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Abstract In this paper we present two parallel models for

the training of the deep belief networks (DBNs) based on

the map-reduce framework. In both models we used more

than one computer for the training of DBNs in layer by

layer manner following the positive and the negative phase.

It is well know that training of DBNs requires large amount

of time so with the help proposed models computation can

be performed in lesser amount of time with respect to the

standalone DBN. By performing experiments on Ryerson

Audio-Visual Database of Emotional Speech and Song and

Toronto Emotional Speech Set data set it has been

observed that the first proposed model i.e. First parallel

map-reduced based deep belief network (FParMRBDBN)

is shown significantly improvement in the computation

time. While the second proposed model i.e. second parallel

map-reduced based deep belief network (FParMRBDBN)

is shown significantly accelerates the training speed of

DBNs. Moreover, both proposed models have given sig-

nificant results in class classification of the emotions as

well.

Keywords Deep belief network � MapReduce � Hidden
layer � Restricted Boltzmann machine � Neurons

1 Introduction

In recent years, big data has gotten a force from industry

and as well as from the scholarly community. Numerous

associations are consistently gathering giant datasets from

different sources like, the World Wide Web (WWW),

social networking websites, and sensor systems. In Big

data, a new world of opportunities. (2012), big data is

presented as a term that incorporates the utilization of

various strategies like to catch, process, investigate, and

visualize the large datasets in a measurable time period

(Zikopoulos et al. 2012). Now a day’s big data is charac-

terized with 7 V’s:

1. Volume: Volume refers to the size of the data.

2. Variability: Data for which the meaning is changing

constantly.

3. Visualization: The data in a manner that’s readable and

accessible.

4. Veracity: The trustworthiness of the data in terms of

accuracy.

5. Variety: The different types of the data.

6. Velocity: The speed of data generation.

7. Value: Just having of big data is of no use unless we

can turn it into value.

Neural networks (NNs), enlivened by the structure of an

organic mind, have been effectively applied in many fields,

for example, natural language processing (NLP) and pat-

tern recognition (PR) (Dahl et al. 2012; Hinton et al. 2012;

Wei et al. 2017; Ouyang et al. 2017; Ren et al. 2017). It has

been demonstrated that by expanding the size of the net-

work models with respect to the quantity of network

parameters, the quantity of the training instances or sam-

ples and the profundity of network models i.e. the quantity
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of the hidden layers in the NN, classification precision can

be improved significantly (Dan et al. 2010; Le et al. 2011).

Both hypothetical researchers and viable applications

considered the expanding of profundity of NNs is the most

beneficial among these available strategies (Bengio 2009;

Simonyan and Zisserman 2014; Szegedy et al. 2015; He

et al. 2016). The most well-known one of the artificial

neural network (ANN) is Back-propagation neural network

(BPNN), capable of assuming any constant nonlinear

function with an enough number of neurons which works

on arbitrary precision (Hagan et al. 1996). With the giant

datasets, back propagation method is generally used for

training BPNN and because of the large dataset it requires a

large amount of time to compute (Gu et al. 2013). So, to

utilize the NN to its full extent one has to speed up the

computation process, for this parallel computing is one of

the good options. For parallelization a scalable parallel

ANN has been proposed by Long and Gupta by using

message passing interface (MPI) (Kumar et al. 2002;

Message Passing Interface 2015; Long and Gupta 2008). It

is also important that MPI was intended for information

concentrated applications with high performance prereq-

uisites. MPI offers almost no help in adaptation to internal

failure. In the event where a flaw happens, a MPI com-

putation ought to be begun from the starting point. Sub-

sequently, MPI isn’t reasonably good for large information

applications like big data, which will last for few hours

when fault occurs (Liu et al. 2015). At the same time PC

limits the size of the bigger network models because of the

memory constrained. Now for the training of the NNs at a

faster rate, researchers are using the graphics card.

Preparing the NN with GPUs, Oh and Jung has reported a

speedup factor of 20 (Oh and Jung 2004). Later on, a

convolution neural network (CNN) which is faster by four

times when compared with the CNNs based on CPU

(Chellapilla et al. 2006). This CNN is based on GPUs, and

now days GPUs are playing a vital role in machine learning

applications. In 2014, 2015 and 2016 Simonyan et al.,

Szegedy et al., He et al. respectively, developed a model

based on large number of GPUs, b which the NNs are

becoming deeper and larger. However, hardware has

becomes a bottleneck again as the size of models increase.

Recently, many researchers are using the concept of cloud

computing (CC) to solve the computation problem of the

larger NN related to the bottle neck (Huqqani et al. 2014).

Without considering the accuracy aspect of the parallel NN

Gu et al. proposed a network which was implemented to

solve and to speed up the computation of a parallel NN,

networks uses memory network processing techniques.

Deep Belief Network (DBN), Long short-term memory

(LSTM), Convolution neural network (CNN), auto enco-

ders (AE) are some of the extensively used deep learning

models (Zhao et al. 2018). Out of all these CNN shows the

best results when it comes to extraction of the features

through incrusted and gushed learning and it has been

deployed for handing number of problems like music mood

classification (Agarwal and Om 2021), segmentation pro-

cess of the video data(Senger and Mukhopadhyay 2019),

face detection as well as disease diagnosis etc. At the same

time LSTM is advantageous for Speech Recognition as

well as for the weather forecasting. DBN can perform well

in number of problems too like interpretation of the facial

expression, analysis of the time series, text dependent and

non-text dependent learning. Out of all the models of deep

learning, DBN is the most widely used model because

DBN ensures better results in performance metrics in terms

of precision, accuracy, error, specificity. Working of DBNs

are almost similar to the working of the human brain, as in

human brains process the neurons to have an optimal

solution the same is the working of DBN. DBN can be

thought as a human brain that can be viewed as a complex

structure having neurons in multiple layers formed in

stacked format on top of one another (Gong 2021).

However, the process of training of DBN is very time

consuming when the DBN encounters the giant datasets.

So, in real life applications or experiments the performance

of the algorithm in terms of speed is one of the major

concerns; thus methods that can accelerate the training of

DBN must be investigated. In recent past, large numbers of

parallel computing frameworks have been developed to

train large NNs. Out of the developed frameworks; Spar-

kNet implements a distributed algorithm by using the

framework of Spark based on batch processing to train

deep networks (Meng et al. 2016). To compute a particular

task using batch-processing framework, dataset is bifur-

cated into number of batches and finally allotted to indi-

vidual processor. It simply means, to optimize the purpose,

multiple replicas of the same model are trained on different

processors by using variable data batches. However, the

memory size of an individual system limits the scale of the

model because all the available systems using the same

model (Guang shi, Jiangshe Zhang 2020). Moreover, this

type of scattered processing of the batches is called the

parallelism of the data or Data Parallelism. Data paral-

lelism is easy to implement with the use of MapReduce

framework generally called as Mapper and Reducer. To

bridge the research gap between the sequential and parallel

computing as well as training of the DBN models for the

large datasets, two models have been proposed in this

paper. Using which any researcher can reduce the training

time of the Deep Belief Networks in real time by enhancing

the processing ability of the giant datasets. In this study

two models have been proposed to train the DBN’s in

lesser time and more accurately with the use of Hadoop

ecosystem.
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This paper proposed a Hadoop based parallel deep belief

networks (HPDBN) for speeding up the computation, so

that time requires for the analysis of larger datasets may get

reduce. One can use the MapReduce for the distributed

processing and it’s become a de facto standard computing

model with the Mahout for Machine Learning algorithms.

Figure 1 represents the Hadoop ecosystem components and

its architecture. In this ecosystem, the default layer for the

data storage is HDFS i.e. Hadoop Distributed File System.

The most important component of Apache Hadoop is

HDFS because user can store giant datasets till the user

wants. Data will be available in this until the data will be

removed by the user itself after the required analysis. By

default HDFS creates three (03Nos) replicas of the data, so

that the proper distribution of the data across the cluster can

be done. Because of this HDFS provides quick and reliable

data access. Name Node, Data Node and Secondary Name

Node are the three important components of HDFS. Out of

all Name Node is considered as the master node so that a

track of all the data stored in the cluster can be kept, while

slave nodes are the data nodes. MapReduce framework is

known as Mapper and Reducer. The input to the map-

reduce is in the form of\ key, value[ pair so that inter-

mediary records can be maintained in the form of\ key,

value[ . Total number of outputs from reducer may be

same or different from the input provided. Output result

from the mapper only generated after the execution of the

mappers on the chunks of data available on the different

data nodes, each mapper produces the output for the chunk

of data it executed. Input file blocks is the key factor to

decide number of mappers to be executed by the map-

reduce. Intermediate values of the mappers are reduced by

the reducer. Basically the overall working of this phase is

in three steps shuffle, Sort and Reduce. The final output is

in the form of\ key, (list of values)[ for each pairs in the

given input. All the tasks of MapReduce are handled by

two daemons known as Task and Job tracker. For easy and

efficient analysis of the giant datasets Yahoo developed a

tool known as Pig. An optimized high level language Pig

Latin is used. Large data sets can be easily handled by pig

because its provide parallelism of giant datasets. For

querying, analysis and data summarization a similar lan-

guage to SQL is introduced by Facebook known as

HiveQL. For exporting and importing of the data in

Hadoop related components like Hbase, HDFS or Hive

SQOOP framework is used. It allows data imports, copies

data quickly, parallelized data transfer, efficient data

analysis and mitigates excessive loads. Sinks, Channel and

Sources are the three primary structures of Flume. It

gathers the data from origin and reverts to the resting

location. In Directed Acyclic Graph one can express the

workflow using the Oozie. All the Hadoop jobs like Pig,

MapReduce, Scoop or Hive are taken care by Oozie

framework. Dependencies like time and data are respon-

sible for the execution of the Oozie’s workflow. For having

operational services coordination in a Hadoop ecosystem

Zookeeper is responsible and it provides reliable, robust,

fast access with coordination among all the data chunks

available at the data nodes. Naming registry is to be done

for the distributed system of this eco system; zookeeper is

taken care of this. It also provides distributed and syn-

chronization services to the HDFS. For making Hadoop

system enable for the machine learning (ML) Mahout is

one of the most important components. With Mahout one

can implement various ML algorithms. The rest of the

paper is organized as follows. Material and method section

focuses on brief introduction of Deep Belief Networks

(DBNs), the introduction and formation of our proposed

three kinds of parallel deep belief networks (ParDBNs).

Experimental results of proposed ParDBNs are discussed in

results and discussion section. Finally, we end the paper

with conclusions in Sect. 4.

Hadoop ecosystem components and its architecture [29] 
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Fig. 1 Hadoop ecosystem

components and its architecture

(Ashlesha and Tugnayat 2018)
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2 Materials and methods

This paper attempts to explore the possibility of parallelism

in training the DBN and applies them to increase the

accuracy, precision and reduce the training time. At the

same time effectiveness of the models will also be one of

the major concerned. Normally data parallelization and

structure are the two important aspects of the parallel

computing. Designing of the complicated algorithms can

be treated as the structure for the parallel computing and

breaking of large datasets in to data subsets to distribution

of chunks to the computing nodes are termed as data par-

allelization. When there is a need of processing the data in

parallel manner then the most important model is always a

MapReduce programming model. This model is capable to

compute the numerous autonomous operations in any

order. In parallel processing, the order of operations is not a

matter of concern because the equations result does not

change from the order of operations, that’s why it is also

called commutative operations. Commutativity can apply

to complex operations and even processes, as long as they

don’t manipulate the same memory. MapReduce delivers a

programming model which abstracts many complexities of

parallel processing. The MapReduce implementation per-

forms much of the ‘‘wiring’’ associated with parallel pro-

cessing, leaving the developer to implement relatively

simple methods. The use of MapReduce does come with

some constraints, making it less appropriate for some tasks.

MapReduce models are optimized for tasks where a large

number of key*value input lists must be processed some-

what independently. MapReduce map() method must be

commutative, in order for the MapReduce implementation

to make use of parallelization. MapReduce enables the

parallelization across hundreds and even thousands of

CPU’s.

Two kinds of ParDBNs have been proposed in this paper

and called as First Parallel Deep Belief Network using Map

Reduce (FParMRBDBN) and Second Parallel Deep Belief

Network using Map Reduce (SParMRBDBN), both are

with the diverse communication and synchronization

policies. Along with this, the various basic models like

DBNs, Restricted Boltzmann Machines (RBMs) are briefly

reviewed. In 1986, Hinton and Seinowski proposed the

Boltzmann machine, later a modified version of the

Boltzmann machine was proposed by Paul Smolensky

which was renowned as a Restricted Boltzmann machine.

In RBM, there exist two layers the first layer is known as

the visible layer while the second one is called as hidden

layer. Visible features of the input data are given as an input

to the visible layer and the high level features or unidentified

features are represented by the hidden layer (https://medium.

com/datadriveninvestor/deep-learning-restricted-

boltzmann-machine-b76241af7a92.). As shown in Fig. 2,

RBM is represented as an undirected acyclic graph because

each and every neuron of the hidden layer is connected to the

every neuron of the visible layer i.e. full connection between

the two layerswith no intra layer links are allowed inRBM. If

we have h neurons in the hidden layer and v neurons in the

visible layer, then RBM can be expressed as their joint

probability distribution. Concept of RBM was initially

introduced by Paul Smolensky in 1986 and it gained big

popularity in recent years. RBM has set a benchmark for

classification, collaborative filtering, topic modeling,

regression, feature learning, and dimensionality reduction.

For the positive phase, the hidden bias helps the RBM, while

during the negative phase the biases of visible layers are

helpful to reconstructions of the inputs.

We have denoted neurons in visible and hidden layers as

v and h respectively. Neurons in the visible layer are

denoted from 1 to m, vi (i = 1, 2,…, m), while in hidden

layers are denoted as 1 to n as hj (j = 1, 2,…, n). Here, m

and n are simply represents the number of neurons in the

visible and hidden layer respectively. It is presuming that

every neuron in RBM must satisfy a binary distribution,

denoted as vi 2 0; 1½ � and hj 2 0; 1½ �. Moreover, each

neuron in RBM is associated with an activation function

r(x), generally sigmoid activation function is selected

when the number of classes are more than two. When a

neuron is activated then the value of output is always be

equal to expression represents the weighted input plus the

bias. The input for the upper layer is always the outputs of

the neurons in the lower layer. A DBN can be considered as

a non-convolutional network which can be formed by

merging the several RBMs. The basic structure of DBN has

been shown in Fig. 3, in which every two corresponding

layers are termed as RBM and denoted substantially as

RBM1 to RBMn. with input layer and n hidden layers. DBN

can also be seen as an unsupervised probabilistic based

deep learning algorithm. ID of DBN is composed of a

multi-layer latent variable, having a random pattern or

probability distribution which may not be predicted pre-

cisely but may be statistically analyzed statistically. Binary

......

......v1 v2 vm

h1 h2 h3 hn

Fig. 2 Visible and hidden layers representation in RBM
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values are associated with the latent variable, that’s why

they also known as hidden layer neurons or feature

detectors. DBN is a hybrid model, in which the first two

layers can be seen as an undirected graph and the rest of

layers have directed connections to the top layers like a

directed acyclic graph (DAG). Architecture of DBN is

shown in Fig. 3.

In DBN, the last or the lowest layer receives the input

data and this layer is termed as or the visible layer. This

layer accepts either the binary data or the real data. There

exists no intra layer connections likes RBM (Mohamed

et al. 2009; Bengio et al. 2013). Correlations present in the

data are captured by the hidden neuron and represents as

features. Any two layers in DBN are connected by the

symmetrical weights W stored in a form of matrix. Every

neuron in each layer is connected to every neuron in the

each neighbouring layer. Greedy learning algorithm is used

for the pre training of DBN. Dependency of variables of

one layer over the other in DBN can be determined by the

generative weights, these weights can be learned by using

the layer by layer approach in top down fashion in greedy

learning algorithm. On the top two hidden layers of DBN

several steps of Gibb’s sampling are executed. The sample

defined by the top two hidden layers of RBM is essentially

drawing so that a single pass of the parental sample can be

executed through the rest of the model from the visible

layer neuron to draw a sample. A single bottom up pass is

quite enough to estimate the values of hidden variables in

each layer. Input data vector available at the bottom layer is

responsible for the pre-training of the DBN and then for the

fine tuning it uses the generator weight in the reverse

direction.

Geoffrey Hinton proposed the greedy layer wise training

algorithm for DBN. In this one layer of DBN is trained at a

time in an unsupervised manner. For the simplicity com-

plexity of DBN is divided into small chunks of easily

manageable chunks so a multilayer DBN is divided into

number of RBMs and these simple models are learned

sequentially. Because it is always easy to train a less deep

network rather than training a deeper network. To have a

different representation of the data this greedy algorithm

allows each and every model to traverse in the sequence

manner.

For the better understanding let us consider an example

as shown in Fig. 4. It has one visible or Input layer and

three hidden layers, the last hidden layer is also considered

as output layer. The input layer is having three neurons and

the first hidden layer is having two neurons while second

and third hidden layer is having three and two hidden

neurons respectively. by considering this example let us see

how the DBN with greedy algorithm can be applied.

Firstly, all the layers of the network are frozen except

the first layer. Training data is used to train the first layer

greedily. Individual activation probabilities for the neurons

of the first hidden layer are computed. In this we parallel

updated all the hidden neurons of the first hidden layer.

This phase of computation is called as the positive phase

and computed as Eq. 1 and 2, where bias associated with

hidden neurons are b1 and b2, P Hij ¼ 1jV
� �

represents the

output probability of the hidden neurons, bi is the bias with

hidden neuron,WijVi is the sum of weight between neuron i

in the visible layer and the neuron j in the hidden layer with

input and r �ð Þ represents the sigmoid function.

P H11 ¼ 1jVð Þ ¼ r b1 þW11V1 þW21V2 þW31V3ð Þ ð1Þ
P H12 ¼ 1jVð Þ ¼ r b2 þW12V1 þW22V2 þW32V3ð Þ ð2Þ

In second step, we have to construct the visible neurons

by using negative phase which is similar to positive phase

by using Eq. 3, 4, 5, here a1, a2 and a3 are the biases

associated with the visible neurons, this step is also known

as reconstructing of visible neurons from hidden neurons.

P Vi ¼ 1jHið Þ represents the output probability of the visi-

ble neurons, ai is the bias with visible neuron, WijVi is the

sum of weight and input and r �ð Þ represents the sigmoid

function.

P V1 ¼ 1jH1ð Þ ¼ r a1 þW11H11 þW12H12ð Þ ð3Þ
P V2 ¼ 1jH1ð Þ ¼ r a2 þW21H11 þW22H12ð Þ ð4Þ
P V3 ¼ 1jH1ð Þ ¼ r a3 þW31H11 þW32H12ð Þ ð5Þ

In last step, one has to update all associated weights in

greedy layer wise learning using Eq. 6. In this, the result of

the difference of positive and negative phase is multiplied

by L i.e. the learning rate and then added to the initial value

of the weight.

UpdW11 ¼ W11 þ L � PðH11 ¼ 1jVð Þ � PðV1 ¼ 1jH1Þ
ð6Þ

Fig. 3 Architecture of DBN
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Now, for the second hidden layer the first hidden layer

will act as an input and so on. Each progressive layer takes

yield of the past layer as a contribution to create a yield.

Yield created is another portrayal of information where

circulation is more straightforward. Weights of the first

RBM will be transposed to become the weights for the

second RBM. Now repeat the same process for all the

RBMs. For training the next RBM, hidden neurons or yield

of previous RBM will be the input for the next RBM. We

calculate both the phases and update all the weights asso-

ciated with it. This process will be repeated till we reach

the last hidden layer. Here a and b are the bias associated

with the visible and hidden layers neurons. For the example

repeat the process for the last RBM and calculate the

contrastive divergence using the Gibb’s sampling.

Positive Phase

P H21 ¼ 1jH1ð Þ ¼ r b21 þW11H11 þW21H12ð Þ ð7Þ
P H22 ¼ 1jH1ð Þ ¼ r b22 þW12H11 þW22H12ð Þ ð8Þ
P H23 ¼ 1jH1ð Þ ¼ r b23 þW13H11 þW23H12ð Þ ð9Þ

Negative Phase

P H11 ¼ 1jH2ð Þ ¼ r a11 þW11H21 þW12H22 þW13H23ð Þ
ð10Þ

P H12 ¼ 1jH2ð Þ ¼ r a12 þW21H21 þW22H22 þW23H23ð Þ
ð11Þ

Now, the positive and negative phases can be repre-

sented using the general form of equation. In genric form

the Eqs. 1, 2 and 7 to 9 can be written as Eq. 12 and Eq. 3

to 5 and 10, 11 can be written as Eq. 13.

P hj ¼ 1jV
� �

¼ r bj þ
Xn

i¼1

viwij

 !

; j ¼ 1; 2; . . .;m

ð12Þ

where wij indicates the weight between ith visible node and

jth hidden node, r �ð Þ represents the sigmoid function, and

the bias of jth hidden node is denoted by bj. Likewise,

when a hidden vector h h1; . . .. . .; hj; . . .. . .hm
� �

is identi-

fied, then the probability activation of the ith visible node is

calculated by Eq. (2).

N
egative Phase Po
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e 
Ph

as
e 

W2

W1=W0T

    Input Layer 

Output Layer 

W32

W22

W12

W31
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h11 h12

h21 h22 h23

h31 h32
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Fig. 4 Example of DBN
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P Vi ¼ 1jhð Þ ¼ r ai þ
Xm

j¼1

hjwij

 !

; i ¼ 1; 2; . . .. . .; n

ð13Þ

where the ith visible node’s bias is represented as ai.

Further, with k hidden layers the layer-wise pre-training is

employed. Based on the input sample size x, the activation

Ak xð Þ of the kth hidden layer is evaluated as

Ak xð Þ ¼ r bk þ Wkr . . .þ W2r ðb1 þ W1 xð Þ. . .ð Þð Þ ð14Þ

where, Wk and bk are the weight matrices and the hidden

bias vectors of the kth RBM. The DBN uses the deep

architecture to get the fair feature representation of the

layer-wise pre-training. The Eq. 6 i.e. updation of the

weight in generic form can be written as:

UpdWij ¼ Wij þ L � PositiveðEijÞ � NegativeðEijÞ
� �

ð15Þ

In Eq. 15, UpdWij is the updated weight, Wij is the

weight that is to be updated, L is the learning rate and

PositiveðEijÞ � NegativeðEijÞ is the difference of positive

and negative phase.

Greedy layer wise pre training identifies feature detec-

tor. Features are slightly modified by fine tuning to get the

boundaries right for the specific category. It also helps to

discriminate between different classes better associated

with the input. Moreover, the accuracy of the model can be

improved by adjusting the weights during fine tuning

process. And finally, the sigmoid function of Eq. 12 and 13

can be solved by using Eqs. 16 and 17 respectively. Con-

ditional probability of one hidden neuron is given by v

through Eq. 16 and conditional probability of one visible

neuron can be computed from Eq. 17, given an input vector

v and h

P hi ¼ 1jvð Þ ¼ 1

1þ e � bjþwjvið Þð Þ ð16Þ

P vi ¼ 1jhð Þ ¼ 1

1þ e � aiþwihið Þð Þ ð17Þ

2.1 Proposed models of ParDBNs

Now days, many researchers are using the network cluster

developed with the help of commodity computers for

dealing the data intensive applications. In recent past, most

popular computing models are Phoenix, Mars, and Hadoop

framework (Ashlesha and Tugnayat 2018) of the MapRe-

duce. Out of all the available frameworks because of the

open source Hadoop framework is widely accepted by the

community. HDFS is there in Hadoop for the management

of the data. In Hadoop cluster Name node is considered as

a very special node because it holds all the meta data

related to the cluster and for running the jobs or for any

type of processing cluster is comprises of the number of

Data nodes. Data nodes are also responsible for the exe-

cution of the Mapper functions (map) and reducer func-

tions. On assigning a job to the cluster, the job is bifurcated

into the small data chunks of either 32 MB or 64 MB and

finally saved into HDFS. To have data integrity in the

cluster, by default each data chunk have three replicas but

this may be increase or decrease as per the user require-

ment. In a Hadoop cluster, rack awareness policy is fol-

lowed by the mappers to copy and to read the data from the

nodes based on data location. And finally reducer generates

the final output and stores it back into HDFS.

FParMRBDBN is used for the classification of the

datasets where the testing data is in very huge volume. Let

us consider a testing sample testi ¼ l1; l2; l3; . . .; llef g;
testi 2 TEST ; where

a. testi, denotes a testing sample.

b. Here the dataset is TEST;

c. le is length of testi; the total number of inputs of a DBN

is le;

d. testijtargetmj is the inputs format of DBN

e. targetm, represents the expected output if testi is a

testing sample.

f. ‘‘test’’ and ‘‘train,’’ are the two values for the type field,

if test value is set then type is of testi; and targetm if

test is not set.

Hadoop distributed file system (HDFS) initially saves

the files that contain samples. Each file comprises of;

portion of the testing sample and all the training samples.

Therefore, the numbers of mappers required are finalized

by the file number n. The file data is the input of

FParMRBDBN. Each mapper initializes a DBN as soon as

an algorithm starts. As a result, the number of DBNs in the

cluster is equal to n. To have architecture neutral model all

the DBNs using the same structure with exactly the same

value of parameters. Input is read by each mapper is in the

form of testijtargetmjtype from HDFS and process the data.

testi is the input to the DBN if type field is having value

test. The output of every hidden layer is calculated using

Eq. 16, and negative phase is calculated using Eq. 17. The

new weights will be computed for every layer and each

mapper starts the processing of its DBN for the next layer.

All the training samples are processed with the positive and

negative phase and the output class is generated.

By running the positive and negative phase each mapper

classifies samples labelled as ‘‘test’’. In the proposed

model, small portion of the testing dataset is classified by

the individual mapper this result in the improved efficiency

of the model. The output generated by each mapper is in

the form of instanceijOjn, where instancei represents the
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key and Ojn is the nth mapper output. Now, all outputs of

all the mappers are merged by the reducer and generate the

output in the form of testijOjn into Hadoop file system

known as HDFS. In this Ojn is the final class to which

sample testi belong. Figure 5 shows the architecture of

FParMRBDBN and Algorithm 1 shows the pseudo code.

Second Parallel Deep Belief Network using Map

Reduce (SParMRBDBN) is proposed based on the concept,

where training data is more than the testing data i.e. the

quantity of the training data is much more than of testing

data in DBN. Let us consider a training dataset TRAIN with

m samples. For training by the mapper in SParMRBDBN,

the dataset TRAIN is to be divided into n data samples out

of which each data sample traini is individually processed.

TRAIN ¼ [train¼n
train¼1 traini; 8 train 2 trainijtrain 62 trainn; i 6¼ nf g

ð18Þ

In hadoop cluster a single DBN is maintained by single

mapper, and for every DBN in mapperi, data sample traini
is work as input for the training data. On the basis of

trained parameters each DBN in a mapper produces an

output classifier class.

mapperi;DBNi; trainið Þ ! classifieri ð19Þ

With a part of the training dataset each classifieri is

trained to reduce the computation cost. The drawback of

this policy is results in the significantly degradation of the

classification accuracy of the mapper because to train the

DBN only the portion of the training data is used which is a

very critical issue. To overcome this issue in

SParMRBDBN a number of weak learners are clubbed to

creates the strong learners so that the classification accu-

racy can be maintained.

Concept of Bootstrapping: Miscellaneous classifications

from one training dataset have been considered simpler

than the case of finding a strong learner (https://medium.

com/datadriveninvestor/deep-learning-restricted-boltzman

n-machine-b76241af7a92.). For this there exist a number of

techniques; most commonly used technique is to remodel

training datasets by applying the concept of bootstrap-

ping and majority voting. Balanced bootstrap samples

can be created by simply constructing a string of samples

like instance1; instance2; instance3; . . .; instancen and

repeat the sequence B times to achieve a sequence

of target1; target2; target3; . . .; targetBn. From

targetp1; targetp2; targetp3; . . .; targetpn first bootstrap
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sample has been created and similarly to created second

bootstrap sample we have targetp nþ1ð Þ; targetp nþ2ð Þ;

. . .; targetp 2nð Þ and the process continues until the creation

of Bth bootstrapping sample by targetp B�1ð Þnþ1ð Þ;

targetp B�1ð Þnþ2ð Þ;. . .; targetp Bnð Þ:

Majority Voting: It performs classifications based on the

maximum votes of the base level classifiers (https://med

ium.com/datadriveninvestor/deep-learning-restricted-boltz

mann-machine-b76241af7a92.). The prediction Pi of the

ith classifier can be defined as Pi;j 2 1; 0f g; i ¼
1; 2; . . .;CC and j ¼ 1; 2; . . .; c where CC is the number of

classes of the classifiers. If the cth classifier chooses class j,

then Pi;j ¼ 1; otherwise Pi;j ¼ 0: then, the prediction for

class k is calculated as

Pi;j ¼ max
j¼c

j¼1

XI

i¼1

Pi;j ð20Þ

SParMRBDBN first generates the number of subsets

from the complete training data by applying balanced

bootstrapping.

balanced bootstrapping ! train1; train2; train3; . . .; trainnf g;
[n

i¼1

traini ¼ TRAIN

ð21Þ

where traini represents the ith subset from the entire dataset

and it directly belongs to the dataset TRAIN, the total

number of subsets in dataset TRAIN is n. Each traini is

saved in HDFS as a single file. Each sample

traink ¼ l1; l2; l3; . . .; llef g; traink 2 TRAINi, is defined

in the format of instanceijtargetkjtype, where.

1. One bootstrapped sample traink is represented by

instancek, which works as an input of DBN.

2. The total number of inputs of the DBN are le.

3. The desirable output will be targetk, if instancek is a

training sample.

4. ‘‘test’’ and ‘‘train,’’ are the two values for the type field,

which is equal to the type of instancek; if ‘‘test’’ value

is set and targetk field should be left empty.

In SParMRBDBN one DBN is constructed by one

mapper and all the associated weights and biases are ini-

tialized by the random values lie between -1 to 1 for all the

neurons. Now the mapper is having one record as an input

and in the form of instanceijtargetkjtype. Firstly, the

mappers retrieves the type of the sample by parse the input

data in such a manner that if train is the value of type then

the sample is directly feed as an input into the visible layer

i.e. the input layer. The output of the every hidden layer is

calculated using Eq. 16, and negative phase is calculated

using Eq. 17. The new weights will be computed for every

layer and then the DBN in every mapper begins the dis-

semination process for the next layer. Repeat the positive

and negative phase until all the training samples are pro-

cessed and the output class are generated.

In this, the classification class of the sample is computed

by every mapper at the last hidden layer i.e. at the output

layer. The intermediate output of the each mapper is in the

form of key and output of the nth mapper i.e. instanceijOjn:

Finally, all the mappers outputs are collected by the

reducer and all the outputs of the same key have been

merged together. Now, the reducer runs majority voting

using Eq. 20 and outputs the result of instancei into HDFS

in the form of instancekjrk; where rk represents the voted

classification result of instancek. Figure 6 represents the

model of SParMRBDBN and Algorithm 2 describes the

pseudo code.

                                                            TRAIN 

test1 test2 test3 ........ testj

mapper1 mapper2 mapper3 ........ mappern

Reducer 

Final Class of TEST 

     train1                        train2 train3                        ...........                         traini

Fig. 5 Architecture of proposed

FParMRBDBN
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3 Results and discussions

In this paper, two parallel DBNs using Hadoop cluster have

been proposed. To analyse the performance of the proposed

models a Hadoop cluster was built, this cluster is com-

prising of twenty-five (25 Nos) PC out of which twenty-

three (23 Nos) PCs act as the Data nodes, one (1No) PC is

the secondary name node and one (1 No) PC is the Name

node. The complete cluster details is shown in Table 1

Two datasets RAVDESS and TESS has been used in

this study. The datasets are measured on the basis of total

sample numbers, sample length, element range and class

number. Sample number represents the total no of samples

in a particular dataset, Sample length represents the range

                                                            TRAIN 

test1 test2 test3 ........ testj

mapper1 mapper2 mapper3 ........ mapperi

Reducer Collect all mappers output and perform majority voting 

Final Class of TEST 

     train1                        train2 train3                        ...........                         traini

Fig. 6 Architecture of proposed

SParMRBDBN
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duration of the input sample, and element range represents

the class number to which the input sample belongs while

class number represents the total number of available

classes in the dataset.

Dataset Description: Total of two English datasets has

been used in this paper. Descriptions of both the datasets,

Ryerson Audio-Visual Database of Emotional Speech and

Song (RAVDESS) and Toronto Emotional Speech Set

(TESS) are as shown in Table 2.

Toronto Emotional Speech Set (TESS): TESS dataset

was modelled on the North-western University Auditory

Test No. 6. From Toronto, two actresses aged 64 and

26 years were recruited. By the two actresses, a set of 200

target words were spoken in the carrier phrase and the

recordings were made of the set describing the seven

emotions (https://www.kaggle.com/ejlok1/toronto-emo

tional-speech-set-tess) (Agarwal and Om 2020) the basic

details has been shown in Table 3.

Ryerson Audio-Visual Database of Emotional Speech

and Song (RAVDESS): The RAVDESS is an approved

multimodal dataset of emotional song and speech. The

dataset is gender balanced including professional actors,

vocalizing lexically-coordinated statements in a neutral

North American accent. Each emotion is generated at two

stages of emotional force, with an extra neutral emotion.

All the settings are presented in the face, voice and face-

voice arrangements (Agarwal and Om 2020; Livingstone

and Russo 2018) Description of factor level coding of

RAVDESS filenames are given in Table 4

We have implemented a two-layer as well as three-layer

DBN with twelve numbers of neurons in the hidden layer.

The Hadoop cluster is maintained with twelve numbers of

mappers and with one reducer. For calculating the preci-

sion P of the proposed models total number of samples

varies from 20 to 600 and Eq. 22 has been used. Similarly,

the computation efficiency of the proposed models has

been computed on the dataset size vary from 2 MB to

1 GB. Each model was executed eight times and the

average of all has considered as final result.

P ¼ CR

CRþWR
� 100% ð22Þ

where CR are the correctly recognized samples and WR

Specifies wrongly recognized samples.

Here in the proposed models the basic use of DBN is to

find out the input neurons. The number of the output

neurons will be as per our datasets either 07 or 08 for TESS

or RAVDESS dataset respectively. The activation function

used here is sigmoid based on data that is differentiable and

hence continuous. One has to decide the number of neurons

in each and every hidden layer with number of epochs and

iterations in each epoch.

The precision of FParMRBDBN has been done using the

variable number of samples from the training dataset. The

maximum number of the testing as well as the training

samples is six hundred only (600 Nos). There is data

duplication in the large number of samples. Twelve map-

pers have been used for the precision results of

Table 1 Cluster Details

Sr.

No

Machine

type

Quantity Configuration Workload pattern /cluster type

1 Name node 01 OS: Ubuntu 14.04LTS, Disk: 250 GB SSD, Memory: 32 GB RAM,

CPU: Core i5, 5th Gen 2.3Ghz Quad Core

Balanced workload

2 Secondary

name node

01 OS: Ubuntu 14.04LTS, Disk: 250 GB SSD, Memory: 32 GB RAM,

CPU: Core i5, 5th Gen 2.3 Ghz Quad Core

Balanced workload

3 Data node 23 OS: Ubuntu 14.04LTS, Disk: 500 GB SATA HDD 7200RPM, Memory:

4 GB, CPU: Corei3, 5th Gen 2.0 Ghz Quad core

Cluster type

4 Root 01 20 GB Acts as storage location in server

5 Swap

memory

01 2 9 Memory Acts as secondary memory, when

actual RAM gets occupied

6 Bandwidth – 200Mbps to 1 Ghz –

7 Switch 02 TP-Link TL –SF1016D 16-Port 10/100 Mbps –

Table 2 Dataset Details
Sr. no Data set Sample number Sample length Element range Class number

1 TESS 2800 1–2 (0.6) 7

2 RAVDESS 1440 3–4 (0.7) 7
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FParMRBDBN. It has been observed that with the increase

of the training samples the precision accuracy go on

increasing and it reaches 100% precision for the TESS and

97.53 for the RAVDESS. During the experiment it has also

been noticed that FParMRBDBN behaves quite similarly to

that of the standalone DBN, as FParMRBDBN runs the

hadoop to distribute the data instead of distribution of the

DBN among the Hadoop nodes. Similarly for the evalua-

tion of SParMRBDBN, six hundred testing samples and six

hundred testing samples have been deployed. The training

sample subsets have been used for the training of the

mappers and based on majority voting with bootstrapping it

gives the classification class for all the six hundred testing

samples. Each mapper of SParMRBDBN uses training

samples varying from twenty to six hundred as an input. It

has been observed that with the increase of the training

samples the precision based on majority voting goes on

increasing. Again in SParMRBDBN TESS reached to

100% while RAVDESS reaches to 98.97%, which is a bit

higher with respect to FParMRBDBN. The overall Preci-

sion percentage (%) of proposed FParMRBDBN and

SParMRBDBN on TESS dataset and on RAVDESS dataset

has been compared and reflected in Figs. 7 and 8

respectively.

The clear observation is, because of majority voting

proposed SParMRBDBN performs better than proposed

FParMRBDBN and also the precision of SParMRBDBN is

more stable than that of FParMRBDBN for the classifica-

tion purpose. The stability of both the proposed models has

been shown in Fig. 9. The TESS dataset shows that

SParMRBDBN is more stable when compared with

FParMRBDBN based on precision.

For the computation efficiency experiments has been

carried out using the TESS and RAVDESS datasets.

Experiments are performed using twelve mappers to anal-

yse the efficiency of FParMRBDBNand of SParMRBDBN.

For this data size varies from 1 to 900 MB. FParMRBDBN

simply outperforms the standalone DBN and same has been

presented in Fig. 10. Another important observation is

about the computation overhead, it has been clearly

observed that standalone DBN overhead is too low in

comparison with the proposed model till the dataset size is

below 23 MB and the overhead increases exponentially

with the data size more than 23 MB. The operating cost of

the proposed FParMRBDBN model is low because the

testing data is to be distributed in the Hadoop cluster

among twenty three data nodes, and all the twenty three

data nodes must run in parallel for the class classification.

And for the SParMRBDBN, once the data size goes beyond

54 MB it starts increasing rapidly. Performance of the

proposed parallel SParMRBDBN is far better than that of

standalone DBN but a bit lower than the proposed

FParMRBDBN.

Table 3 Description of TESS Dataset

Sr. no Identifier Coding description of factors level

1 Modality 01 = Audio Only

2 Channel 01 = Words

3 Emotion 01 = Neutral, 02 = surprise, 03 = Happy, 04 = Angry, 05 = Fear, 06 = Disgust, 07 = Sad

4 Intensity 01 = Normal, 02 = Strong

5 Words 01 = First Word, …., 200 = Two Hundredth Word

6 Repetition 01 = None

7 Actor 01 = Young Female Actor, 02 = Old Female Actor

Table 4 Description of RAVDESS Dataset

Sr. no Identifier Coding description of factors level

1 Modality 01 = Audio–Video, 02 = Video Only, 03 = Audio Only

2 Channel 01 = Speech, 02 = Song

3 Emotion 01 = Neutral, 02 = Calm, 03 = Happy, 04 = Sad, 05 = Angry, 06 = Fearful, 07 = Disgust, 08 = Surprised

4 Intensity 01 = Normal, 02 = Strong

5 Statement 01 = ‘‘Kids are talking by the door’’, 02 = ‘‘Dogs are sitting by the door’’

6 Repetition 01 = First repetition, 02 = Second repetition

7 Actor 01 = First Actor, 02 = Second Actor, 03 = Third Actor, 04 = Fourth Actor, …., 24 = Twenty Fourth Actor
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For the time complexity analysis of the both proposed

models with general DBN, let us consider tDBN is the

required training time for each and every DBN, tftt is the

time that is required for the fine tuning of the complete

network, and tcc is the time judgement time for the clas-

sifier committee, on the basis of these assumptions the

FparMRBDBN and SparMRBDBN is having the training

time as follows:

TDBNtr ¼ tDBN þ l� tftt þ tcc ð23Þ

where l represents the total number of classifiers in the

proposed model at the same time following the normal

boosting the training time changes to as shown in Eq. 24.

TDBNbo ¼ l � tDBN þ l � tftt þ tcc ð24Þ
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DBN can be trained by the two well defined phases that

are pre-training and fine-tuning. To capture the features of

the input training sample, pre-training phase is to give a

DBN with the appropriate weights and biases while to

adjust the weights and bias accurately the fine-tuning phase

is using the error backpropagation (BP) algorithm based on

the weights and biases obtained from the pre-training

phase. Table 5 represents the comparison of training and

testing error rate with respect to number of hidden layers

used and also the iterations performed for pre training as

well as for the fine tuning so here we compare the per-

formance of proposed DBNs with DBN. Training has been

performed in batches containing hundred data samples to a

total of six hundread data samples. For the fine tuning in

this paper conjugate gradient descent has been used for

both two hidden layers and three hidden layers. Table 5

clearly indicates that proposed SparMRBDBN outperforms

both DBN and FparMRBDBN on each and every iteration

of the experiments. For the comparision 0.1 learning rate

with 0.1 initialization of weights has been used. However,

by training the network several times and observing its

performance on the both TESS and RAVDESS dataset has

been validated.

For assuring the proper working of the proposed models

both available datasets i.e. TESS and RAVDESS has been

bifurcated into two equal parts i.e. 50% training and 50%

testing. Then the proposed models have been executed for

the formation of Table 5. From Table 5, it is very clear that

the performance of SparMRBDBN is best among the three.

We started from two hidden layers and goes up to three.

Number of iterations used for pre training and fine tuning

are 6, 10, 20 and 50 for both hidden layers. We have tested

the proposed models and compared with DBN on the basis

of training error rate and test error rate. It has been

observed that as the number of iterations goes on increas-

ing from 2 to 50 either for hidden layers will be two or

three the training and testing error goes on decreasing.

With two hidden layers and six iterations training and

testing rate are 2.58, 2.64 and 1.81 and 3.66, 1.86 and 1.73

for DBN, FparMRBDBN and SparMRBDBN respectively.

When fifty iterations with two hidden layers taking into

consideration the training error rate is zero and test error
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Fig. 10 Execution time of

FParMRBDBN and

SParMRBDBN wrt DBN

Table 5 Comparison of training and testing error rate based on number of hidden layers and iterations

Sr. No Hidden Layers Iterations Training error rate (%) Test error rate (%)

Pre training Fine tuning DBN FparMRBDBN SparMRBDBN DBN FparMRBDBN SparMRBDBN

1 2 6 6 2.58 2.64 1.81 3.66 1.86 1.73

2 2 10 10 0.62 0.51 0.12 2.10 1.64 0.82

3 2 20 20 0.02 0.00 0.00 1.78 0.54 0.24

4 2 50 50 0.00 0.00 0.00 1.68 0.18 0.21

5 3 6 6 3.44 2.59 0.96 3.99 1.83 1.46

6 3 10 10 0.91 1.03 0.27 2.40 1.76 1.41

7 3 20 20 0.09 0.02 0.00 1.82 1.21 1.28

8 3 50 50 0.00 0.00 0.00 1.71 0.47 1.14

123

S938 Int J Syst Assur Eng Manag (June 2022) 13(Suppl. 2):S925–S940



rate is 1.68, 0.18 and 0.21 for DBN, FparMRBDBN and

SparMRBDBN respectively. Similarly, when we consid-

ered three hidden layers and six iterations training and

testing rate are 3.44, 2.59 and 0.96 and 3.99, 1.83 and 1.46

for DBN, FparMRBDBN and SparMRBDBN respectively.

When fifty iterations have been considered with three

hidden layers the training error rate is zero while test error

rate is 1.71, 0.47 and 1.14 for DBN, FparMRBDBN and

SparMRBDBN respectively. Clearly, the complete dis-

cussion shows that the proposed models outperform the

DBN on the aspect of training and testing error rate.

4 Conclusion and future scope

In this paper, two parallel DBNs models have been pro-

posed called as FParMRBDBNand SParMRBDBN based

on the computing model of MapReduce. To deal with the

giant size of the datasets DFS file structure has been uti-

lized with a complete cluster size of twenty five nodes.

Paper concludes that overhead of the computation can be

reduced extremely if number of nodes can be used in

parallel manner either in FParMRBDBN or

SParMRBDBN. Because of the concept of majority voting

as well as bootstrapping SParMRBDBN is more feasible

and more considerable as a fully distributed DBN in a

cluster based programming environment but it also incurs

overhead because of regular start and stop of mappers and

reducer in hadoop framework. The unique strength of

SparMRBDBN is maintaining almost the same time com-

plexity as of DBN. Top layers of the proposed model uti-

lizes different weighted data to focus on more efficient

class classification, while the lower layers of the belief

networks share weights for feature extraction. The result

shows that the proposed methods are computationally

efficient and can be readily used for practical applications.

In near future the proposed models can be enhanced for the

different chunks of the data blocks used by the Hadoop

ecosystem. Models can be modified for the use of

32/64 MB of the data blocks so that the training time

depending upon the block size can be optimized.
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