs. 7, 8, 9, 10 and 11 and 
Figs. 12, 13, 14, 15 and 16 shows the operating cost varia-
tion with respect to no. of iteration using KHA, PSO, BBO 
and TLBO method at distinct loading conditions for IEEE 
14, IEEE 30 and IEEE 30 bus system respectively. All the 
aforesaid techniques are being simulated for 1000 iterations 
and population no. holds as 40 for both the test bus network. 

Table 6  Analysis of Operating cost before and after using FACTS for various types of loading in IEEE 57 bus system

Best values are presented in bold

Types of loading Loading (in %) Operating Cost with 
considering energy loss 
in $ (A)

Methods Minimum operating cost after 
using FACTS devices in $ (B)

Net saving in $ [A—B]

Base loading 100 1.4712 × 107 KHA 1.2078 × 10
7 2,633,901

PSO 1.2220 × 10
7 2,491,121

BBO 1.2105 × 10
7 2,606,822

TLBO 1.1766 × 10
7 2,945,733

Reactive loading 150 1.5762 × 107 KHA 1.2605 × 10
7 3,158,156

PSO 1.2652 × 10
7 3,110,352

BBO 1.2513 × 10
7 3,249,208

TLBO 1.2192 × 10
7 3,571,144

200 1.7481 × 107 KHA 1.3565 × 10
7 3,916,131

PSO 1.3541 × 10
7 3,940,530

BBO 1.3510 × 10
7 3,971,214

TLBO 1.3492 × 10
7 3,989,345

Active and Reactive loading 110 2.1897 × 107 KHA 1.7161 × 10
7 4,735,966

PSO 1.6831 × 10
7 5,065,068

BBO 1.6449 × 10
7 5,065,068

TLBO 1.6120 × 10
7 5,447,223

120 3.2098 × 107 KHA 1.7868 × 10
7 5,776,050

PSO 1.6959 × 10
7 14,230,090

BBO 1.6684 × 10
7 15,139,206

TLBO 1.2078 × 10
7 15,414,691

Table 7  Real Power Loss reduction (in %) at various types of load-
ing with different techniques in IEEE 14 test bus system

Types of loading Loading (in %) Loss reduction using various 
methods (in %)

KHA PSO BBO TLBO

Base loading 100 1.96 0.82 1.86 22.28
Reactive loading 150 9.51 8.56 9.52 24.36

200 23.97 23.34 24.03 32.57
Active & Reactive 

loading
110 4.11 3.51 4.04 22.06
120 7.50 7.18 7.55 23.80

Table 8  Real Power Loss reduction (in %) at various types of load-
ing with different techniques in IEEE 30 test bus system

Types of loading Loading (in %) Loss reduction using various 
methods (in %)

KHA PSO BBO TLBO

Base loading 100 36.29 36.99 37.83 40.93
Reactive loading 150 32.74 32.74 32.88 36.92

200 28.05 29.68 28.42 31.95
Active & Reactive 

loading
110 41.22 41.01 39.80 53.33
120 24.86 28.81 26.45 30.40
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Table 9  Real Power Loss reduction (in %) at various types of load-
ing with different techniques in IEEE 30 test bus system

Types of loading Loading (in %) Loss reduction using various 
methods (in %)

KHA PSO BBO TLBO

Base loading 100 17.90 16.93 17.72 20.01
Reactive loading 150 20.04 19.73 20.61 22.65

200 22.39 22.54 22.73 22.82
Active & Reactive 

loading
110 21.62 23.14 24.87 26.38
120 44.33 47.16 48.02 48.25

Fig. 2  Operating cost variation with iteration using various algo-
rithms at 100% loading for IEEE 14 bus system

Fig. 3  Operating cost variation with iteration using various algo-
rithms at 150% loading for IEEE 14 bus system

Fig. 4  Operating cost variation with iteration using various algo-
rithms at 200% loading for IEEE 14 bus system

Fig. 5  Operating cost variation with iteration using various algo-
rithms at 110% loading for IEEE 14 bus system

Fig. 6  Operating cost variation with iteration using various algo-
rithms at 120% loading for IEEE 14 bus system
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Fig. 7  Operating cost variation with iteration using various algo-
rithms at 100% loading for IEEE 30 bus system

Fig. 8  Operating cost variation with iteration using various algo-
rithms at 150% of reactive loading for IEEE 30 bus system

Fig. 9  Operating cost variation with iteration using various algo-
rithms at 200% of reactive loading for IEEE 30 bus system

Fig. 10  Operating cost variation with iteration using various algo-
rithms at 110% active and reactive loading for IEEE 30 bus system

Fig. 11  Operating cost variation with iteration using various algo-
rithms at 120% active and reactive loading for IEEE 30 bus system

Fig. 12  Operating cost variation with iteration using various algo-
rithms at 100% loading for IEEE 57 bus system
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Here the comparison of operating cost using various tech-
niques are represented. It is clear that TLBO yields better 
convergence rate as compared with other described tech-
niques in terms of operating cost for all distinct reactive 
loading conditions as well as distinct active and reactive 
loading conditions.

5  Conclusion

In this paper, the proposed TLBO technique is implemented 
on standared IEEE 30 and 57 buses with TCSC and SVC 
devices for the minimization of active power loss under 
increased reactive and both active and reactive loading con-
ditions. The supremacy of the proposed method is justified 

by comparing with some of the promising techniques. The 

simulation result shows that the proposed TLBO technique 
results minimum active power loss as compared to the other 
tecniques. It is found that using TLBO method, the active 
power loss is reduced to 22.28%, 40.93% and 20.01% for 
IEEE-14, -30 and -57 bus systems respectively. In addition 
to this, the system operating cost is also found to be reduced.
The proposed technique also yields faster convergence rate. 
The proposed method can be used in future work to solve 
complicated power system optimization problems. Addi-
tionally, this work may be extended with optimal placement 
of DG sources for better performance. This will help in 
determining the usefulness and robustness of the proposed 
method in dealing with a variety of challenging constraints 
in real world applications.

Fig. 13  Operating cost variation with iteration using various algo-
rithms at 150% of reactive loading for IEEE 57 bus system

Fig. 14  Operating cost variation with iteration using various algo-
rithms at 200% of reactive loading for IEEE 57 bus system

Fig. 15  Operating cost variation with iteration using various algo-
rithms at 110% active and reactive loading for IEEE 57 bus system

Fig. 16  Operating cost variation with iteration using various algo-
rithms at 120% active and reactive loading for IEEE 57 bus system
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