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Abstract Under constant-stress accelerated life test, the
general progressive type-II censoring sample and the two
parameters following the linear Arrhenius model, the point
estimation and interval estimation of the two parameters
log-normal distribution were discussed. The unknown
parameters of the model as well as reliability and hazard
rate functions are estimated by using Maximum likelihood
(ML) and Bayesian methods. The maximum-likelihood
estimates are derived by the Newton—Raphson method and
the corresponding asymptotic variance is derived by the
Fisher information matrix. Since the Bayesian estimates
(BEs) of the unknown parameters cannot be expressed
explicitly, the approximate BEs of the unknown parame-
ters. The approximate highest posterior density confidence
intervals are calculated. The practicality of the proposed
method is illustrated by simulation study and real data
application analysis.
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1 Introduction

Product reliability is a common concern of manufacturers.
To track product performance, it is necessary to collect
product life data. So, life test is indispensable for the
analysis and assessment of product reliability. However,
with scientific and technological advance, high reliability
and long life products emerge in an endless stream. In
practical experiments, accelerated life test( ALT ) are
widely used for time and expense. In ALT, the life of the
product under different accelerated stress levels was tested,
and then the life distribution of the product under normal
stress was estimated by a suitable physical statistical
model, common models are the Arrhenius model, the
power law model and the Eyring model. In practice, the
acceleration stress level can be temperature, voltage, etc. In
recent years, many scholars have conducted research on
ALT based on different types of data and life distribution
models. Ismail (2015) discussed the maximum-likelihood
estimates (MLEs) and BEs of Pareto distribution parame-
ters on the basis of Type-I censoring sample in the partially
ALT of constant-stress. Xu et al. (2016) got the BE for the
Weibull distribution based on constant-stress ALT. Yan
et al. (2017) obtained MLE and BE of Weibull regression
model based on the general progressive type-II censoring
(GPT-IIC) sample in the multi-stress life test. More
detailed studies on ALT can be found in Shi et al. (2013),
Anwar (2014), Mahmoud et al. (2017), Zheng and Shi
(2013) and their references. In traditional accelerated
experimental studies, it is considered that only one
parameter of the lifetime distribution changes with stress,
but other parameters remain constant throughout the test.
However, owing to the complication of the failure mech-
anism, this hypothesis may be unsuitable in many cases.
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For example, Hiergeist et al. (1989) found that in capacitor
tests, Weibull shape parameters depend on temperature.
Assuming that the log-life of product obeys a location-
scale distribution, studies by Nelson (1984), Boyko and
Gerlach (1989) demonstrate that both location and scale
parameters in dielectric breakdown data depend on stress.
Therefore, the study of life model with nonconstant
parameters has begun to be concerned by many scholars.
For example, Seo et al. (2009) designed a new ALT sam-
pling scheme that has a non-constant shape parameters. Lv
et al. (2015) discussed the ALT reliability modeling of
stochastic effect and nonconstant shape parameters. Meeter
and Meeker (1994) extend the existing ML theory for test
scheme with non-constant scale parameter models, and
gave test scheme for a large number of actual test cases.

The above research mainly corresponds to the reliability
analysis of complete sample or right censored sample
under constant stress ALT, the shape parameter and scale
parameter of the life model, one is non-constant, and the
other is constant for different stress levels. The case where
both shape and scale parameters are changing is relatively
rare studied in lifetime model. Wang (2018a, 2018b)
introduced the MLEs of exponential distribution and
Weibull distribution with nonconstant parameters under
constant-stress ALT. The GPT-IIC scheme is increasingly
common in the field of obtaining product failure time data.
In order to motivate our research, we provided a real data
set from the life test of seel specimens.

The Log-normal distribution is an alternative to life
distribution in practice. For failure data of some products,
such as steel specimens data, it is very flexible to use this
distribution to fit these lifetime data. In the paper we
introduced the reliability analysis of the log-normal dis-
tribution, which has nonconstant shape parameter and
nonconstant scale parameter, by adopting the maximum
likelihood and Bayesian methods.

The structure of this paper is arranged as below. In
Sect. 2, the basic assumptions and life test procedure are
assessed. In Sect. 3, the MLEs and BEs of the model
parameters, the reliability and the hazard rate functions are
given. In order to prove the effectiveness and practicability
of the research, the reliability analysis is assessed in
Sects. 4 and 5 with the simulation study and a real data,
respectively. Some conclusion remarks are presented in
Sect. 6.

2 Basic assumptions and life test procedure
2.1 Basic assumptions

This study adopts the following assumptions.

Assumption 1 Based on the normal stress level Sy and
the accelerated stress levels S;,i =1,...,k. The product
life X obeys the log-normal distribution with different
parameters (;,67), 1 € (—00,+00), a; € (0,+00), the
probability density function (PDF), cumulative distribution
function (CDF), reliability and hazard rate functions are as
followings:
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where ®(x) = ffoo\/%‘nexp{—é}dt, (1o, 03) is denoted as
(1, 0?) that is the log-normal distribution parameter at the

normal stress level Sp.

Assumption 2 The product accelerated model is assumed
to be log-linear, that is, both the location and scale
parameters, and the accelerated stress S; satisfy the fol-
lowing equations:

ln,u,»:al+b1¢(S,~),i:O,1,...,k, (5)
Ino; =ay + byp(S;),i =0,1,.. .k, (6)

where ¢(S) denotes the function of the accelerated stress S,
and a;, b, are the constants, t = 1, 2. In general, the stress S
is the temperature, then ¢(S) = %, the stress S is voltage,
¢(S) =logS. According to Egs. (5) and (6), we rewrite
(14, 67) in terms of (y, a?) as follows:

p; = pexp{bi(d(Si) — ¢(S0))},

5, = o exp{ba(9(S:) — H(S0))), 7
let 61 = p;/u, 6> = 1/0, we can get

_ «5(5,’):(?)(50) _ ‘f)i 8
t; = u[exp{bi(p(S1) — ¢(So)) HFE 7= puoy", (8)
0; = aeg)ia (9)

where (l)i:%,i: 1,...,k, and 0,0, € (0,+0)

are named as acceleration coefficient.

2.2 Life test procedure

Let k accelerated stress levels be Si<S)<--- <$.
Assume that units with size n; are tested at stress level S;,

and put into the GPT-IIC test, implementation is as
follows.
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Suppose that the failure times of the first ; units are not
observed. The failure time x;,,; is observed at the
(r; + 1)th failure unit, then R;,,,, surviving units are ran-
domly withdrawn from the test. At the (r; + 2)th failure
time X;.,,42, Ri.y,,, surviving units are randomly withdrawn,
and so on. At the m;th failure time x;,,,, all the remaining
units Ry, =n; —m; — Riy,, — -+ — Riyy—y are finally
removed and the test terminates, where the failure numbers
k are prefixed. The m; — r; failure times

xi:m,-) (10)

is a general progressive censored sample under censoring
scheme

Ri = (Ri:r;+17Ri:r;+27 B

mi,i=1,...,

Xi = (xi:r;+17xi:r;+27 BER)

Ri:lni)a i=1 k.

gy

Apparently, X1 <Xip2 < -+ <Xy, In this paper, we
suppose the tests are independent of each other under the
different stress levels, and m; — r; > 0 causes the failure
time of at least one unit to be observed.

3 MSEs and BEs for the unknown parameters

For the stress level §;, the likelihood function is that

m;

W' T £ g i 00)

o (11)
(1 — F(xij; a:)]f.

Li( 0ilx:) < [F (Xip 15 1y, 0

Then, combined with assumptions 1 and 2 in Sect. 2.1, the
likelihood and log-likelihood functions based on the GPT-
IIC sample x = (x1,x2,...,%) are given by

In Xir+1 — :UQ?I !
o ——— -
O-de)i

2
(ln Xij — /.L(‘)T')

I
I ooy = 202027 (12

k
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k m; 2
Z: Z {Ruln D(wy)] — (ln0+¢iln02+cgij)}v

3.1 MLEs

Let (4,0, 0;, 92) denote the MLEs of (u,a,0;,6,), which
can be obtained by following equations.

al_ Zk: (1)
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¢(+) is the standard normal

b
Owj 07"
and w; = auU = ——

where [ =1I(u,a,0;,0,x),

distribution density function,

a@fi’
aw,, _ 1 _ awif _ H(b;OTFI _ awi[ _
Wip =35 = ~5Wip Di3 =59, = T g 0 Did = 59, =

—ﬁw,, Because Eqs. (14—17) are complex, explicit solu-
tions are not available. The Newton—Raphson method is
used to calculate the MLEs (;2,&,01,@2). Further, the
standard deviation of the estimators was assessed using the
variance—covariance matrix, which is the inverse of the
observed Fisher information matrix I(u,0,0;,6,) at

(i, 6, 917 éz) as follows:
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(PM — 2¢2\/ Var(Py), Py + 2.2/ Var(PM)> (29) %o o2 ¢ e
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where Py = i, 6, 0y, or 05, and z, 5 is the upper quantile of Oh(x) _ Vargx &P (=7 b)) -7 i exp{— 7}
the standard normal distribution. Under the normal stress O [1- CDC“%”)}
level, the estimations of s(x) and h(x) are that: (36)
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The approximating variances of §(x) and h(x) are obtained
by using the Delta method.

) _ [0s(x) 0s(x) 0s(x) Os(x)],_,
Var(s(x)) = [ oe e 06, 00, ]I

[6s(x) Os(x) Os(x) as(x)}T
o o0 06, ' 00,

(32)

The 100(1 — 1)% approximate CIs for s(x) and A(x) are
(506) = 22/ Var(50)), 5(x) + 2o/ Var(5(x) )

and

(38)

<ﬁ(x) — 2 Var(i{(x)),ﬁ(x) + 22 Var(ﬁ(x))) (39)
respectively.
3.2 Bayesian estimation

The parameters are derived by Bayesian method in this
section. First, suppose that u, o, 01, and 0, are independent

@ Springer



824

Int J Syst Assur Eng Manag (April 2022) 13(2):818-831

of one another. Next suppose that ¢ follows Gamma prior,
its PDF g(a;a,b) is that

a
b Gaflefba

I'(a) ’

g(o;a,b) = b>0. (40)

The prior on parameter p has a log-concave function with
PDF, here u takes normal prior with PDF 7(u; ¢, d) that is
abbreviated to n(u) and given by

1 _we?
W) = e (41)

0; and 6, have uniform priors with PDF u(0,) = 1,i = 1,2.

Then, the posterior joint PDF of (p,0,60;,6,) given x is

derived by

n(u, 0,01, 0,)x) < L(u, 0,0, 02|x)n(p)g(o;a,b)u(0;)u(0,)
(42)

Under the square error loss (SEL) function, we obtain the
Bayes estimate of the parameters. Therefore, the BE of any
function  P(u,0,0y,0,) of  parameters, named

F;(,u,a, 01, 02), is that

f() f() f() f P ,u,a 01702) (,U, g, 01702|x)n(ﬂ)g(o-;a7b)u(01)u(92)d:udo-d91d02

k
TE(O’|,LL, 01 ) 02,X)O( H

I Xy, 11 — pOY !
Q) s ¢ 1
O.gzd)i

 (Inxy — uo?y?
252 9§¢f (45)

S\ 1 Rii
1—® lnx,gj — ,Lt@l’
0.92<f>i

a“exp(—bo).

Given y, o, 05, and x, the conditional PDF of 6; is pro-

portional to
<1nxl i1l T :ugd) >‘|

I (Inxiy — pu07")’
| I expqy — 46
=1 p{ 2029§¢i (46)

N 7R
1—® lnx,»;j — ,u@?’
692¢i

k

7'5(01|,u,0', 02) H

i=1

(ﬂ, g, 913 62)

fo fo fo LOOL w,a,01,0:x)(w)g(a; a, b)u(0,)u(0,)dudedd,do,

(43)

Because Eq. (43) cannot be reduced to closed form, the
MCMC method is used. Substituting (12) and (40) into
(42), and given a, 01, 0,, and x, the conditional PDF of p is

proportional to
o x4 — p07\ |
O.gzd)i

(Inxiy — u6}")?
X | |ex —_ 44
p{ 20’2()§¢i (44)

k
TE(#|O’, 91 ) 02ax)0( H
i=1

Given u, 01,0, and x, the conditional PDF of ¢ is propor-
tional to
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Given u, o, 01, and x, the conditional PDF of 0, is pro-
portional to
k o\ 1"
lnxi:r+1 - :ugll
(02 |u,0,0;,x) o ———
(Oali 0,61,7) 1} ( 50,7
i 1 (lnxi:j — ﬂO(lb')z
Xp — 47
H9¢ { 262657 “7)

. Ri/
1—® lnx,»;j — ,u@?’
692¢i

TE(‘LL|O'7 913 927-") Of the

Property 1 The posterior PDF
Eq. (44) is log-concave.

Proof See “Appendix A”. O

The marginal posterior distributions of y, g, 0; and 6, do
not have closed form. By Eq. (45) and Property 1, we used
the adaptive rejection sampling (ARS) method Gilks and
Wild (1992) which needs log-concave posterior PDF to get
samples from the marginal distribution of p. The Metro-
polis—Hastings (M-H) algorithm is used to obtain samples
from the marginal distributions of ¢,6; and 6, based on
Egs. (46)—(48). Finally, a hybrid Markov Chain is
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generated. The posterior samples are simulated and the
BES are obtained in turn, the process of using the M-H and
ARS methods is:

Step 1. Set initial value u(°
ation counter j = 1;

Step 2. Due to Property 1, the marginal density of u
forms a log-concave density family, generate a random
value u) from 7(u|aV=") H(’ D 9’ D ,X) by adopting the
adaptive rejection algorlthm mtroduced by Gilks and Wild
(1992).

Step 3. Generate a random variable ¢V) using M—H
algorithm, the process is:

0%0 ,0 and the iter-

)

(3.1) Generate a random number o’ from the
m(alu®, 07, 057V, x);

(3.2) Generate a random number O'ij ) from the proposal
Gamma distribution g(o;a,b) with known and
nonnegative hyper-parameters a, b;

(3.3) Computer the acceptance probability

@ A= =D )
h(e{, %) = min| 1, (J* k07", 05 5 ' x)g(o);a,b)
(o 0,07 o)

(3.4) Generate a random number #; from U(0, 1);

(35 If h(ay),ag)) > u; then o) = og), otherwise
o) = a(lj);

Step 4. Random variable HV) is generated from
n(01|u0),00),0§"71),x) using M-H algorithm, the process
is similar to Step 3;

Step 5. Random variable 0%” is generated from
n(02|/z(f),a(j),0?),x) using M-H algorithm,the process is
similar to Step 3;

Step 6. For a given point x € (0, +00), compute

Inx — u¥ (6?))‘1”
o0 (09"

® (ln)c—,u(/'J (HY))¢f
—_— L

o) 9(/) i .
-~ %) ik

()

§$9(x) =1 -

Step 7. Set j =j + 1;
Step 8. Repeat 2 to 7 steps M times and obtain

(A PN 41)();1“‘)()6)),...,
(2,605 (), 6" ().

Abandoning first samples Ny as “burn in”
Ny samples are used to obtain the BEs

, temaining N —

Pr=5 > Y,

Jj=No+1

under the SEL function, the posterior mean square errors
(PMSEs) of the parameters (u, o, 0y, 02, s(x), h(x)) is that

R 1 & L
PMSE(Py) = |~ . (PV — Pp)’,
Nj:N0+1

where P can be p, 0,01, 0,,5(x), or h(x).
Step 9. Order PNtV - PV as Py ... Pn_wy)-
Then, the 100(1 — 7)% highest posterior density (HPD)
credible (Piov-nop/2)»
PA([(N,NO)(FV /2)])), are given by using the method suggested
by Chen and Shao (1999), where [a] denotes the integer
part of a.

intervals of P, namely

4 Simulation study

In this section, simulation study of the proposed method is
conducted. First, suppose that the prior distribution for ¢ in
Eq. (40) is the Gamma distribution with hyper-parameters
a=0,b=0, it is equal to non-informative prior 5, and
U, 01, 0, have uniform priors. Next, under the GPT-IIC and
a three-level constant stress. Supposing the model is the
log-normal distribution and there are three temperature-
accelerated levels S; =240, S, =260, S; =280. The
normal operating temperature is Sy = 200. The accelerat-
ing function is Iny; = 1.95 4 126.43/S;, Ing; = —0.11+
218.79/S;,i = 1,2, 3. Therefore, 4 = 13.2255, ¢ = 2.6750,
0, = 0.9, 0, = 0.8333. For the sake of simplicity, we take
ny =ny =n3 =n and m; = my = mz = m, the following
sampling schemes are used at the three stress levels:

e [1Il: n=30,m=20,r=5R¢=-- =Rim1=0,
Ri:ms-
[ [2] n:30,m:25,r:O,Ri;1:2,R,-;2:-~-:

Rim—1 = 0,Riy, = 3.

o [3]: n=40,m=30,r=0,R.,) =5,Rip =--- =
Ri;m_] == ()7 le == 5

o [4]: n=40m=35r=3,Ruy=---=Rj_1 =0,
Ry = 2.

e [5]: n=50m=40,r=1,Rip =5R3="---=

Rim1=0, R, =4
e [6]: n=50m=45r=2,Ri3="---
Rim=3.i=1,2,3.
Let the GPT-IIC ny,my,r, and
Ry = (Rury+15 Ruzry42, - - - Riomy, ) under each stress level Sj,.
The GPT-IIC samples from the log-normal distribution are
generated according to the method given in Balakrishnan

=Rim1 = 07

scheme be that
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Table 1 MLEs, BEs, ACLs and

CPs for parameters Scheme MLEs BEs
MEANs  MSEs ACLs CPs MEANs MSEs ACLs  CPs
[1] u 13.0688  0.8805 3.7344 0932 132121 0.1709 2.3451 0.943
G 2.6370  0.8972 3.3610 0.907 27035 0.2880 1.1902  0.943
0, 0.9059  0.0334 0.1443 0.936 0.9004 0.0133 0.1026  0.947
0, 0.8645  0.1659 0.6240 0.949 0.8281 0.0514 0.2182 0.952
[2] u 13.1378  0.8026 3.4488 0.939 132399 0.1634 2.0819 0.946
o 2.5966  0.7703 2.7982 0.912 27908 02740 1.1276  0.943
0, 0.9044  0.0326 0.1443 0.936 09182  0.0141 0.0972 0.942
0> 0.8752  0.1566 0.6240 0.943 0.8401  0.0476  0.2055 0.951
[3] u 13.2472  0.8295 3.1459 0939 13.1915 0.1666 2.0718 0.947
a 2.6421  0.6683 2.7974 0.931 27984  0.2673 1.1065 0.948
0, 0.9014  0.03125 0.1208 0.936 0.9210  0.0150 0.0936  0.952
0, 0.8522  0.1177 0.4933 0.946 0.8489  0.0544 0.1988 0.953
[4] i 13.2828  0.7812 3.0164 0950 13.2597  0.1650 2.0489 0.958
a 2.7361  0.7031 2.5096 0932 27769  0.2502 1.0348 0.957
0, 0.9003  0.0307 0.1163 0.942 09156  0.0138 0.1015 0.949
0, 0.8370  0.1279 0.4555 0.943 0.8489  0.0453 0.1846  0.956
[5] u 13.1362  0.7222 2.7954 0943 132280 0.1647 2.0353 0.957
a 27336 0.6782 2.2768 0.931 2.8253  0.2732  1.0111 0.949
0, 0.9043  0.0284 0.1076 0.946 09170 0.0147 0.1015 0.953
0, 0.8383  0.1143 0.4159 0.945 0.8433  0.0480 0.1777 0.958
[6] u 13.2408  0.6647 2.6631 0945 132273  0.1553  2.0291 0.955
a 2.6619  0.5746 2.1597 0.949 27532 02515 0.9675 0.956
0, 0.8996  0.0250 0.1026 0.947 0.9094 0.0119 0.1035 0.949
0> 0.8407  0.1090 03968 0.954 0.8431  0.0459 0.1706  0.956
Table 2 The lifetimes of steel specimens tested at 6 different stress levels
Stress (MPa) Lifetime
33 184, 241, 273, 1842, 371, 830, 683, 1306, 562, 166, 981, 1867, 493, 418, 2978, 1463, 2220, 312, 251, 760
34 168, 397, 385, 1585, 224, 987, 358, 763, 610, 532, 449, 498, 714, 159, 326, 291, 425, 146, 246, 253
35 230, 169, 178, 271, 129, 568, 115, 280, 305, 326, 1101, 285, 734, 177, 493, 218, 342, 431, 143, 381
36 173, 218, 162, 288, 394, 585, 295, 262, 127, 151, 181, 209, 141, 186, 309, 192, 117, 203, 198, 255
37 141, 143, 98, 122, 110, 132, 194, 155, 104, 83, 125, 165, 146, 100, 318, 136, 200, 201, 251, 111
38 100, 90, 59, 80, 128, 117, 177, 98, 158, 107, 125, 118, 99, 186, 66, 132, 97, 87, 69, 109

and Aggarwala (2000) under Sj,. the steps of the algorithm
as follow:

Step 1. Generate a random variables
Beta(n, — rp,rp + 1).

Step 2. Generate m; —r, — 1 independent random
variables Wy, 11, . . ., Wh,—1 from U(O0, 1).

Step 3. Set Vh:rh"'l = Wi:/rjﬁr'l/ﬁ/’ [ = 17 cey My — 1y — 1,

Vi, from

my
where ap., 11 =1+ Z Ry
j=mp—l+1

@ Springer

Step 4. Set n Urh‘Hthinh =
Vh:mh, [ = 1, ce My — 1.
Step 5. Finally, ., X, +1.m,,

I = V=141 Vimy—142 -+

-1 .

= Fh (r,, Ur/z+l:mlzinh7 Hps 0h>’
where F; ! (x; w,, 05) is the inverse function of log-normal

1 —

CDF  that = Fy(x;py, 00) = @(F )1 = 1,...omp — 1.
Then (thr11+l:mh:n;,a I th+2:m;,:nha cery th:m;,:nh)’ abbrevi—
ated as (Xpur,+1, Xpiry42 - - -» Xpum, ) is the required GPT-
IIC samples of size my — r; from log-normal distribution
with parameters (g, 07).
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I e GPAC e Sy it
33 166, 184, 241, 251, 273, 312, 371, 418, 562, 683, 760, 830, 981, 1306, 1463, 1842, 1867
34 146, 159, 168, 224, 253, 291, 326, 358, 385, 397, 425, 449, 498, 532, 610, 714, 763
35 115, 129, 143, 169, 177, 178, 218, 230, 271, 280, 285, 305, 326, 342, 381, 431, 493
36 117, 127, 141, 151, 162, 173, 181, 186, 192, 203, 209, 218, 255, 262, 288, 295, 309
37 83, 98, 100, 104, 110, 111, 122, 125, 132, 136, 141, 146, 155, 165, 194, 200, 201
38 59, 66, 69, 80, 87, 90, 97, 98, 100, 107, 109, 117, 118, 125, 128, 132, 158
[ e GITIC e Sy Gir e
33 241, 251, 273, 312, 418, 493, 562, 683, 760, 830, 981, 1306, 1463, 1867, 2978
34 168, 224, 246, 291, 326, 358, 385, 397, 425, 449, 498, 532, 610, 714, 763
35 143, 169, 177, 178, 218, 230, 271, 280, 285, 326, 342, 381, 431, 568, 734
36 141, 151, 173, 181, 186, 192, 198, 203, 209, 218, 255, 262, 288, 295, 309
37 100, 104, 110, 111, 122, 125, 132, 136, 141, 143, 146, 155, 194, 200, 251
38 69, 80, 87, 90, 97, 98, 99, 100, 107, 109, 117, 118, 128, 132, 158

We obtain the BEs based on 4000 MCMC samples and
remove the first 1000 values. We simulate the whole pro-
cess 2000 times in each scheme and obtain the MLEs and
BEs of parameters according to the method described in
Sects. 3.1 and 3.2. Finally, the MEANSs, mean square
errors (MSEs), average confidence lengths (ACLs) of 95%
confidence HPD credible intervals and the coverage per-
centages (CPs) of the parameters based on simulation are
listed in Table 1. We can see that the MLEs and BEs of the
parameters are very approach to the real value, therefore,
the performance of the two estimation methods is satis-
factory. However, the BE has more superiority because it is
not affected by initial value, and the MSEs of the BE is
generally less than the MLE. For interval estimation, it is
observed that the CPs of the confidence and credible
intervals for the parameters are nearly 95%, HPD credibel
intervals are better than CIs in respect of the ACLs and
CPs, when (n, m) increase, the MSEs for MLEs and BEs of
the model parameters decrease.

5 Real example

Table 2 shows the life data of steel specimens in 6 ran-
domly assigned batches of 20 observations, each batch has
been subjected to a different stress amplitude (Kimber
1990; Lawless 2003). First, K-S hypothesis testing is used
to check whether log-normal distribution is fit to the data
sets. The K-S distances and the p-values under six levels
are 0.0987 (0.9791), 0.0692 (0.9999), 0.0994 (0.9775),
0.1330 (0.8264), 0.1270 (0.8642), and 0.0920 (0.9898)
respectively, it is shown that the log-normal distribution is

an appropriate choice for these data. Secondly, we consider
the homogeneity of variance using Bartlett test. The Bar-
tlett test statistic is given by

6 6
n—1)Ins®> —> Ins?
. ;( ) ; i (48)
X - C; )
where §2 = 2o (s 2= LS (o — X_,-)z,

SATETMR A VR
~1
c:1+{3m—1 6 L-*} .
= DIt~ 5t )
By calculation, the Bartlett test statistic for these data is
7* = 31.1890 > }(%(5) = 12.833, = 0.05. This indicates

that the variance under the six stress levels is inhomoge-
neous or unequal, so the method discussed in this paper is
very necessary in practical application.

We assume that the normal stress level is so = 32, and
non-informative prior for ¢, (that is, the Gamma hyper-
parameters are a = 0, = 0 in Eq. (40)), uniform priors for
U, 01,0,. We then get two groups GPT-IIC samples of the
original data in Table 2 with two different censoring
schemes:

e Scheme [1]: n=20m=17,r=0,R.; = 1,R;p =
cr = le71 - ()7 le - 2
e Scheme [2]: n=20m=15r=2,R;3 =1,R;y =
oo =Rip_1 =0, Riy = 2.
i=1,2,3,4,5,6.
The samples are listed in Tables 3 and 4. By using the
MCMC algorithm mentioned in Sect. 3.2, under the GPT-
IC scheme, the samples of y,0,0,60,,5(x), and
h(x)(x = 800) of size 4000 are generated, and the first 500
samples are removed. Figure 1 shows the sample paths for
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Fig. 1 Sample path maps of MCMC samples under scheme Ismail (2015)
Table 5 MLEs, 95% CIs, BEs
and HPDs for log-normal model Scheme MLEs BEs
parameters and s(x) and h(x) at MLEs  LLs ULs ILs BEs LLs ULs ILs
x =800
Scheme [1] 6.8787 6.5785 7.1789 0.6004 6.9625 6.7105 7.1890  0.4785
o 09921 0.6876 12967 0.6091 1.0873 0.8873 1.3148  0.4275
0, 09330 09236 0.9424 0.0188 09312 09247 09375 0.0128
0, 0.7895  0.7247 0.8542 0.1295 0.7813  0.7410  0.8238  0.0828
s(800)  0.5775 04580 0.6971 02391 0.6010 0.5102 0.6881  0.1779
h(800) 0.6830 0.4495 09166 04671 0.5960 0.4643 0.7738  0.3095
Scheme [2] 6.8891 6.5787  7.1995 0.6208 6.9409 6.6507 7.1818  0.5311
a 09653  0.6528 1.2778 0.6250 1.0741 0.8698 1.2954  0.4256
0 09332 09234 09429 0.0195 09317 09250 09379 0.0129
0, 0.7925  0.7238  0.8612 0.1372  0.7818 0.7396  0.8224  0.0828
s(800)  0.5839  0.4549 0.7128  0.2597 0.5942 0.4883 0.6803  0.1920
h(800)  0.6922  0.4382 09462 05234 0.6142 04667 0.8102  0.3435
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the remaining 3500 MCMC samples under the scheme 1.
As can be seen from Fig. 1, the MCMC algorithm

converges.

By applying MCMC samples, the BEs of unknown
parameters of the life distribution, corresponding reliability
s(x) and hazard rate h(x)(x = 800), the Lower limits (LL),
upper limits (UL) and interval length (IL) of HPD confi-
dence intervals are calculated, and these results and MLEs
are shown in Table 5. Although the BEs and MLEs are
similar, the ILs of BEs are shorter than MLEs. However,
the MLE is not only complex, but also often influenced by
initial value, and it is very difficult to prove the uniqueness
of MLE. But the Bayesian method does not need to prove
the uniqueness of the solution, and the convergence is not
affected by the initial value.

Figure 2 is the reliability function and hazard rate
function plots with different stress levels under
scheme (Ismail 2015). It can be seen from Fig. 2 that the
reliability function becomes steeper and which indicates
that the life of the steel specimen decreases with the stress
levels increasing. The hazard rate of the steel specimen
increases with the stress levels increasing, but it is always
increasing at each stress level, which indicates that the
monotonicity of the failure rate function doesn’t change
with stress levels.

6 Conclusion

In the accelerated life test with constant-stress, the relia-
bility has been discussed, when the data is general pro-
gressive censoring and follows the log-normal distribution.
It is considered that parameters of the log-normal model
are affected by stress, this situation is often encountered in

X

practice. Point estimation and interval estimation are
obtained by using Bayesian and maximum likelihood
methods for unknown parameters of the life distribution,
and corresponding reliability and hazard rate. The hybrid
Markov Chain Monte Carlo algorithm that combines ARS
and M-H steps within the Gibbs sampling method was
implemented to obtain the Bayes estimate. The simulation
results demonstrate that the maximum likelihood and
Bayes estimators have the significant performances. It
shows that this paper presents an alternative and effective
method for reliability test analysis. The reliability analysis
of a real data set shows that the proposed method has the
possibility of application.

Appendix A

) _ 0%
Let &(u) = "o
Inxy — u0f .
51](#) :loj_g—d,lvl: 1;"'7k7.]:ri+1a~~~7mi7
, i

we have that

Ologm(pla, 01,02, %) _ Xk:ri ol&(w] - E(w)

@,u i=1 (D[éi(:u”
- Xk: i Eip) - E(u) + Rij - o[&ij(W)] - 5;;,'(11) dlogn(p)
i=lj=ri1 N Y 1= ®[E;;(u)] du
olé(wl-&(w
Flog (s, 01, 02,%) _ i" . a(w>
ou? =1 ou
ko mi 6( rﬂ[li,»,gl{]-ifJ(u)> 5
£ — (& (w)] d*logm(u)
21:/21{{ AE A+ R ou 2
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First, in Eq. (31), & log” dlosm(n) < ) because 7(u) is log-concave.

([c( ())

D[ ()]

———+ <0 and
u

Next, we demonstrate that
(i)
aiﬂ'f >0.
Without loss of generality, let A(u) = lnxe ’j,H‘ we have
that
¢ L
K1) = =5 <0 o/la() = 5 - —olaG] 4w,
And
5 ( w[Adgm-:’fm )
ou

_ AW - A (W) - OAw)] - {elA(w)] - A'(W)}

D*[A(u)]
_ oA - A A (W)} - PAW)] — {pAW)] - A' (W)

O*[A(u)]

_ —olAW] - A (W) - {AW) - PIA(W)] + @[AW)]}

D*[A ()]
_ ol AW AW} - &1 (W)

D*[A(u)] ’
where g1 (1) = A(n) - DIA(1)] + @[A(n)]. Then
g1(1) =A'(n) - PA(W)] + A(n) - @A(1)] - A'(n)
—olA(W)] - Au) - A'(w)
=A(1) - [A(n)] <0.

Namely, g;(p) is decreasing about u. Apparently,

lim A(u) = —o0, lim ®[A(n)] =0, lim @[A(n)] =0
U—+00 H—+00 p——+00

By simply taking the limit, we can get

Jim A() - @[A(w)] = Tim Ap)

@ Springer

o =5i)
ou
_ —9lAW] AW A W) - {1 — PAW]} + {lA(w)] - A' (W)}
(1 O]}
olAW)] (A (Aw 1 o)) w[A(u)])
- {1~ OAG))?
_ oA AW s
{1 — DA ()2

where g3() = A(g) - {1 — ®AGL]} — plA()], then

() =A'() - {1 = PA(W)]} - A(w) - @[A(w)]-
A'() + @[A(w)] - Aw) - A'(n)
=A"() - {1 = ®[A(w)]} <0.

Therefore, g>(ut) is decreasing about p. Apparently, we
have

lim A(u) = —o0,
p—+00

Jim (1= ®AG]} =1, lim

p—+o0

PlA(w)] = 0.

It indicates that

Jim g (p) = —oo.

Further, we have

lim A(u) = +oo, lim {1 — ®[A(w)]} =0, lim ¢@[A(w)] =0.
Jf——00 Ji——00 fi——00

Let’s do the simple limit again,

A(w)
=)
{1 -®AW]}Y
plA(w)]
2{1 — A(W]} - [AW)] - A" (1)
PlA(W)] - Ap) - A (1)

lim g (p) = lim

U——00 HU——+00

H—+00

p—+00

:O'
olAW]-A (1)
=)

We obtain that g,(u) <0, further ( o ) > (0. Hence,

Cloarlyle0.0:2) <, n(ulo, 01, 02,%) s log-

namely,

concave.
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