
ORIGINAL ARTICLE

Glowworm Swarm Optimization (GSO) based energy efficient
clustered target coverage routing in Wireless Sensor Networks
(WSNs)

Ridhi Kapoor1 • Sandeep Sharma1

Received: 30 March 2021 / Revised: 8 September 2021 / Accepted: 9 September 2021 / Published online: 30 October 2021

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2021

Abstract The Wireless Sensor Networks is a wireless

system comprising uniformly distributed, autonomous

smart sensors for physical or environmental surveillance.

Being extremely resource-restricted, the major concern

over the network is efficient energy consumption wherein

network sustainability is reliant on the transmittance,

processing rate, and the acquisition and dissemination of

sensed data. Energy conservation entails reducing trans-

mission overheads and can be achieved by incorporating

energy-efficient routing and clustering techniques.

Accomplishing the desired objective of minimizing

energy dissipation thereby enhancing the network’s

lifespan can be perceived as an optimization problem. In

the current era, nature-inspired meta-heuristic algorithms

are being widely used to solve various optimization

problems. In this context, this paper aims to achieve the

desired objective by implementing an optimum clustered

routing protocol is presented inspired by glowworm’s

luminescence behavior. The prime purpose of the

Glowworm swarm optimization with an efficient routing

algorithm is to enhance coverage and connectivity across

the network to ensure seamless transmission of messages.

To formulate the Objective function, it considers residual

energy, compactness (intra-cluster distance), and separa-

tion (inter-cluster distance) to provide the complete

routing solution for multi-hope communication between

the Cluster Head and Sink. The proposed technique’s

viability in terms of solution efficiency is contrasted to

alternative techniques such as Particle Swarm Opti-

mization, Firefly Algorithm, Grey Wolf Optimizer,

Genetic Algorithm, and Bat algorithm and the findings

indicate that our technique outperformed others by as

glowworm optimization’s convergence speed is highly

likely to provide a globally optimized solution for multi-

objective optimization problems.

Keywords Glowworm swarm optimization �
Heterogeneous network � Meta-heuristics � Clustered target

coverage � Energy efficiency

1 Introduction

Wireless sensor networks constitute self-organizing sens-

ing units wherein all nodes are randomly distributed to

accumulate, evaluate and transmit the data from the tar-

geted region on an ad-hoc basis to the specific location of

its underlying application. The subsistence of WSN came

from the view of accumulating information from tangible

environmental factors through the spatial distribution of

sensing motes intended to capture and relay the data to the

Base Station. The main objective of the WSN is to increase

the network lifetime and maintain a high network-wide

range-connectivity ratio to improve the utilization rate and

thus minimize network-wide latency. Subject to inadequate

energy reserves, the development and maintenance of

WSNs are demanding. Since the sensing mote’s energy is

mostly used for data reception and transmission, the con-

ventional routing approach relies on using the shortest

distance to communicate transmitted data to the
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destinations efficiently and effectively. Consequently, due

to the transmission of voluminous data from source to sink

the network suffers from the problem of ‘‘Energy Hole’’

because nodes nearer to sink or along the shortest path tend

to consume more energy than others, resulting in an energy

disequilibrium and lower network lifespan. As a result, to

attain a higher quality of service, efficacious routing

algorithms are needed. Significant work has been reported

to prolong the life of the network. Studies have suggested

and embraced a range of practices to ensure optimal uti-

lization of strained WSN resources. Meta-heuristic Opti-

mization has a pivotal role in Wireless Sensor networks, in

addressing the challenges of coverage & connectivity and

also in ensuring enhanced network lifespan. Meta-heuristic

optimization alongside the Data Aggregation Strategy

intends to mitigate network-wide energy consumption. Cos

of their greater efficiencies so far as the optimality is

concerned, meta-heuristics are influential and preclude

their trapping in local search space. GSO is nature-inspired

meta-heuristics optimization emulating glow worms

working according to stipulated directives. It is designed

for adaptive wireless sensor networks based on random

routes. The uneven clustering is established with improved

GSO, and the ideal centroid cluster is designated to

transmit information between cluster members to the base

station to enhance the system’s life and reduce energy

consumption. GSO is highly susceptible to accommodate

local and global adaptations. It is adequate for a structured

search of several solutions to optimize the numerous

objective function with similar or distinctive characteris-

tics. The routing protocol is used to control and manage the

data stream. Whenever a datagram leaves its origin, it

could take a range of distinct routes to its target, where the

routing protocol will be used to determine the optimum and

shortest path. With excellent Clustered-Routing mecha-

nisms, sensor nodes are set up with confined batteries,

where data distribution and networking are the substantial

resource-consuming challenges in WSN.

1.1 Major contributions

The following contributions are provided to resolve the

above-mentioned problems in terms of range insufficiency

and optimization inefficiencies leading to reduced accuracy

computations:

1. This paper introduces a GSO algorithm-focused solu-

tion based on energy-intensive sensor activity, as

sensor mobility substantially contributes to energy

dissipation wherein GSO helps in reducing energy

consumption by minimizing the number and proximity

of transitioning sensors.

2. Clustered Routing is a probabilistic technique whereby

systemic self-assembly and re-clustering are present at

random in such a manner whereby energy utilization is

continuously distributed through nodes of the network.

3. An efficient routing scheme is intended to ensure data-

gathering accompanied by consistent communication

between the clusters and the base station, i.e. the sink

node. After data dissemination, clustered routing aims

to accomplish data accumulation and fusion to limit the

count of relaying of messages to the base station.

4. It retains the coverage of limited battery target sensors

and works on factors like those of operational nodes

per iteration, energy expended per transmission, mean

energy consumed per data transfer by one node. The

aforesaid contributions and correlating deliberations

are analyzed and discussed in Sects. 3 and 4 where the

protocols proposed are differentiated from the existing

protocols. Section 2 presents the research outcomes

relating to wireless network sensor coverage.

2 Related work

Network Targets are often patterned as a set of symmetric

free space points within the sensing zone. Even though

sensors with a stochastic model usually have no tracking

limits, the probability is calculated with considerable

computational coherence, which takes into consideration of

all functional sensing units. As the sensing competence and

probability reduces with the increase in distances between

both the sensing motes and respective target of observation,

and hence, the impact of distant sensors be predominantly

omitted. To address the said state of matter, studies have

focused on ensuring energy-efficient target coverage in

WSN, where the sensors are clustered into successively

triggered sets and different sensors will cover a particular

target redundantly. It is dealt with the issue known as the

Connected Set Covers (CSC), which evaluates the maxi-

mum achievable cover sets, connected to the base station

(Raton 2008). A multi-swarm cooperative particle swarm

optimization (MCPSO) is introduced as a novel fuzzy

computational technique for detecting and managing non-

linear dynamical processes motivated by the concept of

symbiosis in natural environments (Niu et al. 2008). A

substantial amount of work has been reported on a new

control coverage scheme based on the elitist non-domi-

nated genetic sorting algorithm (NSGA-II) in a heteroge-

neous sensor network compared to the current uniform

sensing model. The algorithm is put into distributed effect

via the implementation of a cluster-based layout. In con-

junction, an improved probabilistic encoding reflects both

sensor radius reconfiguration and sensor availability (Jia
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et al. 2009). A systematic approach to scheduling work on

computational grids based on Particle Swarm Optimization

(PSO) came into existence (Liu et al. 2010). Integrating the

prime GAs and PSO features, a fuzzy decision-making

system is used to interpret the results generated during the

optimization process (Valdez et al. 2011). It is further

stated the objective to propose an efficient routing opti-

mization technique reliant on modifying the equations of

the observer bee and the scout bee of the original artificial

bee colony (ABC). Several other control features are

incorporated, like overlooking and factors to speed up the

convergence and likelihood of mutant to increase its

lifespan (Yu et al. 2013). A Distributed Lifetime Coverage

Optimization (DiLCO), which retains the coverage and

enhances the existence of a network of wireless sensors.

Next, by using the conventional divide and conquer

approach network is partitioned into sub-regions. The

protocol proposed incorporates two energy-efficient

strategies for fulfilling the main objective: a leader’s

election in each area and a schedule of node operations

centered on optimization by each elected leader (Idrees

et al. 2015). An Adaptive Genetic Algorithm (AGA) and

enhanced binary ant colony algorithm to exhibit optimum

network coverage. GA replicates the correlation probability

and mutation probability optimally according to the dif-

ferent conditions of individuals in the process of searching

for optimal parameters to keep the colony diversity and

prevent adverse divergence. The solution is formed by a

binary ant colony algorithm as an initial population of a

genetic algorithm, and then a better solution is found. It

can, therefore, enhance algorithm convergence rate,

improve solution efficiency and avoid local optimal and

precautionary glitches (Tian et al. 2016). A Socratic

Algorithm to take into account the collection of cluster

heads, the transmission route from specific nodes to the

cluster head, and the optimization of the mobile sink

pathway. The proposed Mobile Sinks data gathering algo-

rithm is based on the swarm of artificial bees. The algo-

rithm proposed will effectively save resources, improve the

performance and reliability of network data gathering and

prolong network life (Yue et al. 2016). Novel Artificial

Fish Swarm Intelligence Optimization Algorithm (AFSA)

to artificially simulate fish behavior and search for the

optimized solution space. For the quest for an effective

solution area, global coverage of artificial swarm fish

algorithms is used. The particle swarm algorithm is then

used to rapidly perform local analysis, change the WSN

node coordinates and dimension, and eliminate coverage

overlays and blind areas (Xia 2016). A shortest disbursed

route data gathering methodology to optimize network

lifetime pertaining both to the stationary and remote mul-

tichip WSNs, for interconnected target coverage, wherein

data packets from the source nodes are created on a sink

through energy-efficacious shortest paths (concerning hop-

counting).It is presumed that each target is under the

surveillance of at least one of the sensing units (Biswas

et al. 2018). It is further stated that the main reason that

could save energy from WSN is to trigger data sets of

sensors. The prime objective of the work is to attain and

maintain the sensor remnant’s ability to carry out target

recognition. Herein, firstly the sensed information is ana-

lyzed with a perspective to design an empirical formula-

tion. Then, the algorithm for column generation, together

with the meta-heuristic GRASP, gives sensors the time to

get activated (Lersteau et al. 2018). It is further acquainted

with using the Enhanced Whale Group Optimization to

boost node search capability and to speed up the global

search process. In this algorithm, backward learning is used

to initialize the position of the whale population, which can

effectively prevent the generation of poorly positioned

individuals (Wang et al. 2019). Eventually, a novel

enhanced clustering oriented Multiple Mobile Sinks

(MMS) using the ACO approach to improve data collection

efficiency and network life of WSNs. With the ACO-based

MS approach, routing has become more appropriate and

resilient to changes across the network. MMS reduced the

time required in all clusters to collect data. The data

transmit interval was reduced so that the network life span

was enhanced thereby reducing the data loss rate (Krishnan

et al. 2019). To increase network capacity and lifespan, the

backup node is assimilated using the probabilistic greedy

technique in which the primary objective is to select a

minimal number of K-means clusters (Das et al. 2019). To

exhibit the sensor node concretion and coverage lapping.

CMEST involves the composition of network clusters

which, in turn, ascertain the Cluster Head and normal

sensing nodes subject to their residual energy count. The

intra-cluster routing is achieved with the help of a self-

stabilizing algorithm, whereas the inter-cluster routes are

constructed using the Boruvka-MST algorithm. Whenever

the energy of CH depletes or the associations within the

cluster are disrupted due to motes failures, the re-con-

struction process is triggered. It relinks the nodes and

replaces the dead CHs without a reorganization of clusters

that could save energy across the network (Chen et al.

2019). Issues relating to \sink and sensor placement’’, the

obtaining of feasible coverage, connectivity, and data

routing are dealt with through a single SPRC (Sensor

Placement, Scheduling and Routing with Connectivity)

protocol which identified the optimum sensors and sink

positions and also active/backup sensing devices duration

and data transmission routes from each active sensor to

respective base station (Kabakulak 2019). The impact of

the sensing range in sweep coverage issues is investigated

to shorten mobile sensor route length (Gao et al. 2019).

Focus is on a coverage set-oriented target coverage
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technology wherein the goal was to provide an energy-

optimized minimum path from the sink to sensor node as

well as from cover set to sink, thereby improving network

lifespan and lessening the average energy consumption rate

(Katti 2019).

3 Improved GSO-based ‘‘coverage
and connectivity’’

‘‘Connectivity & Coverage’’ are essential to a stable wire-

less network. (Jia et al. 2009) Target Coverage based on

Glowworm Swarm Optimization (GSO) is aimed primarily

at the ability to track targets with accessible sensing units.

It is a deterministic approach that is intended to decide

whether at least ‘‘n-predefined sensors’’ cover all targets in

the sensing network and during the movement phase

selecting a neighbor with a larger luciferin concentration

than its own. (Chen et al. 2019).

When it comes to global search, the Glowworm Opti-

mization method’s location update model only retains local

information that results in a static convergence rate across

the network and also the optimality reduces when a

glowworm updates its position in all the directions simul-

taneously. To ensure that the glowworms update their

positions concurrently using local and global information

simultaneously the condition is modified as:

yi tþ 1ð Þ ¼ yi tð Þ þ a1 � r � yj tð Þ � yi tð Þ
� �

þ a2 � r
� yg tð Þ � yi tð Þ
� �

ð1Þ

where yi tð Þ is the location of glowworm at instance ‘t’ and

yj tð Þ represents its neighborhood, a1 and a2 are acceleration
constants, r is a random value, yg tð Þ is the global optimum

of a glowworm.

The GSO algorithm is divided into 3 phases: adjusting

luciferin levels, optimizing, and upgrading neighborhood

selection. The glowing pigment is updated as per rule:

Lug tð Þ ¼ 1� dð Þ þ g � O yg tð Þ
� �

ð2Þ

where Lug tð Þ belongs to the luciferin level related to the

glowworm gw at time t, d is the luciferin decay constant

0\d\1ð Þ, g is the enhancement constant in luciferin, and

O yg tð Þ
� �

is the objective function value at gth glowworm at

time t.The likelihood of movement to a peer p for each

glowworm is given by

Mgp tð Þ ¼ Lup tð Þ � Lug tð Þ
.
PN

k¼1 Lugk tð Þ � Lug tð Þ ð3Þ

where

p 2 N;N ¼ fp; disgp tð Þ\disgd tð Þ; Lup tð Þg ð4Þ

Is the gthw the neighborhood set at the time t, disgp tð Þ is the
Euclidean distance between glowworms (gwÞ and p at the

time t, and disgd tð Þ stands for the variable neighborhood

range related to the glowworm gw at time t: Let glowworm

gw choose a glowworm p 2 N with a Mgp tð Þ probability.

(Valdez et al. 2011)

yg t þ 1ð Þ ¼ yg tð Þ þ a
yp tð Þ � yg tð Þ

k yp tð Þ � yg tð Þ k ð5Þ

where yg tð Þ 2 Zm is the position of the glowworm gw at

time t in the m dimensional physical space Zm. kk is a

Euclidean norm operator, a is the step size that should

be[ 0. In the vicinity of each luminous worm, the fol-

lowing rule is updated:

cgdis t þ 1ð Þ ¼ min ca;max 0; cgdis tð Þ � c ht � N tð Þj jð Þ
� �� �

ð6Þ

c is the scalar quantity, ht is the number of parameters

for neighboring influence.

3.1 Essential force clustered routing

Clustered Routing monitors connectivity as a basic prin-

ciple since the sensing motes cannot provide their sensed

parameters to their respective Cluster Head without con-

nectivity. Its fundamental objective is to choose a cover set

to ensure that at least one target per iteration is covered by

a sensing unit (Figs. 1 and 2).

• Throughout this phase, all Pt (for t = 0) particles are

initialized randomly across the populace. The initial-

ization phase is followed out as: (Krishnan et al. 2019)

Pr
ij;d ¼ R lb; ubð Þfor i; j ¼ 1; 2; . . .;F and d ¼ 1; 2; . . .; n

ð7Þ

where 0i and j0 correspond to the lattice particle posi-

tion, 0r0 is the loop radial of essential force clustered

routing, 0F0 is the lattice-like environment dimension,
0n0 is the dimensional spatial searching, lb and ub are the

dth dimensions of search space’s lower bound and the

upper bound.

• The loop is terminated once the termination condition is

reached. The condition to terminate herein would be

when the maximum iterations are achieved.

• This phase calculates and saves in the magnetic field 0m0

the target of each Stxy in St. Where 0r0 is the iteration

round and i; j ¼ 1; 2; . . .;F displays particle position in

population.

• Next, the normalization is performed on the Mr
F . The

normalization is performed as:
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MFij
¼

MFij
� L

H � L
ð8Þ

L ¼ mini;j!1toFP
r
ij

H ¼ maxi;j!1toFP
r
ij

• Each particle only interacts with its neighboring in

lattice-like structure, i.e. each particle only applies its

force to its neighbors. The Pr
ij neighbors are positioned

in this phase.

• The Essential Force Clustered Routing optimizes the

way sensed data are transferred to the base station. The

source node is called the node containing the informa-

tion to be transmitted. (Sampathkumar et al. 2020) This

node searches for the next possible hop to transfer the

sensed packets to the destination or base station. All

neighbors will receive a notification about a route

directly to find the next best hop. This message to the

route path contains information such as the neighbor’s

position, velocity, and energy of the node. Next nodes

make the same requests by substituting their value for

the position, velocity, and energy value they receive

from their available neighbors. Rebroadcast the same

cycle until the base station is reached. The proposed

method of finding the next best hops uses the Clustered

Routing.

• It is based upon the concept of Gravity denotes that

‘‘Any particle attracts any other particle with a force F

which is directly proportional to the mass-produced and

inversely proportional to the distance square between

them’’.

EF ¼ Gc � W1W2
�
d2P

h i
ð9Þ

Where,EF� Essential force of a particle, Gc� Gravitational

Constant, W1� weight of particle1.W2� Weight of parti-

cle2, d2P� distance between particle 1 and particle 2.

Fig. 1 GSO based Target Coverage
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4 Pseudo-code of GSO based target coverage
with EFP routing

1 Initialize the Swarm of sensing glowworms

xi(i = 1, 2... n).

2 Initialize the GSO parameters no. of source nodes,

no. of destination nodes, threshold decision range,

Ell values, luciferin enhancement and decay con-

stants, Limit axis, etc.

3 Initially Vglowworm ‘‘i’’the luciferin concentration

remains the same.

4 for every glowworm i ! 1ton populaceð Þ, update

the Luciferin Concentration of each glowworm

using equation(i)

4:1 Lug tð Þ ¼ 1� dð Þ þ g � O yg tð Þ
� �

4:2 Objective function Evaluation

4:2:1 f xi; yið Þ, where xiandyi signifies the coordinates of

the position of glowworm in free space.

4:3 Update probabilistic likelihood of each glowworm

using equations (ii)and (iii)

4:3:1 Mgp tð Þ ¼ Lup tð Þ� Lug tð Þ
�PN

k¼1 Lugk tð Þ � Lug tð Þ
4:3:2 p 2 N;N ¼ fp; disgp tð Þ\disgd tð Þ; Lup tð Þg
4:4 Probabilistic estimation of transition of Glowworm

towards neighborhood is calculated as shown in

equation(iv)

4:4:1 yg t þ 1ð Þ ¼ yg tð Þ þ a yp tð Þ�yg tð Þ
kyp tð Þ�yg tð Þk

4:5 The Vicinity of each sensing unit is updated using

Decision Update as shown in equation(v)

4:5:1 cgdis t þ 1ð Þ ¼
min ca;max 0; cgdis tð Þ � c ht � N tð Þj jð Þ

� �� �

4:6 Repeat, while(iter\ = max)

4:7 end for

5 Update the position of Sensing Agents as:

5:1 fork ¼ 1 : Nodrones
5:2 agentx k; j; :ð Þ ¼

Xcoor kð Þ; agenty k; j; :ð Þ ¼ Ycoor kð Þ;
6 Apply Essential Force Clustered Routing to opti-

mize the transmission of sensed data to the base

station.

Fig. 2 Clustered Routing in WSN

123

Int J Syst Assur Eng Manag (May 2023) 14:S622–S634 S629



7 V iteration 0iter0

7:1 Computer the Cluster List using threshold value as:

7:1:1 t ¼ p

1�p�mod rnd;1pð Þ

� �
where p is the probability of a

node being Cluster Head.

7:2 CH and its members are elected based on Euclidean

Distance

7:2:1 dij ¼
P

i 6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�xjð Þ2þ yi�yjð Þ2

q

P
i 6¼j

Ij

xi; yið Þand xj; yj
� �

are the coornidates of source0i
0
and

destination0j0of transmission and Ij is the intermediate hop

count between transmission.

8 end for

9 Source node chains uplink by sending Route path

messages to their neighbors.

10 Every node attracts its neighborhood with force F as

shown in equation(viii)

10:1 EF ¼ Gc � W1W2
�
d2P

h i

11 V Iteration calculate ETx and ERx as:

11:1

ETx ¼ Eelec � k þ Eamp � s d � SensorNodes ið Þ : dtch2;
where ETx = ‘‘Transmission Energy’’,Eelec = ‘‘Energy to

run Electric Circuitry:’’,Eamp = ‘‘Amplification Energy

required for Data Communication’’(joules/bit/m2),s_d is

the size of the data packet and

SensorNodes ið Þ : dtch2 = distance of a normal node to the

cluster head.

11:2 ERx ¼ ðEelec ? EdaÞ � kWhere ERx (joules/bit) is the

‘‘Reception Energy’’ and Eda (joules/bit) is Energy

required for Data Aggregation at Cluster Head.

12 The Covering Vector for Efficient Target Coverage

is defined as:

12:1 Cm�n ¼ 1; ifsensorSmmonitorstargetTm
0; otherwise




13 ifiter[max ) NetworkDead

14 End.

5 Results and discussions

The network is randomly deployed in the ‘200 * 200’

workspace with 500 sensing glow worms bearing 2Joules

of initial energy. It is hypothesized that 5% of the total

number of nodes used in the network would provide better

results as per probability distribution (Table 2).

Figure 3 represents energy consumption outcomes (in

Joules) for transmitting data packets per transaction,

strength transmitted and received, transmission impact on

energy consumption.

A sensing mote with an energy value more than the

threshold is called an operational node, while one with a

value below the threshold is known as a dead node. Fig-

ure 4 depicts the number of operational nodes per trans-

mission of data which in turn prolongs network lifetime.

5.1 Comparative analysis

The objective of this research is to ascertain which opti-

mization technique amongst GWO (Grey Wolf Optimiza-

tion), PSO (Particle Swarm Optimization), BA (Bat

Algorithm), GA (Genetic Algorithm), FA (Firefly Algo-

rithm), an improved variant of GSO (Glow Worm Swarm

Optimization) provides the optimum solution and energy

consumed with restricted iterations. Five hundred ran-

domly distributed nodes in the network were used to sim-

ulate performance based on the amount of energy

dissipated, the number of alive nodes, the number of dead

nodes, and the network’s throughput.

• Network’s Lifetime The network’s expected lifespan is

expressed as the proportion of time the network can

accomplish the desired functionality.

Figure 5 indicates that the improved GSO algorithm

maintains the highest network lifetime of 4700(approx) as

compared to existing techniques like Firefly(3500),

GWO(3350), GA(3300), BAT(3200), and PSO(3050).

Table 2 Simulation parameters

Parameter Value

Desired no. of neighbors (nt) 5

Operating rounds 5000

sinkx * sinky 50 * 200

Initial energy Eo 2 J

Transmitter energy 50 * 10-9 J/bit

Reception energy 50 * 10-9 J/bit

Amp energy 100 * 10-12 J/b/m2

Packet size 4 K bits

No. of Glowworms 500

Glowworm’s distance (dg) 0.03

Sensing range(rs) 3

Luciferin intensification(c) 0.6

Luciferin decay constant(dc) 0.4
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• Energy Consumption per transmission Energy is the

primary resource of WSN nodes, and it determines the

longevity of the network.

Figure 6 shows that the approximate energy dissipation

rate of the improved GSO algorithm is lowest i.e. 0.52% in

comparison to existing techniques like Firefly(0.57),

GWO(0.72), GA(0.82), BAT(0.70), and PSO(0.88).

• Throughput It determines the frequency at which data is

successfully transmitted across a network.

Figure 7 shows that the improved GSO exhibits the

successful transmission of data packets with a throughput

rate of 0.88 which is more as compared to existing tech-

niques like Firefly(0.80), GWO(0.69), GA(0.55),

BAT(0.60), and PSO(0.50).

• The number of Alive Nodes The number of alive nodes

was calculated for each round to find the energy

efficiency of the network. Figure 8 depicts that in terms

of the number of alive nodes per iteration thereby

prolonging network lifetime GSO gives optimal results.

• The number of Dead Nodes In Fig. 9 GSO is compared

with GA, GWO, PSO, BAT, and firefly algorithms in

terms of the number of dead nodes per iteration and it

significantly specifies that the number of dead nodes in

GSO per iteration is comparatively lesser thereby

providing prolonged network life due to the existence

of operational nodes. The network dies at a faster pace

in the PSO, BAT, and GWO algorithm, and for

modified GSO once the network attains a static increase

in the number of iterations its stability increases thereby

decreasing the number of dead nodes across the

network.

6 Conclusion

In this research work, we have administered a node dis-

tribution strategy to resolve the issues that existed due to

overlapping nodes and spreading latencies as a result of

reduced sensor nodes across many clusters before applying

the target coverage. This significantly reduced the energy

consumption of each cluster, which reduced the spread

latency and the energy consumption of substantial nodes by

equalizing the sensors on every cluster. The target coverage

is accomplished by GSO, to effectively track a range of

targets with deterministic sensors. GSO-based Clustered

target coverage ensures that the exploration duration for the

optimum is constrained. The predominant prime objective

of this research is to address the coverage of all targets. We

used the Essential Force Clustered Routing to illustrate the

selection of routes depending on the minimum distance of

proximity, the average power, and the position of the

sensor to interface efficiently. The meta-heuristic-inspired

self-organizing cluster scheme for the creation and man-

agement of clusters aims to increase network connectivity

Fig. 3 Energy Consumption (in Joules)/transmission

Fig. 4 Operational nodes/Iteration

Throughput ¼ No: of data packets successfully transferred=Total number of packets
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performance. This technology concentrates on the neigh-

boring spectrum, residual energy, and sensor positioning

for efficient communication. It offers significant outcomes

as the network stabilizes after specific transmissions with a

certain number of active nodes. The benefit of this tech-

nique is that it wouldn’t have to be centralized and there-

fore easy to adapt for substantial sensor networks. This

technique is intended to determine the ‘‘local best solu-

tion’’, in the next future, we may enhance the method to

identify the potential solution, and work towards the

dynamic change in the decision-making domain for the

movement of glowworms.

Fig. 5 Network Lifetime

Fig. 6 Energy Consumption per

transmission
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