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Abstract The software industry is highly competitive, and

hence, it is imperative to have an accurate method to

estimate the effort needed in the key phases of software

development. Accurate estimates ensure efficient allocation

of human and machine resources for the project. This paper

proposes a technique for software development effort

estimation using deep belief network (DBN). For fine-

tuning of DBN, Whale Optimization Algorithm (WOA) is

used which mimics the social behaviour of humpback

whales. The proposed technique DBN-WOA has been

experimentally evaluated on four promise datasets—

COCOMO81, NASA93, MAXWELL and CHINA. The

results from DBN-WOA are compared with the results

from fine-tuning of DBN with backpropagation (DBN-BP)

and it is observed that the proposed technique outscores

DBN-BP. The proposed approach is also empirically vali-

dated through a statistical framework.

Keywords Software development effort estimation � Deep
belief network � Backpropagation � Whale optimization

algorithm � Metaheuristics � Neural networks

1 Introduction

The software typically developed has a ‘‘compilation

phase’’ without which the software is not deemed to be

complete. It may not be efficient, reliable, maintainable or

scalable in absence of resources. In the juggernaut of IT

revolutions in this world, Software Development Effort

Estimation (SDEE) is a research area that is undergoing

intense study as it assists in the production of an error-free

software product which adheres to the requirements of the

customers (Gupta et al. 2014). A software failure, in the

present world of IT, is extremely perilous and can some-

times prove to be fatal as well. In the past, many software

projects have failed such as Y2K (2000); Mariner Bugs Out

(1962); Hartford Coliseum Collapse (1978); (http://www.

devtopics.com/20-famous-software-disasters/). Some of

the prominent causes discovered were inaccurate estimates

of needed resources, badly defined system requirements,

unmanaged risks, poor project management etc. Hence, it

seems apparent to be more systematic and organised while

producing software or on the whole to devote the accurate

time, effort and cost required for producing software.

SDEE helps in realizing these goals of producing

quintessential software. It involves estimating the effort (or

manpower) required for producing software, prior to its

development phase. Since effort is the main driver for

producing software, its estimation will ultimately lead to

the estimations of the cost, time and staffing levels required

to complete the project. Hence, the accurate estimates of

software development effort are imperative as they are

responsible for the entire framework and success of the

software development process.

SDEE is usually done when most of the attributes of the

software details are not divulged. Therefore, it has always

been a very challenging and daunting task. Since the 1980s,

many SDEE models have been proposed in literature

(Jørgensen and Sheppard 2007; Elish 2009; Benala et al.

2012). But no model is perfect or has proved to be 100%

accurate.
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Traditionally, expert judgment was used for SDEE. It

involved consulting an expert, who had a lot of experience

in developing software (Srivastava et al. 2020). This failed

when no experts were available to consult. Moreover, it

was completely intuitive. Later, algorithmic models were

developed such as Constructive Cost Model (COCOMO)

(Boehm 1984; Fenton and Pfleeger, 1997; Pressman 1997),

Putnam Resource Allocation (Putnam 1978) etc. These

belonged to linear-least-squares regression. The equations

in these models were constructed after studying the data-

sets of previous software projects. Their input was usually

software size and/or function points. But these models

could not deal with non-linear relations across the char-

acteristics of project and effort (Gray 1999).

Recently, various authors have been estimating software

development effort using non-algorithmic models.

These non-algorithmic models do not rely upon one

fixed formula, it allows experts intervention to adjust the

model used in software cost prediction. They have the

capability to work even on imprecise, noisy and vague data

and still produce suitable results.

Non-algorithmic models work well in SDEE as at the

early stages of software development, the attributes of the

software are not known or are imprecise, vague and noisy.

Two widely known techniques that can be classified as

non-algorithmic techniques are machine learning tech-

niques and metaheuristic techniques. The machine learning

techniques that have been used by some authors in the

domain of SDEE, include Artificial Neural Network (Ku-

mar et al. 2008), Genetic Algorithms (Burgess and Lefley

2001), Multiple Additive Regression trees (Elish 2009),

linear regression models (Jiang et al. 2007; Xia et al. 2008)

etc. Many researchers also incline towards using meta-

heuristic techniques in various domains for solving com-

plex problems. These can also be used in affiliation with

the machine learning techniques for solving problems.

Some of the metaheuristic techniques that have been used

by some authors in the domain of SDEE include Firefly

Algorithm (Kaushik et al. 2016), COA-Cuckoo optimiza-

tion (Kaushik et al. 2017) and ALO-Ant Lion Optimization

(Kaushik et al. 2020). The other domains of software

engineering where these metaheuristic techniques are used

are software reliability (Sharma et al. 2011; Sharma and

Pant 2014) and Software Project Scheduling (SPS) Prob-

lem (Sharma 2016).

Deep learning is another domain that is gaining impor-

tance these days. It outperforms previously existing tech-

niques in the multiple domains, such as image processing

(Ciregan et al. 2012), optical character recognition (Breuel

et al. 2013), text-to-speech synthesis (Fan et al. 2014) etc.

The contribution of this research is to predict software

effort using integration of DBN, which is a model of deep

learning, and WOA, which is a metaheuristic technique.

This paper attempts to evaluate the success of deep learn-

ing for SDEE. The paper further also attempts to judge the

effectiveness of integrating metaheuristic technique, WOA

with DBN as compared to integrating backpropagation

with DBN. This research attempts to answer the following

questions:

1. Can deep learning accurately predict the software

development effort?

2. Can the fine tuning of DBN using Whale Optimization

Algorithm (WOA) perform better than the fine tuning

of the DBN using backpropagation?

The remainder of the paper is organised as follows:

Sect. 2 summarises the related work; Sect. 3 discusses the

overview of techniques employed in the paper; Sect. 4

describes the proposed methodology of SDEE; Sect. 5

describes the experimental evaluation and results; Sect. 6

discusses the statistical validation; Sect. 7 lists the limita-

tions and future scope and Sect. 8 concludes the paper and

answers the research questions.

2 Related research

Realizing the importance of Software Development Effort

Estimation, researchers over the past few decades have

developed a number of techniques, which have been dis-

cussed here.

Muzaffar and Ahmed (2010) presented a study which

showed that accuracy of effort prediction of a fuzzy logic-

based system (FLS) is largely dependent on the architec-

ture of the system, the relative parameters, and the training

algorithms. They concluded that the steepest descent

algorithm is a better training algorithm than heuristic based

algorithm on FLS based effort prediction.

Qin and Fang (2011) listed out the three types of soft-

ware cost estimation methods- the top-down method, the

bottom-up method and the analogy method. They discussed

the COCOMO model, the COCOMO 2 model and also the

inability of the COCOMO model to handle Commercially

available Off-The-Shelf (COTS) product integration costs.

Wen et al. (2012) analysed 84 studies through a thor-

ough literature review of empirical studies on Machine

learning (ML) models published between 1991 and 2010.

They discovered that eight machine learning techniques

have been employed in SDEE models, and that the esti-

mation accuracy of these techniques was not only close to

acceptable estimation levels but better than non-machine

learning models. They also concluded that different ML

models were suitable to different estimation contexts,

based on the strengths and weaknesses of the model.

Nassif et al. (2013) compared Multilayer Perceptron

(MLP) and novel log linear regression model which was
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based on Use Case Point (UCP) model for SDEE. They

developed a linear regression model for prediction of the

values of the productivity factor in their novel regression

model. They also developed a Multi-Layer Perceptron

artificial neural network model which uses the size of the

software and the productivity of the team which is repre-

sented by eight factors as inputs to give the software effort.

They claimed that MLP model surpasses the regression

model for small projects (effort\ 3000 person-hours) and

that the log-linear regression model gives improved results

when larger projects (effort[ 3000 person-hours) are

considered.

Dave and Dutta (2014) provided a review covering

various artificial neural network-based models for SDEE as

proposed by various researchers. They reviewed twenty-

one articles and emphasized on the abilities of neural

network-based models in SDEE.

Rao and Kumar (2015) proposed a Generalized

Regression Neural Network (GRNN) to incorporate

enhanced software effort estimation for COCOMO dataset.

They used the Mean Magnitude Relative Error (MMRE)

and Median Magnitude Relative Error (MdMRE) as the

evaluation criteria. They compared the proposed GRNN

with various techniques such as M5, Linear regression and

Radial Basis Function (RBF) kernel.

Panda et al. (2015) used the Story Point Approach (SPA)

to enhance the accuracy of prediction of agile SDEE. They

used different neural networks—GRNN, Probabilistic

Neural Network (PNN), Group Method of Data Handling

(GMDH), Polynomial Neural Network and Cascade-Cor-

relation Neural Network. They concluded that cascade

networks outscore other networks.

Kaushik et al. (2016) integrated firefly algorithm and

artificial neural network (ANN) for accurate cost predic-

tions. The novel method was compared with particle swarm

optimization and it was concluded that the ANN model

gives more accurate estimations than particle swarm

optimization.

Rijwani and Jain (2016) used Multi Layered Feed For-

ward Neural Network for software effort estimation and

experimentally evaluated their model on COCOMO

dataset.

Miandoab and Gharehchopogh (2016) proposed a COA-

Cuckoo optimization and K-Nearest Neighbours (KNN)

algorithm for SDEE. They evaluated the proposed tech-

nique on eight evaluation criteria: Mean Magnitude of

Error Relative to the estimate (MMER), Mean Magnitude

of Relative Error (MMRE), Median Mean Magnitude of

Relative Error (MDMRE), Root Mean Square Error

(RMSE), Mean Absolute Percentage Error (MAPE), Mean

Absolute Error (MAE), Prediction(N) (PRED (N)) and

Mean Square Error (MSE), and six datasets: KEMERER,

MAXWELL, MIYAZAKI 1, NASA93 60, NASA93 63

and NASA93 and concluded that the proposed technique

outscore other techniques, such as COCOMO, KNN and

Cuckoo optimization algorithm, in KEMERER, MIYA-

ZAKI1, NASA93 60 and NASA93 datasets.

Kaushik et al. (2017) proposed a novel method

CUCKOO-FIS, which integrates two techniques: Cuckoo

optimizations, a meta-heuristic search algorithm and Fuzzy

Inference System. The collaborated technique is used for

effort estimation and is successfully evaluated on software

effort estimation datasets.

Rajpurohit et al. (2017) provided a comprehensive list of

metaheuristic algorithms developed so far which is very

insightful for solving various engineering problems

including software cost estimation. The work provided a

base for the researchers to work with metaheuristic

algorithms.

Sharma and Pant (2017) proposed an Intermediate

Artificial Bee Colony Greedy (I-ABC Greedy) algorithm.

This algorithm overcomes the limitations of ABC algo-

rithm. The efficiency of the proposed technique was veri-

fied by applying it on three real world problems consisting

of parameter estimation in software reliability growth

models, software effort estimation and redundancy opti-

mization in modular software system models.

Kaushik et al. (2020) used Deep Belief Network along

with Ant Lion Optimization (DBN-ALO) for effort esti-

mation in both agile and non-agile datasets. Their approach

worked best for both agile and non-agile development

approaches.

All the above techniques were unique in their own way

and every year as the new techniques are coming there

remains always a scope of improvement. So, this work is to

explore that improvement by integrating Whale Opti-

mization Algorithm (WOA) and Deep Belief Network

(DBN) for Software Development Effort Estimation

(SDEE).

3 Overview of techniques employed

3.1 Deep learning

Deep learning is a part of a family of machine learning

methods based on learning data representations. It uses a

given training set to extrapolate new features from a lim-

ited set of features. Hence, it owes an advantage over

previous neural networks and other machine-learning

algorithms. It has the ability to search for and discover

other features that correlate to those that are already

known. It may discover new ways of separating the noise

from the signal to better hear the signal. Two models of

deep learning that have been used in this research are

described in Sects. 3.1.1 and 3.1.2.
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3.1.1 Restricted Boltzmann machine (RBM)

RBMs (Yang and Papa 2016; Fischer and Igel 2012) are

energy-based stochastic neural networks that have two

layers—the visible layer (to represent observable data) and

the hidden layer (to capture the dependencies observed

between data). RBMs are connected in a complete bipartite

graph manner as shown in Fig. 1, where there are m visible

units and n hidden units. Each connection between a visible

unit and a hidden unit in an RBM is associated with a

weight. The matrix of all the weights of an RBM is rep-

resented by a weight matrix W.

The energy function of an RBM is given in Eq. (1)

E v; hð Þ ¼ �
Xm

i¼1

aivi �
Xn

j¼1

bjhj �
Xm

i¼1

Xn

j¼1

vihjwij ð1Þ

where a and b are the biases of visible and hidden layer

respectively, vi is the value of observable data at ith visible

unit, hj is the state of jth hidden unit and wij is the weight

associated with the connection between ith visible unit and

jth hidden unit.

In a DBN, each RBM is trained in an unsupervised

manner, independently of other RBMs.

3.1.2 Deep belief network

A Deep belief network (DBN) (Yang and Papa 2016;

Fischer and Igel 2012) is formed when more than one

Restricted Boltzmann Machines (RBMs) are stacked upon

each other. In a DBN, the hidden layer of the ith RBM acts

as input layer to (i ? 1)th RBM. Each RBM in a DBN is

trained in an unsupervised manner independently of other

RBMs. A final output layer is also added to the top of the

DBN. The DBN can be fine-tuned with any algorithm (e.g.

gradient descent algorithm, metaheuristic algorithm etc.) to

minimize some error measure with the output obtained at

the final layer. A typical structure of DBN is shown in

Fig. 2. It represents L RBM layers, with Wi being the

weight matrix of the ith RBM.

3.2 Whale optimization algorithm

Whale Optimization Algorithm (WOA) (Mirjalili and

Lewis 2016) draws its inspiration from the hunting beha-

viour of humpback whales called the bubble-net feeding

method. Generally, they hunt schools of krill and small fish

close to the surface. They do so by creating distinctive

bubbles along a circle or ‘9’-shaped path, which comprises

upward-spirals’ and ‘double- loops. The humpback whales

encircle the prey with fins which are flashing, that keeps

the prey contained and does not escape. The mathematical

model of encircling prey, spiral bubble-net foraging

manoeuvrer and prey search is described in the following

section:

3.2.1 Encircling prey

Humpback whales encircle the prey and keep updating

their positions towards the best search agent as the itera-

tions increase i.e. from start to a maximum number of

iterations. This behaviour is mathematically formulated as:

E~ ¼ D
!� Y��! tð Þ � Y~ tð Þ
���

��� ð2Þ

Y
!

t þ 1ð Þ ¼ Y��!ðtÞ � B
!� E~ ð3Þ

where B~ and D~ are the coefficient vectors, t indicates the

current iteration, Y * is the position vector of the best

solution obtained so far, Y~ is the position vector, | | is the

absolute value and.is an element-by-element multiplica-

tion. The vectors B~ and D~ are calculated as follows:
Fig. 1 A typical structure of RBM

Fig. 2 A typical structure of DBN
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B~¼ 2 b
!� s!� b! ð4Þ

D~ ¼ 2 � s! ð5Þ

where b~ is decreased linearly from 2 to 0 over the course of

iterations (in both exploration and exploitation phases) and

s~ is a random vector in [0, 1].

3.2.2 Bubble-net attacking method

The following two approaches are developed to mathe-

matically model the bubble-net behaviour of the humpback

whales:

1. Shrinking encircling mechanism This behaviour is

achieved by decreasing the value of b from 2 to 0 in

Eq. (4) over the course of iterations. The new position

of a search agent can be defined anywhere in between

the original position of the agent and the position of the

current best agent by setting random values for B~ in

[- 1, 1].

2. Spiral updating position The spiral equation between

the position of the prey and the whale to imitate the

helix-shaped movement of the humpback whales is as

follows:

Y
!

t þ 1ð Þ ¼ E0! � ecl � cos 2plð Þ þ Y��! tð Þ ð6Þ

The humpback whales move around the prey within a

shrinking circle as well as a spiral-shaped path simultane-

ously. Subsequently, in order to perfect this behavior,

probability of 50% is there to choose between either the

shrinking encircling method or the spiral model, in order to

update the position of whales. The mathematical model is

described as follows:

Y
!

t þ 1ð Þ ¼ Y��! tð Þ � B
!
:E~

n o
if p� 0:5 ð7Þ

E0! � ecl � cos 2plð Þ þ Y��! tð Þ if p� 0:5 ð8Þ

where E0! ¼ Y��! tð Þ � Y~ tð Þ
���

��� and is the distance of the ith

whale to the prey (the best solution obtained so far), c is

constant for defining the shape of the logarithmic spiral, l is

a random number in [- 1, 1] and p represents a random

number in [0, 1].

3.2.3 Search for prey

The variation of B~ vector can be utilized to search for prey,

i.e., exploration phase. The mathematical model for this

phase is as follows:

E~ ¼ D~:Yrand
��!� Y~

���
��� ð9Þ

Y
!

t þ 1ð Þ ¼ Yrand
��!� B

!� E~ ð10Þ

where Yrand
��!

is a random position vector (a random whale)

chosen from the current population.

4 Proposed methodology

This research uses the Deep Belief Network to predict

software development effort. The DBN is fine-tuned using

Whale Optimization Algorithm. The block diagram for the

proposed methodology is given in Fig. 3. The graphical

Representation of the proposed DBN for SDEE is given in

Fig. 4.

The following key steps were taken for implementing

the proposed methodology for SDEE:

a. Construction of RBM

b. Training of RBM

c. Construction of DBN

d. Fine-tuning of DBN with WOA

These steps are explained below:

4.1 Construction of RBM

The Restricted Boltzmann Machine (RBM) is constructed

by taking two layers—input layer (visible layer) and hid-

den layer. The inputs (i.e. effort multipliers) vi from data-

sets are fed to the input layer. For example, from

COCOMO81 dataset, 15 effort multipliers (EMs), whose

values for project ID 1, are 0.88, 1.16, 0.7, 1, 1.06, 1.15,

1.07, 1.19, 1.13, 1.17, 1.1, 1, 1.24, 1.1 and 1.04 are fed to

the input layer of RBM 1. Subsequently, the values of

hidden units of hidden layer are calculated using Eq. (11)

hj ¼ r
Xm

i¼1

wijvi þ bj

 !
ð11Þ

where m is the number of visible units, b is the bias of the

hidden layer, vi is the value of observable data at ith visible

unit, hj is the state of jth hidden unit, wij is the weight

associated with the connection between ith visible unit and

Fig. 3 Block diagram representing the proposed methodology
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jth hidden unit and rð:Þ is the sigmoid activation function

given in Eq. (12).

r xð Þ ¼ 1

1þ e�x
ð12Þ

Weights wij and bias b are initialized to random values.

4.2 Training of RBM

For training of RBM (Yang et al. 2016; Fischer et al. 2012),

three parameters are updated, the weight matrix W (the set

of weights between visible layer and hidden layer), the bias

of visible layer a and the bias of hidden layer b in each

iteration. In this research, the number of iterations for

training of RBM is taken as 100. Firstly, probability of

configuration (v, h) for all visible-hidden unit pair is

computed using Eq. (13)

P v; hð Þ ¼ e�E v;hð Þ
P

v;h e
�E v;hð Þ ð13Þ

where E (v, h) is computed using Eq. (14)

E v; hð Þ ¼ �
Xm

i¼1

aivi �
Xn

j¼1

bjhj �
Xm

i¼1

Xn

j¼1

vihjwij ð14Þ

here, a and b are the biases of visible layer and hidden

layer respectively (initialized randomly), m is the number

of visible units, n is the number of hidden units, vi is the

value of observable data at ith visible unit, hj is state of jth

hidden unit and wij is the weight associated with the con-

nection between ith visible unit and jth hidden unit.

Weights wij and biases a and b are initialized to random

values. Then, given a visible unit (and its observable data),

its probability is computed over all the hidden vectors as

given in Eq. (15)

P vð Þ ¼
P

h e
�E v;hð Þ

P
v;h e

�E v;hð Þ ð15Þ

The data-driven probability, E½hv�data is directly used for

updating the weight matrix W and biases a and b which is

calculated using Eq. (16) as

E½hv�data ¼ PðhjvÞvT ð16Þ

where PðhjvÞ is the conditional probability for obtaining h

given v and this is calculated using Eq. (17) as

P vð Þ ¼ P v; hð Þ
P vð Þ ð17Þ

The reconstructed data-driven probabilities ½hv�model, is
also needed in updating the weight matrix W and biases a

and b. It is calculated by a method given by (Hinton and

Geoffrey 2002) which is based on contrastive divergence.

Firstly, the states of hidden units are computed from visible

units (which are initialized with a training sample) using

Eq. (18) and the states of visible units are reconstructed

using Eq. (19).

P hj ¼ 1jv
� �

¼ r
Xm

i¼1

wijvt þ bj

 !
ð18Þ

P hj ¼ 1jh
� �

¼ r
Xm

i¼1

wijhi þ bj

 !
ð19Þ

where rð:Þ is the sigmoid activation function given in

Eq. (12).

Formula for E½hv�model is given in Eq. (20)

E½hv�model ¼ Pð ~hj~vÞ~vT ð20Þ

Finally, Eq. (21), Eq. (22) and Eq. (23) are used to

update the weight matrix W and biases a and b

respectively.

Wtþ1 ¼ Wt þ g E hv�data � E
h h

hv�model
� �

¼ Wt þ g P h v vT � P
� 	

~h
�� ��~v

	 �
~vT

� �
ð21Þ

atþ1 ¼ at þ g v� E v½ �model
� �

¼ at þ g v� ~vð Þ ð22Þ

btþ1 ¼ bt þ g E h�data � E
h h

h�model
� �

¼ bt þ g P h v �P� ½ ~h
�� ��~v

	 �� �
ð23Þ

The training of RBM 1 is done for the number of iter-

ations in an unsupervised manner. After stacking multiple

RBMs on each other, a DBN is constructed. Its process of

construction is given in subsequent section.

Fig. 4 Graphical Representation of the proposed DBN for SDEE
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4.3 Construction of DBN

The DBN is constructed when multiple RBMs are stacked

upon each other. In this research, we have stacked three

RBMs on each other to construct the DBN. Each RBM is

trained independently in an unsupervised manner for a

specific number of epochs.

The values of the hidden units of RBM 1 after training

are fed to the visible units of RBM 2. Subsequently, the

values of the hidden units of RBM 2, after training, are fed

to the visible units of RBM 3 (final RBM). Finally, after the

training of RBM 3, an output layer is added to RBM 3

consisting of only one output unit as shown in Fig. 4. The

values of the hidden units of the final hidden layer (RBM

3’s hidden layer) are multiplied with the weights between

the final hidden layer and the output unit and summed up to

give the calculated effort.

For example, after the m effort multipliers of the project

ID 1 of COCOMO81 dataset is fed to the input layer of

RBM 1, RBM 1 was trained using 100 epochs. The value

of m is 15 in this case. The values of its hidden layer nodes

turned out to be 0.842, 0.989, 0.823, 0.759, 0.751, 0.788,

0.969, 0.764, 0.855, 0.839, 0.805, 0.778, 0.789, 0.765,

0.732, 0.932, 0.864, 0.761, 0.760, 0.960, 0.805, 0.893,

0.958, 0.735, 0.933, 0.726, 0.890, 0.909, 0.848, and 0.940.

After the training of RBM 1, RBM 2 was trained in a

similar way. The values of its hidden layer nodes turned

out to be 0.818, 0.812, 0.819, 0.799, 0.811, 0.777, 0.812,

0.813, 0.803, 0.804, 0.810, 0.808, 0.813, 0.819, 0.825,

0.796, 0.819, 0.802, 0.812, 0.822, 0.814, 0.785, 0.808,

0.820, 0.780, 0.807, 0.807, 0.808, 0.795, 0.802, 0.796,

0.800, 0.789, 0.809, 0.798, 0.802, 0.810, 0.803, 0.810,

0.802, 0.811, 0.810, 0.803, 0.797, 0.779, 0.804, 0.807,

0.817, 0.795, 0.805, 0.779, 0.824, 0.802, 0.815, 0.826,

0.822, 0.796, 0.805, 0.789 and 0.797. Finally, after the

training of RBM 2, RBM 3 was trained in a similar way.

The values of its hidden layer nodes turned out to be 0.902,

0.907, 0.888, 0.887, 0.908, 0.906, 0.903, 0.903, 0.902,

0.891, 0.884, 0.906, 0.902, 0.902, 0.899, 0.905, 0.898,

0.900, 0.893, 0.902, 0.888, 0.904, 0.887, 0.898, 0.903,

0.892, 0.908, 0.895, 0.912 and 0.899.

The DBN is then fine-tuned using the whale optimiza-

tion algorithm explained in next Sect. 4d.

4.4 Fine tuning of DBN with WOA

For fine-tuning of DBN, the whale optimization algorithm

is run and weights between the hidden layer of the final

RBM and the single output unit are calculated from the

parameters returned by the whale algorithm in the first for

loop. The matrices used; weights’ calculations and

dimensions of matrices used are given in Table 1. The

matrices used in the algorithm are initialized to some

random values. Table 2 provides 13 objective functions

(F1–F13) (Mirjalili and Lewis 2016) which are used for

finding the fitness values in WOA. The results are obtained

from all the functions, F1–F13, for the proposed technique

on all the four datasets but only the functions which pro-

vided the best results are shown in experimental evaluation

under Sect. 5. Table 3 shows the values for the initializa-

tion of parameters used in the proposed approach.

The hidden units’ values of RBM 3, obtained after

training, are multiplied with their corresponding weight

values obtained from WOA at the output unit and added as

given in Eq. (24).

X ¼
Xn

i¼1

wihi

 !
ð24Þ

where X is the final sum obtained at the output layer of

DBN, n is the number of hidden units in final RBM’s

hidden layer, hi is the value of these hidden units and wi are

the values of weights between ith hidden unit of the final

RBM and the single output unit obtained from WOA. For

example, in our case of COCOMO81 dataset for project ID

1, when considering the WOA algorithm, the value of X

came out to be 19.521. The sum X obtained from Eq. (24)

is multiplied with the size of the project taken from the

dataset to obtain the final calculated Effort as given in

Eq. (25).

Effort ¼ X � size ð25Þ

In our case, the value of size is 113 and thus the value of

calculated Effort comes out to be 2205.793 where the

actual value of effort is 2040.The calculated Effort is

compared with the actual Effort from the dataset using

various evaluation criteria as discussed under Sect. 5. The

process of fine-tuning is terminated, if the magnitude of

relative error (MRE) is within the acceptable range (taken

as 25%) (Di Martino et al. 2011; Foss et al. 2003) or if the

maximum number of epochs is reached which is taken as

500. Else, the procedure is repeated.

The metaheuristic algorithm continues to explore and

exploit the search space until the end criteria is not satis-

fied. The actual Effort from the dataset is just used to verify

whether MRE is within the acceptable range or not. The

error measure or the actual value of Effort is not used for

updating any parameters. The proposed technique has also

been compared with DBN-BP. The equation used for

updating the weights between RBM 3 and final output layer

in DBN-BP is given as Eq. (26)

wnew ¼ wold þ d � alphað Þ ð26Þ

where d is equal to MRE and alpha is the learning rate

whose value lies in the range [0, 1].

123

Int J Syst Assur Eng Manag (August 2022) 13(4):1637–1651 1643



4.5 Complexity

There are four steps in the algorithm. The construction of

RBM includes creating input layer and hidden layer. This

takes constant time i.e., O (1). Let’s say, time complexity

for the training of RBM is O(R). The construction of DBN

involves training of stacked RBMs. In our proposed algo-

rithm, 3 RBMs are trained, so time complexity is O(3R). In

the last step, for each iteration during the fine tuning of

DBN, optimized weights from WOA are received, so time

complexity is O(N*W) where N is the maximum number of

iterations and O(W) is the time complexity of WOA.

Hence, total time complexity for DBN-WOA is

O(1 ? 3R ? N*W) = O(R ? N*W).

5 Experimental evaluation

Testing the proposed methodology for SDEE, is imperative

after training the DBN, as it gives clear estimates of how

well the technique can perform when it is used to predict

effort with unseen projects (not seen during training per-

iod). There are various methodologies to test and validate

the techniques. Some of them include—Holdout method,

Leave-one-out cross validation, tenfold Cross Validation,

threefold Cross Validation etc. In this research, the pro-

posed technique is experimentally validated using threefold

cross validation which has been widely used by various

authors in SDEE to validate their proposed methodologies

such as Burgess and Lefley (2001), Kumar et al. (2008). It

divides the dataset into three parts in a certain ratio. Any of

the two parts are taken for training and the left-out part is

taken for testing. This is repeated three times so that all the

parts get to be in a training set exactly twice and, in a

testing set exactly once. In this research, we have divided

the datasets into three equal parts. The advantage of

threefold Cross Validation is that it does not matter how the

dataset gets divided. Every data point is in a test set exactly

once and is in a training set exactly twice.

The datasets used are COCOMO81, NASA93, MAX-

WELL and CHINA for experimentally and statistically

evaluating the proposed techniques. These datasets have

been obtained from PROMISE Software Engineering

Repository (http://promise.site.uottawa.ca/SERepository/).

These datasets have been used widely by various authors in

the domain of SDEE (Benala et al. 2012; Elish 2009;

Kaushik et al. 2016). Evaluation criteria play an important

role in estimating and commenting upon the success of a

technique. In this paper, we have used three evaluation

criteria—Mean of Magnitude of Relative Error (MMRE),

Prediction (l) (Pred (l)) and Median of MRE (MdMRE).

Mean of magnitude of relative error (MMRE) is calcu-

lated as the average of magnitude of relative errors (MREs)

of all projects in the dataset. The formula for calculating

MMRE is given in Eq. (27).

MMRE ¼ 1

N

XN

i¼1

MREi ð27Þ

where N is number of projects in dataset.

Magnitude of relative error (MRE) finds the relative

error between actual effort and estimated effort for each

project in the dataset. Formula for calculating MRE is

given in Eq. (28).

MRE ¼ Actual Effort� Estimated Effortj j
Actual Effort

ð28Þ

Pred (l) represents the percentage of MREs less than or

equal to the value l among all projects. It is defined in

Eq. (29).

Pred lð Þ ¼ k

n
ð29Þ

Table 1 Particulars used in WOA for fine-tuning of the DBN

Matrices used Dimensions of matrices Weight calculation of DBN

Position

matrix of

whales

Matrix of

coefficient

vectors

For position matrix:

1. Number of rows (Number of whales) = Number of

hidden units at RBM 3

2. Number of columns (Number of dimensions of

positions) = 1

For coefficient vector matrix*:

1. Number of rows (Number of whales) = Number of

hidden units at RBM 3

2. Number of columns = 1 (indicating the fitness

value)

*Coefficient vector matrix is calculated by passing the

positions of position matrix to an objective function

WOA as given in Sect. 3.2 is run and the whales’ positions and the

best whale’s fitness value or the leader score obtained, after first for

loop, are used in the following equation for weights’ calculation:

wi ¼ position of whaleij j � leader score

Where,

position of whalei is the position of ith whale, wi is the weight

between ith hidden unit and the output unit, and leader score is the
fitness value/score of the best whale/leader
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where n is the total number of observations and k is the

number of observations whose MRE is less than or equal to

l. MdMRE is the median of MREs of all projects of a

dataset. MdMRE is less susceptible to extreme values. It

behaves similar to MMRE but is more likely to select a true

model if under-estimation is served (Kumar et al, 2008).

The software development effort estimation models are

said to be acceptably accurate if the value of MMRE and

MdMRE is less than or equal to 0.25 and Pred (0.25) is

greater than or equal to 0.75 (Di Martino et al. 2011; Foss

et al. 2003).

The results of training of the proposed technique on all

the four datasets are given in Table 4. The proposed DBN-

WOA was evaluated with all the 13 evaluation functions

and for all the three folds of the dataset. The objective

function which gave the best result is tabulated for the

respective datasets as Table 4. It is found that the objective

function F11 is best for COCOMO81 and NASA93 data-

sets; the objective function F4 is best for MAXWELL

dataset and the objective function F1 is best for CHINA

dataset. The proposed technique has been tested using the

best objective functions obtained from Table 4. After the

optimum weights of DBN are successfully explored and

Table 2 Description of unimodal and multimodal benchmark function (Mirjalili and Lewis 2016)

Function V_no Range fmin

F1(x) =
Pn

i¼1

x2i
30 [- 100, 100] 0

F2(x) =
Pn

i¼1

xij j þ
Qn

i¼1

xij j 30 [- 10, 10] 0

F3(x) =
Pn

i¼1

ð
Pi

j�1

x2j Þ
2 30 [- 100, 100] 0

F4(x) = maxi xij j; 1� i� nf g 30 [- 100, 100] 0

F5(x) =
Pn

i¼1

100 xiþ1 � x2i
� �2þ xi � 1ð Þ2

h i
30 [- 30, 30] 0

F6(x) =
Pn

i¼1

xi þ 0:5½ �ð Þ2 30 [- 100, 100] 0

F7(x) =
Pn

i¼1

ix4i þ random 0; 1½ Þ 30 [- 1.28, 1.28] 0

F8(x) =
Pn

i¼1

�xisin
ffiffiffiffiffiffi
xij j

p� � 30 [- 500, 500] - 4.18.9829 9 5

F9(x) =
Pn

i¼1

x2i � 10 cos 2pxið Þ þ 10
	 � 30 [- 5.12, 5.12] 0

F10(x) = �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

i¼1

x2i

s !
� exp 1

p

Pn

i¼1

cos 2pxið Þ
� �

þ 20þ e
30 [- 32, 32] 0

F11(x) = 1
4000

Pn

i¼1

x2i �
Qn

i¼1

cos xiffi
i

p
� �

þ 1
30 [- 600, 600] 0

F12(x) =

p
n

10 sin py1ð Þ þ
Xn�1

i¼1

yi � 1ð Þ2 1þ 10sin2 pyiþ1ð Þ
	 �

þ yn � 1ð Þ2
( )

þ
Xn

i¼1

u xi; 10; 100; 4ð Þ

yi ¼ 1þ xiþ1
4

u xi; a; k;mð Þ ¼
k xi � að Þmxi [ a
0� a\xi\a

k �xi � að Þmxi\� a

8
<

:

30 [- 50, 50] 0

F13(x) =

0:1 sin2 3px1ð Þ þ
Xn

i¼1

xi � 1ð Þ2 1þ sin2 3pxi þ 1ð Þ
	 �

þ xn � 1ð Þ2 1þ sin2 2pxnð Þ
	 �

( )

Xn

i¼1

u xi; 5; 100; 4ð Þ

30 [- 50, 50] 0
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searched using WOA in the training phase, the resultant

DBN is subject to testing. The results from the testing

phase on the four datasets are presented in Table 5. Since

both the training and the testing errors are low, it can be

inferred that the model is neither overfitting nor

underfitting.

The snapshot of the convergence graph for a particular

stage of the proposed methodology where the calculated

effort is trying to get closer to the actual effort for the

project ID 32 of COCOMO81 dataset is given as Fig. 5.

The convergence is helping the DBN get optimum weights.

The proposed technique is compared against DBN fine-

tuned with backpropagation and the results from its train-

ing and testing phases are presented in Tables 6 and 7

respectively. The results show that the integration of WOA

with the DBN greatly enhances the efficiency for

estimation of software development effort as compared to

the integration of backpropagation with DBN. The ratio-

nale behind this is that searching for weights in a DBN can

be modelled as an optimization problem where the goal is

to achieve optimum weights. Metaheuristic techniques tend

to surpass other optimization techniques as they tend to

avoid local optima.

Figure 6 shows the bar graph representation of DBN-

WOA and DBN-BP for COCOMO81 training dataset.

The results of the proposed DBN-WOA technique is

also compared with the work given by the authors (Rijwani

and Jain 2016; Kaushik et al. 2020). Table 8 demonstrates

the result on few of the COCOMO dataset as the same

project Ids were used by the authors (Rijwani and Jain

2016).

Table 3 Initialization of

parameters for implementing

the proposed methodology

Parameter used Initialization

Number of input nodes (m) in datasets COCOMO81, NASA93 15

Number of input nodes (m) in dataset MAXWELL 24

Number of input nodes (m) in dataset CHINA 10

Number of hidden nodes in hidden layer 1 2*m

Number of hidden nodes in hidden layer 2 4*m

Number of hidden nodes in hidden layer 3 2*m

Weights between input—hidden layer 1 Random values

Weights between hidden layer 1—hidden layer 2 Random values

Weights between hidden layer 2—hidden layer 3 Random values

Weights between hidden layer 3—output layer Random values

Bias a Random value

Bias b Random value

Number of epochs for the training of each RBM 100

Max_limit on the number of epochs for fine-tuning of DBN 500

Position matrix of Whales Random values

Acceptable MRE in the end criteria for fine-tuning of DBN 0.25

Table 4 Results of training of

the proposed technique, DBN-

WOA

Datasets Objective function Fold Evaluation criteria

MMRE (%) Pred (25) (%) MdMRE (%)

COCOMO 81 F11 Fold 1 7.228 86.316 5.472

Fold 2 10.013 89.474 5.025

Fold 3 7.191 86.190 6.879

NASA93 F11 Fold 1 11.366 96 2.028

Fold 2 5.853 92.258 4.901

Fold 3 9.829 87.097 0.897

MAXWELL F4 Fold 1 9.9182 89.428 6.832

Fold 2 1.327 96 5.035

Fold 3 5.926 90.588 7.725

CHINA F1 Fold 1 13.543 86.939 10.949

Fold 2 13.744 80.918 8.388

Fold 3 17.903 85.918 9.886
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Table 8 shows that the estimated effort using DBN-

WOA is better for most of the projects.

The authors (Kaushik et al. 2020) used Ant Lion Opti-

mization (ALO) and proposed DBN-ALO. The estimated

effort given by them for COCOMO dataset with P.Id 1is

2378 and for P.Id 3 it is 230 whereas the estimated effort

using DBN-WOA is 2205.793 for P.Id1 and it is 240.68 for

P.Id 3. Thus, DBN-WOA is providing better results than

the techniques used by the earlier researches.

6 Statistical validation

Since, experimental evaluation alone cannot be used to

accurately determine the success of the proposed technique

for SDEE, the analysis of the technique using statistical

Fig. 5 Epochs vs Effort curve for DBN-WOA for COCOMO81

dataset for project ID 32

Table 6 Results of training of DBN-BP for the datasets used

Dataset Fold Evaluation criteria

MMRE (%) Pred (25) (%) MdMRE (%)

COCOMO81 Fold 1 37.168 62.857 39.678

Fold 2 34.224 65.714 38.823

Fold 3 28.983 50.588 24.348

NASA93 Fold 1 37.831 63.207 34.553

Fold 2 34.780 57.647 38.701

Fold 3 35.941 43.076 31.697

MAXWELL Fold 1 40.470 51.1282 36.545

Fold 2 33.383 52.882 73.055

Fold 3 32.628 54.714 41.353

CHINA Fold 1 30.911 63.26 41.773

Fold 2 40.903 57.40 38.880

Fold 3 38.156 68.55 43.997

Table 7 Results of testing of DBN-BP for the datasets used

Dataset Fold Evaluation criteria

MMRE (%) Pred (25) (%) MdMRE (%)

COCOMO81 Fold 1 31.925 64.761 27.499

Fold 2 35.588 69.047 38.556

Fold 3 32.226 70 39.969

NASA93 Fold 1 41.786 66.451 37.815

Fold 2 38.129 69.677 38.155

Fold 3 41.580 72.580 32.816

MAXWELL Fold 1 32.034 69.047 38.538

Fold 2 33.191 63.809 38.120

Fold 3 37.728 70.56 32.584

CHINA Fold 1 34.663 72.25 34.185

Fold 2 39.666 72.244 30.418

Fold 3 37.310 74.285 34.538

Table 5 Results of testing of

the proposed technique, DBN-

WOA

Dataset Objective function Fold Evaluation criteria

MMRE (%) Pred (25) (%) MdMRE (%)

COCOMO81 F11 Fold 1 8.012 88.571 9.558

Fold 2 7.884 90.909 9.207

Fold 3 7.786 88.095 6.357

NASA93 F11 Fold 1 9.012 85.065 5.666

Fold 2 6.388 94.065 7.650

Fold3 8.126 80.968 9.578

MAXWELL F4 Fold 1 9.012 84.065 5.666

Fold 2 8.388 88.065 7.650

Fold3 7.126 90.968 9.578

CHINA F1 Fold 1 9.022 87.818 5.733

Fold 2 6.368 93.860 5.506

Fold3 7.500 94.957 4.696
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tests is imperative (Prasad Reddy et al. 2010; Kitchenham

and Mendes 2009).

Statistical inferential tests are of three types- parametric,

non-parametric and semi-parametric. The parametric tests

assume that the data comes from a type of probability

distribution and make deductions about the distribution

parameters. Non-parametric tests, on the other hand, do not

rely on data that belongs to any specific distribution, and

includes techniques that assume that the model structure is

not fixed. They are mainly used for ordinal data. The semi-

parametric tests make use of the merits of both parametric

as well non-parametric techniques in a sophisticated man-

ner. Mittas et al. (2015) has given a new set of techniques

called semi-parametric models (SPM) to handle software

estimations. In software cost estimations, we assume that

the project data does not follow any distribution. Hence, to

validate the work statistically, non-parametric tests are

used. Here, Friedman test is used which the non-parametric

equivalent of the well is known analysis of variance. The

Friedman test tests the change between several related

samples. The null hypothesis of the Friedman test mentions

that all techniques perform equivalent. This test is carried

Fig. 6 Comparison of DBN-WOA and DBN-BP on COCOMO81

training dataset

Table 8 Effort Comparison on

COCOMO dataset
P.Id Effort (Dataset) Effort (COCOMO) Effort MLFFN (Rijwani & Jain) Effort DBN-WOA

1 2040 1616.38 2031.84 2205.793

3 243 233.88 239.039 240.68

11 218 189.93 193.802 200.52

18 11.400 8552.88 11.229 11.304

20 6400 3603.34 5811.2 5910.23

26 387 279.93 371.52 377.57

27 88 59.002 74.976 79.92

50 176 132.162 172.515 173.46

51 122 114 119.926 123.85

54 20 6.24 12 10.67

55 18 7.5 16.902 16.96

56 958 537 953.21 954.28

60 57 23.91 48.2562 50.68

Table 9 Results of Friedman

Test depicting mean ranks for

the datasets

Objective Functions COCOMO81 NASA93 CHINA MAXWELL

F1 6.36 6.32 4.55 4.42

F2 6.10 6.48 5.24 –

F3 6.00 6.33 4.84 4.53

F4 5.34 4.95 4.67 3.92

F5 – – – –

F6 5.39 5.28 5.02 4.40

F7 9.33 8.58 – 8.42

F8 – – – –

F9 6.16 6.21 4.69 4.77

F10 5.11 5.69 5.87 5.02

F11 5.10 4.06 – –

F12 5.80 5.88 4.58 4.66

F13 5.31 6.23 5.55 4.87
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out using IBM SPSS (Statistical Package for the Social

Sciences) tool. It provided the mean ranks which are

depicted in Table 9. Using this test, it was confirmed that

the objective function which was giving the best experi-

mental results provided the same here also. So, for each of

the datasets the MRE values calculated using different

objective functions were used as an input to the tool. The

objective functions which were giving the best values in

experimental evaluations were giving best values here also.

For example, the function F11 was giving best results for

COCOMO 81 and NASA 93, here also this function has the

lowest mean in both the datasets. The value is 5.10 for

COCOMO81 and 4.06 for NASA93 dataset. Similarly, the

function F1 was performing best for CHINA dataset and

here also it has the minimum rank with the value 4.55 and

for MAXWELL dataset, the function F4 has the lowest

mean rank of 3.92. This is depicted in Table 9.

The objective functions F5 and F8 for COCOMO81 and

NASA93 dataset; the objective functions F5, F7, F8, F11

for CHINA and the objective functions F2, F5, F8, F11 for

MAXWELL were not used in statistical validation as they

provided NAN (not a number) value in MATLAB during

experimental validation.

7 Limitations and future scope

The limitations of the proposed technique can be summa-

rized as follows.

• The effort multipliers used in datasets employed may

not be extremely accurate because developers might be

optimistic in answering questions related to their

capabilities. Therefore, it will inculcate errors in the

calculated effort. Also, the effect of environmental

factors cannot be determined with the available data.

• In this paper, traditional datasets are used for estimating

the performance of the proposed technique. Nowadays,

software is being developed using agile techniques. The

proposed technique should also be evaluated and

validated using these latest software projects’ datasets.

• Although initialization of the parameters in the

employed technique is done through extensive study

and evaluation, more optimum initializations of these

parameters might be possible.

• In this paper, k-fold cross validation is employed where

the value of k is taken as 3, but it is very difficult to

decide the appropriate value of k. Techniques employed

can, therefore, be tested with more validation tech-

niques such as tenfold cross validation, Leave-one out

cross validation etc.

• Though some objective functions gave remarkable

results for SDEE, functions such as F5 and F8 failed

to provide appropriate efforts for all the proposed

techniques.

• In this paper, 3 RBM’s have been stacked upon each

other to form a DBN. But it is difficult to know the

appropriate value of the number of RBMs to be stacked

to form a DBN. Using a different number of stacked

RBMs might give different results.

All the above limitations can be overcome by further

work in this domain. This research attempts to evaluate the

effectiveness of integrating deep learning and metaheuris-

tics for SDEE. Traditional datasets are used for conducting

the experimental evaluation. Nowadays, software is

majorly developed using agile techniques. Hence, the

research can also be verified using the agile datasets (Panda

et al. 2015). Integration of metaheuristic techniques with

other deep learning models such as Recurrent Neural

Networks and Convolutional Neural Networks for SDEE

can also be evaluated to confirm the effectiveness of deep

learning in effort estimates. For more refined fine-tuning of

the parameters in DBN, techniques proposed by Calvet

et al. (2016) can be employed. Also, the technique pro-

posed can be tested by using different validation

techniques.

8 Conclusion

In this research, Deep Belief Network (DBN) is used to

predict software development effort and its parameters are

finetuned using a metaheuristic technique, Whale Opti-

mization Algorithm (WOA). The technique DBN-WOA, is

evaluated on four effort estimation datasets and is com-

pared with another variant of DBN which uses Back

Propagation algorithm i.e., DBN-BP. The experimental and

statistical results show that the technique DBN-WOA is at

par than DBN-BP. In the future, we will work on the

limitations listed in Sect. 7, to improve the existing

method.

8.1 Answers to research questions

1. Can deep learning accurately predict the software

development effort?

Yes, deep learning can predict the software develop-

ment effort within 25% MRE as can be observed from

Tables 4 and 5. But the results of the technique can

vary depending upon the DBN architecture.

2. Can the fine tuning of DBN using Whale Optimization

Algorithm (WOA) perform better than the fine tuning of

the DBN using backpropagation?

Yes, the fine-tuning of DBN with metaheuristic technique,

like WOA outscores the fine-tuning of DBN with
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backpropagation as can be inferred from the tabular results

in Sect. 5. Here also, depending upon the initialization of

parameters the performance of WOA may alter.
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