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1  Introduction

Real life problems such as production planning, water 
resource management etc., involve multiple conflicting 
objectives subject to constraints. The optimization problem 
with two or greater than two objective functions which are 
conflicting in nature is called multi-objective optimization 
problem. Thus the model under these multiple objective is 
called multi-objective programming model. The concept 
of multi-objective decision making problems was adopted 
and modified by different researchers namely; Zimmermann 
(1978); Yeger (1979); Henan (1979); Rommelfanger (1989); 
Chakraborty and Gupta (2002) and etc.

A quadratic programming (QP) problem is a optimiza-
tion problem in which a quadratic function must be maxi-
mized or minimized subject to linear constraints (Rout 
et al. 2019). Unlike the linear programming problem the 
solutions procedure for QP problem is slightly complex. 
Some economic and business problems can be expressed 
mathematically and are directly applicable to the QP. Sev-
eral algorithms have been devised to solve QP problems, 
including Powell (1985); Lawson and Hanson (1995); 
Goldfarb and Idnani (1983), and others. A QP problem 
involving two or more than two objectives functions are 
termed as multi-objective quadratic programming (MOQP) 
problem. The uncertainties in the parameters of a program-
ming problems are due to fuzziness or randomness. The 
one arising from randomness can be incorporated through 
a probability distribution and other from fuzziness can 
be characterized by fuzzy numbers. A MOQP problem 
with all or some of its input parameters are assumed to 
be fuzzy number is called multi-objective fuzzy quadratic 
programming problem. Authors, like Sert et al. (2015); 
Yue et al. (2019) and Yang et al. (2020) suggested MOQP 
problem under the environment of fuzziness. Most of the 
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time fuzziness of the mathematical programming prob-
lem is due to fuzziness appearing in different parts of a 
programming problem for example the right hand side 
part, constraint coefficient or the objective function coef-
ficients or involved as decision variables. Taghi-Nezhad 
and Taleshian (2018) suggested a solution approach for 
solving fuzzy QP problem where the cost coefficients, the 
matrix of the quadratic form, constraints coefficients, and 
the righthand sides are all fuzzy numbers. Mansoori et al. 
(2018) introduced fuzzy QP problem with fuzzy param-
eters coefficients. Fathy (2019) introduced multi-objective 
and multi-level integer fuzzy QP problems, where all the 
parameters and decision variables of the programming 
problem are fuzzy number. Nasseri et al. (2019) suggested 
a fuzzy multi-objective quadratic model with variable 
constraints for optimal water resource allocation among 
different water-user sectors. Mussafi and Ismail (2021) 
exploited the QP problem to get the best risk level for 
risk-adjusted Islamic portfolios recently.

In majority of the literatures, authors assumed the 
decision parameters as fuzzy numbers while the decision 
variables as crisp ones. Since the variables are crisp, the 
solution obtained as the crisp, which is a real number. The 
solution is exact value in the fuzzy programming problems 
with fuzzy parameters. The fuzzy aspect of the decision is 
partly lost in this case so, it is reasonable and important to 
consider fuzzy mathematical programming problem with 
fuzzy decision variables. A fully fuzzy multi-objective 
quadratic programming (FFMOQP) problem is proposed 
in this paper where all the input parameters and decision 
variables of the programming problems are assumed to 
be triangular fuzzy number and triangular fuzzy decision 
variables respectively.

One of the many mathematical programming techniques 
that can be utilized to handle the problem of multi-objec-
tive optimization is called goal programming (GP) method. 
More importantly, fuzzy goal programming (FGP), has been 
shown to be an effective method for handling future aspi-
rations for decision makers even when those making the 
decisions do not have precise knowledge about the future 
goals. In other word FGP is an extension of conventional 
GP used to solving multi-objective decision problems with 
imprecisely defined model parameters. FGP approach is 
used by a number of researchers to solve multi objective 
optimization problem. Narasimhan (1980); Ignizio (1982) 
and Aouni et al. (2009) are researchers who took initiative 
on solving problems employing FGP method. Lachhwani 
(2012) suggested a FGP procedure for fuzzy multi-objective 
quadratic programming problem. Pramanik and Dey (2011) 
proposed a priority based FGP approach to multi-objective 
quadratic programming problem. Some the recent work on 
this aspects are Dalman and Bayram (2017); Ambad and 

Kulkarni (2017); Hossain and Hossain (2018); Ali et al. 
(2019); Kundu and Islam (2019); Rivaz et al. (2020); Rani 
et al. (2021), etc.

The different FGP formulations can be classified as: 
weighted FGP, lexicographic FGP, fuzzy MIN-MAX Goal 
Programming and interactive FGP. Weighted FGP is used 
in this paper. Generally, the decision makers appreciation 
of the positive and the negative deviations from the fuzzy 
goals can be different according to the relative importance 
of the objective, which can be revealed through the weights 
of each objective under considerations.

In this paper computation between two fuzzy numbers 
and variables, is done by using fuzzy arithmetic operations 
and we have used ranking function and property of fuzzy 
inequality for fuzzy objective functions and fuzzy con-
straints respectively to remove fuzziness. Weighted FGP 
(WFGP) approximation is used to obtain efficient solutions 
of crisp multi-objective programming problem.

The rest of the work is categorized as follows: basic 
preliminary is discussed in Sect. 2, after the introduction 
section. The mathematical model and the the solution pro-
cedures respectively are defined in Sect. 3 and in Sect. 4. 
Numerical example is provided for illustration of the meth-
odology in Sect. 5. Result and discussion are included in 
Sect. 6. The paper is concluded in Sect. 7 followed by sup-
portive references.

2 � Basic preliminaries

Definition 2.1  For (a(p), a, a(o)) ∈ IR , the membership func-
tion �ã(x) of triangular fuzzy(TF) number (a(p), a, a(o)) = ã 

is defined as: 𝜇ã(x) =

⎧
⎪⎪⎨⎪⎪⎩

0, x ≤ a(p)

x−a(p)

a−a(p)
, a(p) ≤ x ≤ a

a(o)−x

a(o)−a
, a ≤ x ≤ a(o)

0, otherwise

Definition 2.2  For two TF numbers (a(p), a, a(o)) ≈ ã and 
(b(p), b, b(o)) ≈ b̃ , the following fuzzy operations between 
two fuzzy numbers hold true: 

	 (i)	 (a(p), a, a(o))⊕ (b(p), b, b(o)) ≈ (a(p) + b(p), a + b, a(o) + b(o))

	 (ii)	 (a(p), a, a(o))⊖ (b(p), b, b(o)) ≈ (a(p) − b(o), a − b, a(o) − b(p))

	(iii)	 k(a(p), a, a(o)) ≈ (ka(p), ka, ka(o)) , k ≥ 0

	(iv)	 k(a(p), a, a(o)) ≈ (kao, ka, kap) , k ≤ 0

	 (v)	 (a(p), a, a(o))⊗ (b(p), b, b(o)) ≈ (a(p)b(p), ab, a(o)b(o) , if 
a(p) ≥ 0 and b(p) ≥ 0

	(vi)	 (a(p), a, a(o))⊗ (b(p), b, b(o)) ≈ (a(p)b(o), ab, a(o)b(o)) , if 
a(p) < 0, a(o) ≥ 0, b(p) ≥ 0

	(vii)	 (a(p), a, a(o))⊗ (b(p), b, b(o)) ≈ (a(p)b(o), ab, a(p)b(o)) , if 
a(o) ≤ 0 and b(p) ≥ 0
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Definition 2.3  For two TF numbers ã ≈ (a(p), a, a(o)) and  
b̃ ≈ (b(p), b, b(o)) , the following properties are true 

	 (i)	 �a ≈ b̃ iff a(p) ≈ b(p) , a ≈ b and  a(o) ≈ b(o)

	 (ii)	 ã ≈ (a(p), a, a(o)) ≥ 0 iff a(p) ≥ 0

Definition 2.4  A ranking function is a function ℝ
:F(R) → R that maps each fuzzy number into the real line. 
F(R) is a set of fuzzy numbers defined on set of real numbers. 
Let (a(p), a, a(o)) ≈ ã   be a TF number, then ℝ(ã) ≈ a(p)+2a+a(o)

4

Definition 2.5  [Pareto-optimal solution (Abebaw Gessesse 
et al. 2020)]: For a multi-objective programming problem, 
a feasible solution x∗ is said to be pareto-optimal or opti-
mal compromise solution if and only if there does not exist 
any other feasible solution x such that Zk1(x) ≤ Zk1(x∗) for 
∀k1�1, 2, ...,K and Zk2(x) < Zk2(x∗) for ∀k2�1, 2, ...,K . The 
collection of all the Pareto optimal solutions in the decision 
space is called the Pareto optimal set (PS), and the projec-
tion of PS in the objective space is called the Pareto optimal 
front (PF).

Definition 2.6  [Multi-objective optimization problem 
(Abebaw Gessesse et al. 2020)]: Many real-world optimiza-
tion problems involve multiple conflicting objectives, known 
as multi-objective optimization problems, which can be 
mathematically formulated as follows:

subject to

where X is the search space of decision variable with 
X = x1, x2, ..xk  denoting the  decision vector.

Definition 2.7  When each of the objectives is given an 
imprecise aspiration level, these objectives are referred to be 
fuzzy goals. The fuzzy goals are now defined in the area of 
fuzzy programming by their related membership functions. 
According to Gupta and Chakraborty (1997) the member-
ship function for the ith fuzzy goal can be defined as:

where the distance function: di(x) = |Zi − Zi(x)|,   i =1, 2, 
3,...,k. This distance depends up on x. At x=x (ideal point in 
x-space) di =0 and at x = x implies Zi(x) = Zi . The maximum 
value of di(x) can be calculated as   di = |Zi − Zi| for 
p = sup{di}

min ∶ Z(x) = (Z1(x), Z2(x), ..., Zk(x))

x�X,

�i(di(x)) =

⎧
⎪⎨⎪⎩

0, for di ≥ p
p−di(x)

p
, for 0 ≤ di(x) ≤ p

1, for di(x) ≤ 0,

⎫⎪⎬⎪⎭

3 � Mathematical model

FFMOQP problem with fuzzy decision variables is of the 
form:

Subject to

where ̃qij = (qp
ij
, qij, q

o
ij
) is constant symmetric matrix assumed 

to be triangular fuzzy number,
c̃j = (cp

j
, cj, c

o
j
) is cost coefficient assumed to be triangular 

fuzzy number,
(a

p

ij
, aij, a

o
ij
) = ã and (bp

i
, bi, b

o
i
) = b̃i are triangular fuzzy 

constraint coefficients and
x̃1 = (xp

1
, x1, x

o
1
) = (x1, x2, x3) and x̃2 = (xp

2
, x2, x

o
2
) = 

(x4, x5, x6) are triangular fuzzy decision variables and their 
representations.

3.1 � Fuzzy goal programming formulation

From the defined membership function 2.7 above, the flex-
ible goals with aspired level 1 is defined, thus the fuzzy goal 
programming(FGP) problem becomes: Lachhwani (2012)

(or)

The ith membership goal with aspired level 1 can presented 
as:

where  D−
i
(≥ 0) and D+

i
(≥ 0) with D−

i
D+

i
= 0 represent under 

or over deviational variables respectively form the aspired 
levels.

3.2 � Weighted fuzzy goal programming formulation

In conventional GP, the under and/or over deviational 
variables are included in the achievement function for 
minimizing them and that depends upon the type of the 

(3.1)

max ∶ �Zk ≈

n∑
j=1

�cj
(k)

⊗ �xj ⊕
1

2

n∑
i=1

n∑
j=1

�qij
(k)
�xi�xj, (k = 1, 2...,K)

(3.2)
n∑
j=1

ãijx̃j ⪯ b̃i, i ∈ {1, 2, ...,m}

(3.3)x̃j ⪰ 0, j ∈ [1, 2, ...n]

(3.4)
p − di

p
+ D−

i
− D+

i
= 1, i = 1, 2, ...

(3.5)−Zi + Zi(x) + pD−
i
+ pD+

i
= 0, ∀i = 1, 2, ...

(3.6)Cix + xTHix − Zi + pD−
i
− pD+ = 0
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objective functions to be optimized. In this work, only the 
under deviational variables D− is required to be minimized 
to achieve the aspired levels of the fuzzy goals. It may be 
noted that when a membership goal is fully achieved, the 
we get D− = 0 and D+ = 1. The weighted WFGP approach 
becomes, find x so as to minimize:

Subject to

In the above model Ci,Hi are are row vectors with n-com-
ponents and x and b are column vectors with n and m-com-
ponents. xTHix is a strictly concave quadratic function on 
the convex set S of all its possible solutions, with a global 
unique maximum of Zi(x) for every i = 1,2,...,k over S. The 
relative importance of obtaining the sought level of the dif-
ferent fuzzy objectives subject to the constraint established 
in the decision-making situation is represented by the �i ≥ 0 
(i = 1, 2,...).

4 � Solution procedures

This section presents an approach for solving a multi-
objective fully fuzzy QP problem (Table 1).

The solution methodologies are discussed in depth as 
follows: 

	Step 1.	 Ranking function method is applied on Eq. (3.1) 
and to handle fuzzy QP programming problem and 
moreover, the property of inequality between two 
fuzzy numbers are used for defuzzification of fuzzy 
constraints, (3.2)–(3.3). Thus the programming prob-
lem becomes: 

 Subject to 

(3.7)
K∑
i=1

�iD
−
i

(3.8)Cix + xTHix − Zi + pD−
i
− pD+ = 0

(3.9)x ∈ S =
{
x ∈ Rn ∶ Ax ≤ b, x ≥ 0

}
,

max ∶ Zk =
1

4

n∑
j=1

((qk
ij
)px

p

j
+ 2qk

ij
xj + (qk

j
)oxo

j
) +

1

8

n∑
i=1

n∑
j=1

((qk
ij
)px

p

i
x
p

j

(4.1)+2qk
ij
xixj + (qk

ij
)oxo

i
xo
j
), k ∈ {1, 2.....K}

(4.2)
n∑
j=1

a
p

ij
x
p

j
≤ b

p

i
, i ∈ {1, 2, ...,m}

	Step 2	 Use any commercially available optimization pack-
ages such as LINDO, LINGO, CPLEX and etc. to solve 
the defined problem in step 1 individually to obtain the 
ideal solutions.

	Step 3.	 Create payoff matrix.
	Step 4.	 Find the upper ( Zi ) and lower(Zi ) bound of each 

objective function at each ideal solution resulted from 
optimizing single objective.

	Step 5.	 Compute the distance di=|Zi − Zi|.
	Step 6.	 Find p= sup{d}
	Step 7.	 For each objective function, define a membership 

function in light of definition 2.7.
	Step 8.	 Formulate the WFGP from all the above steps.
	Step 9.	 Solve the WFGP model with the purpose of mini-

mizing the weighted sum of deviations from the goal.
	Step 10.	The resultant crisp non-linear mathematical model 

is solved by LINGO software and fuzzy optimal solu-
tion x̃i=(x1, x2, x3) is obtained.

N o t e :  (ap, a, ao) ≈ ã  a n d  (bp, b, bo) ≈ b̃  a n d 
(xp, x, xo) ≈ x̃ ≈ (x1, x2, x3)

The general solution procedure of FFMOQP problem is 
depicted by the following flowchart (Fig. 1):

5 � Numerical example

(4.3)
n∑
j=1

aijxj ≤ bi, i ∈ {1, 2, ...,m}

(4.4)
n∑
j=1

ao
ij
xo
j
≤ bo

i
, i ∈ {1, 2, ...,m}

(4.5)xo
j
− xj ≥ 0, j ∈ {1, 2, ..., n}

(4.6)xj − x
p

j
≥ 0, j ∈ {1, 2, ..., n}

(4.7)x
p

j
≥ 0, j ∈ {1, 2, ..., n}

(5.1)
max ∶ Z̃1 ≈ (10, 14, 18)⊗ x̃1 ⊕ (4, 10, 14)

⊗ x̃2 ⊖ (0, 2, 3)⊗ x̃
2

1
⊖ (1, 3, 5)⊗ x̃

2

2

(5.2)
max ∶ Z̃2 ≈ (5, 15, 25)⊗ x̃1 ⊕ (5, 15, 25)

⊗ x̃2 ⊖ (0.5, 1, 1.5)⊗ x̃
2

1
⊖ (0.5, 1, 1.5)⊗ x̃

2

2
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Subject to

Using ranking function for the defuzzification of fuzzy 
objective function and the property of inequality between 
fuzzy numbers for defuzzification of fuzzy constraints, we 
get the following crisp multi-objective QP problem:

(5.3)
max ∶ Z̃3 ≈ (8, 24, 40)⊗ x̃1 ⊕ (5, 15, 25)⊗ x̃2

⊖ (0.5, 1, 1.5)⊗ x̃
2

1
⊖ (0.5, 1, 1.5)⊗ x̃

2

2

(5.4)(0.5, 1, 1.5)x̃1 ⊕ (0.5, 1, 1.5)x̃2 ⪯ (1, 3, 5)

(5.5)(2, 4, 6)x̃1 ⊕ (0.5, 1, 1.5)x̃2 ⪯ (6, 7, 8)

(5.6)x̃i ⪰ 0, i = 1, 2

Subject to

The following steps are taken to formulate fuzzy member-
ship function: 

	 i.	 Each objective function is separately maximized with 
respect to the given constraints.

	 ii.	 Then payoff matrix is formulated.
	iii.	 Lower and Upper bound of the objective functions are 

identified at all the ideal solutions resulted from step 1.

From the payoff matrix 1, above we can calculate 
d̄
1

= |ZU

1

− Z
l

1

| = |19.599 − 7.465| = 12.134 , d̄
2

= |ZU

2

− Z
l

2

|
= |39.542 − 22.499| = 17.043 d̄

3

= |ZU

3

− Z
l

3

| = |41.147−
32.499| = 9.096 . Then p=sup{d̄i} = 17.043 for i = 1, 2, 3. 
The formulation of equivalent WFGP is give as follows:

(5.7)

max ∶ Z1

=
10x1 + 4x4 − 3x2

3
− 5x2

6
+ 28x2 + 20x5 − 4x2

2
− 6x2

5
+ 18x3 + 14x6 − x

2

4

4

(5.8)

max ∶ Z2

=
15x1+5x4−1.5x

2

3
−1.5x2

6
+30x2+30x5−2x

2

2
−2x2

5
+25x3+25x6−0.5x

2

1
−0.5x2

4

4

(5.9)
max ∶ Z3

=
8x1+4x4−1.5x

2

3
−1.5x2

6
+24x2+30x5−2x

2

2
−2x2

5
+40x3+25x6−0.5x

2

1
−0.5x2

4

4

(5.10)0.5x1 + 0.5x4 ≤ 1

(5.11)x2 + x5 ≤ 3

(5.12)1.5x4 + 1.5x6 ≤ 5

(5.13)2x1 + 0.5x4 ≤ 6

(5.14)4x2 + x5 ≤ 7

(5.15)6x3 + 6x6 ≤ 8

(5.16)0 ≤ x1 ≤ x2 ≤ x3

(5.17)0 ≤ x4 ≤ x5 ≤ x6

Fig. 1   Flowchart on general solution procedures of multi-objective 
fuzzy QP problem

Table 1   Payoff matrix

Z
1

Z
2

Z
3

X
(1) 19.59903 22.49930 32.05057

X
(2) 7.46529 39.54177 41.04147

X
(3) 11.17273 39.17848 41.14693
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Subject to

(5.18)min ∶ �1D
−
1
+ �2D

−
2
+ �3D

−
3

(5.19)

10x
1

+ 4x
4

− 3x
2

3

− 5x
2

6

+ 28x
2

+ 20x
5

− 4x
2

2

− 6x
2

5

+ 18x
3

+ 14x
6

− x
2

4

4

− 19.599 + 17.043D
−

1

− 17.043D
+

1

= 0

15x
1

+ 5x
4

− 1.5x
2

3

− 1.5x
2

6

+ 30x
2

+ 30x
5

− 2x
2

2

− 2x
2

5

+ 25x
3

+ 25x
6

− 0.5x
2

1

− 0.5x
2

4

4

(5.20)
− 39.542 + 17.043D

−

2

− 17.043D
+

2

= 0

8x
1

+ 4x
4

− 1.5x
2

3

− 1.5x
2

6

+ 24x
2

+ 30x
5

− 2x
2

2

− 2x
2

5

+ 40x
3

+ 25x
6

− 0.5x
2

1

− 0.5x
2

4

4

(5.21)− 41.147 + 17.043D−
3
− 17.043D+

3
= 0

(5.22)0.5x1 + 0.5x4 ≤ 1

(5.23)x2 + x5 ≤ 3

(5.24)1.5x4 + 1.5x6 ≤ 5

(5.25)2x1 + 0.5x4 ≤ 6

(5.26)4x2 + x5 ≤ 7

(5.27)6x3 + 6x6 ≤ 8

(5.28)0 ≤ x1 ≤ x2 ≤ x3

The crisp nonlinear-programming model from 5.18 to 5.29 

is solved in light of three cases shown as below. Case 1: �1

=0.5, �2=0.3, �3=0.2
Case 2: �1=0.5, �2=0.2, �3=0.3
Case 3: �1=0.3, �2=0.5, �3=0.2
The following Tables 2 and 3 recapitulate all the results 

of solved model from 5.18 to 5.29

6 � Result and discussion

Average of the three cases (1, 2 and 3) of each fuzzy optimal 
value of objective function is taken and discussed as follows:

From the results illustrated in the Tables 2 and 3 it is 
found that the maximized fuzzy values of objective functions 
Z̃1 , Z̃2 and Z̃3 respectively are (-9.5513, 17.4120, 41.4340), 
(2.8355, 36.6541, 62.6566) and (5.4192, 36.0772, 78.9210). 
It is observed that amount of highest membership value 
achieved by fuzzy objective function, Z̃3 is 0.8960. The least 
amount of membership values achieved by fuzzy objective 

(5.29)0 ≤ x4 ≤ x5 ≤ x6

Table 2   Fuzzy PO solutions of 
WFGP model

Fuzzy pareto 
optimal solu-
tions

Case 1 Case 2 Case 3

x̃
1

(0.88137, 0.88137, 0.88138) (0.77780, 0.7778, 0.78) (0.86528, 0.86528, 0.86528)
x̃
2

(1.11863, 1.80784, 1.80784) (1.1111, 2.2222, 2.2222) (1.13472, 1.87221, 1.87221)

Table 3   Fuzzy optimal values of the three objective functions and the membership values achieved

Weights Z̃
1

Z̃
2

Z̃
3

�
1

(d
1

) �
1

(d
2

) �
3

(d
1

)

Case 1 (− 5.3836, 19.0591, 39.9232) (3.9323, 36.2931, 48.3173) (6.5765, 36.9172, 75.2551) 0.91022 0.7863 0.8346
Case 2 (− 15.6122, 17.0869, 43.8799) (1.131148, 39.4565, 72.2333) (3.4650, 37.1234, 81.1156) 0.7863 0.8019 0.9016
Case 3 (− 7.6581, 16.0899, 40.4984) (3.4430, 34.2127, 67.4192) (6.2161, 34.1909, 80.3930) 0.8998 0.8018 0.9866
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function, Z̃1 is 0.8299. In general WFGP approach is pow-
erful method to handle multi-objective problems where the 
aspiration levels are not known certainly.

7 � Conclusion

A solution procedure of FFMOQP problem is proposed in 
this study. All the input parameters and decision variables 
are considered to be triangular fuzzy number and triangular 
fuzzy decision variables. Moreover triangular fuzzy number 
is used as decision solutions. Initially, the fuzzy objective 
functions are defuzzified by applying the ranking function 
for triangular fuzzy number on each individual objective 
function. The inequality constraints involved in the multi-
objective QP model with fuzzy parameters and fuzzy deci-
sion variables are converted to their crisp equivalent by 
using the property of inequality among the fuzzy numbers. 
Finally WFGP approach is applied to handle the crisp multi-
objective QP problem. The transformed model is solved by 
the existing software(LINGO). The numerical example’s 
result has been found to be superior.

The proposed methods employed in this work are very 
important; to find the crisp equivalent of the fully fuzzy 
mathematical programming problems and finally to solve 
the equivalent crisp model accordingly. The study be applied 
to fully fuzzy real-world decision-making situations includ-
ing fuzzy supply chain management, portfolio management, 
and so forth.
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