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Abstract Software defect prediction (SDP) plays a key

role in the timely delivery of good quality software prod-

uct. In the early development phases, it predicts the error-

prone modules which can cause heavy damage or even

failure of software in the future. Hence, it allows the tar-

geted testing of these faulty modules and reduces the total

development cost of the software ensuring the high quality

of end-product. Support vector machines (SVMs) are

extensively being used for SDP. The condition of unequal

count of faulty and non-faulty modules in the dataset is an

obstruction to accuracy of SVMs. In this work, a novel

filtering technique (FILTER) is proposed for effective

defect prediction using SVMs. Support vector machine

(SVM) based classifiers (linear, polynomial and radial

basis function) are designed utilizing the proposed filtering

technique over five datasets and their performances are

evaluated. The proposed FILTER enhances the perfor-

mance of SVM based SDP model by 16.73%, 16.80% and

7.65% in terms of accuracy, AUC and F-measure

respectively.

Keywords Defect prediction � Class imbalance � Support
vector machine (SVM) � ROC � AUC � F-measure

1 Introduction

Software defect prediction (SDP) is an essential activity in

software project management as it is dedicated to

enhancing the quality of software product. It has become

non-separable part of software development process and

machine learning based classifiers have found huge appli-

cation in SDP. Such classifiers predict in advance those

modules which will be requiring more testing efforts and

hence this prediction catalysts the debugging process. The

awareness of faulty modules in prior allows the tester to

perform effective testing and overall quality of the product

is improved. The faults which remain veiled during the

testing phase may become defects in future and can incur

heavy maintenance cost in operational times. Such faults

which remained undetected during development phases

have already played havoc in Software industry becoming

defect during the operational phases of software like NASA

Mass Climate Orbiter (MCO) spacecraft worth $125 mil-

lion lost in the space due to small data conversion bug

(NASA 2015).

Machine learning techniques are being widely accepted

in the software industry for early defect prediction. It

includes neural networks, decision trees, Bayesian

approach, and support vector machines (Kumar et al. 2018;

Goyal 2020; Goyal and Bhatia 2019, 2020a, b). SVMs have

seized a lot of attention from researchers in the SDP

domain due to its speed and better performance with small

datasets (Cai et al. 2019; Wang et al. 2021; Rong et al.

2016; Jaiswal and Malhotra 2018; Erturk and Sezer 2015).

The performance of these classifiers solely depends upon

the training dataset fed to them. Sometimes, the dataset is

out of class-balance in terms of the count of modules

belonging to faulty and non-faulty categories. Class
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balance means |faulty| =|non-faulty|; where |faulty|

denotes the count of fault-prone modules and |non-faulty|

denotes the count of the clean modules without any faults.

But if | faulty | =| non-faulty |, then there is loss of bal-

ance, it implies one of the classes has more instance count

than the other one. It is denoted as class imbalance issue in

terms of classification. In this situation of class-imbalance,

the classification accuracy of the SVM classifiers is

threatened.

In SDP, the category of faulty modules is of high sig-

nificance, and this is the class which is scarce too. It

implies that the class ‘faulty’ has lesser instances than the

class ‘non-faulty’. The degree of imbalance can be com-

puted as the imbalanced ratio using Eq. (1):

IR ¼ total count of majority class instances

total count of minority class instances

¼ non-faultyj j
faultyj j ð1Þ

The value of IR equals to 1; shows there exists class-

balance. The IR value higher than unity reflects that

‘faulty’ class which is more valuable in software devel-

opment process has become minority class. This class

imbalance (Guo et al. 2017; Chen et al. 2018) situation

causes biasing while training the SVM Classifiers which in

turn results into the ignorance of faulty data-points. Hence,

the overall classification accuracy is adversely impacted

due to class-imbalance nature of dataset.

1.1 Motivation

In the domain of SDP, multiple approaches have been

deployed at the data level (Felix and Lee 2019; Cai et al.

2019; Kaur and Gossain 2019; Malhotra and Kamal 2019)

to improve accuracy of ML classifiers, by resolution of

class imbalance problem. But these are dependent either on

the datasets or on the techniques used to solve the problem.

An accurate software defect prediction in the class-imbal-

ance condition is still an open problem.

A novel filtering technique is proposed for better accu-

racy of SVM classification based SDP models. This study

is directed to attain following research goals:

• G1-To devise a novel filtering technique (FILTER) and

assess the effectiveness of FILTER.

• G2-To build SVM based SDP prediction model with

variations in the kernel over the FILTERed dataset.

• G3-To evaluate the accuracy of proposed models

empirically and to find which prediction model outper-

forms other models.

1.2 Contribution

This work is contributing to improve the prediction power

of SVM based SDP models by filtering the training dataset

using the proposed FILTER. This work contributes a novel

technique (FILTER) to find a more balanced dataset and

hence improves the performance of SVM classifiers to

predict in advance the software modules which can be

faulty.

1.3 Organization

The paper is organized as follows. Section 2 covers the

current state-of-the-art and review of the literature. The

research methodology is explained, and research questions

are formulated under Sect. 3. The experimental setup along

with the datasets and evaluation metrics in use are given in

Sect. 4. In Sect. 5, the experimental results are reported

and analysed to answer the research questions. The con-

clusions are drawn in Sect. 6 with remarks on future scope

of work.

2 Related works

This section discusses the literature work done in the field

of SDP using SVM and filtering methods to achieve

accurate models for Software Defect Prediction (SDP). The

current state-of-art is summed as Table 1.

From the literature survey, it is found that SVM has

potential for software defect prediction (Wang and Yao

2013; Siers and Islam 2015; Goyal 2021a, b; Wang et al.

2021; Huda et al. 2018). NASA and PROMISE Data

Repository are the most popular public data sources.

Apparently, 67% of total research work has been done

using these two repositories (Rathore and Kumar 2019;

Yang et al. 2017) carried out their research using Object-

Oriented metrics. Complexity metrics are the third largest

adopted metrics (Rathore and Kumar 2017; Ozakıncı and
Tarhan 2018; Song et al. 2018; Chen et al. 2019; Son et al.

2019; Tsai et al. 2019). Wang and Yao (2013) proposed

random under-sampling as data pre-processing method to

tackle class imbalance problem. Chen et al. (2019) pro-

posed a SWAY method and confirmed experimentally that

under-sampling is essential to optimize the performance of

SDP models. Tsai et al. (2019) proposed modified random

under-sampling using cluster-based instance selection to

select the data-points to be removed from majority class.

Rao and Reddy (2020) devised an algorithm to under-

sample the data-points and handled the class-imbalance

effectively. Sun et al. (2020) stated that under-sampling

attains a balance between two classes and proposed a

ranking method to under-sample the data-points.
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3 Research methodology

This section reports the research methodology followed to

conduct this study. The two most basic strategies to handle

class-imbalance are data level solution and algorithmic

solution (Guo et al. 2017). In this paper, I propose SDP

classifier with a novel filtering technique to improve the

Imbalanced Ratio (IR) and SVM classifier which is robust

to handle class imbalance. Total six models are being

developed which are as follows—(1) SVM-Linear Kernel

without filtering, (2) SVM-Linear Kernel with filtering, (3)

SVM-RBF Kernel without filtering, (4) SVM-RBF Kernel

with filtering, (5) SVM-Polynomial Kernel without filter-

ing, and (6) SVM-Polynomial Kernel with filtering.

Table 1 State-of-the-art: SDP using SVMs; SDP with filtering techniques

S.no Year Study Technique Dataset Performance

metrics

Observation drawn

(Goyal, S.)

1 2012 Afzal et al.

(2012)

Sampling

Techniques

PROMISE Software

Engineering repository

data

AUC, ROC Comparative study of sampling methods
deployed for SDP

2 2013 Wang and

Yao (2013)

RUS, SMOTE-

Resampling

PROMISE Software

Engineering repository

data

AUC, ROC,

G-Mean

Data space is optimized with sampling

3 2014 Ma et al.

(2014)

RUS PROMISE Software

Engineering repository

data

AUC, ROC Emphasised on usage of Random
Undersampling for classification problem-
SDP instance

4 2017 Yang et al.

(2017)

Random Under

Sampling

OSS (Bugzilla) F1-score Improved results than baseline models

5 2018 Chen et al.

(2019)

Random Under

sampling

PROMISE G-mean,

AUC

Results are improved with under sampling
and ensembles

6 2018 Huda et al.

(2018)

Oversampling PROMISE AUC,

Accuracy,

Recall

Imbalance is dealt effectively with
oversampling

7 2019 Cai et al.

(2019)

Under

Sampling ? SVM

PROMISE pd, pf,

G-mean

Results are improved with under sampling

8 2020 Sun et al.

(2020)

Undersampling PROMISE Software

Engineering repository

data

AE, RE,

PRED(l)

Proposed undersampling brings better results

9 2020 Rao and

Reddy

(2020)

Undersampling NASA MDP F-Measure Proposed undersampling brings better results

10 2021 Goyal (2021a) Filtering Technique NASA ROC, AUC,

Accuracy,

PD

Proposed technique performed better for
imbalanced data

11 2021 Goyal (2021b) Neighbourhood

undersampling

NASA AUC,

Accuracy

Proposed method is suitable to handle class
imbalance

12 2015 Erturk and

Sezer (2015)

SVM PROMISE Software

Engineering repository

data

AUC-ROC Parameter reduction is done beautifully in a
practical way

13 2016 Rong et al.

(2016)

SVM NASA, PC1, PC4, MC1 AUC,

G-mean

Feature selection techniques are reported
with their effect on SVMs

14 2018 Jaiswal and

Malhotra

(2018)

SVM NASA data sets Accuracy Comparative study of ML techniques
including SVMs

15 2020 Goyal and

Bhatia

(2020b)

SVM NASA ROC, AUC,

Accuracy,

PD

Comparative analysis among five most
popular ML classifiers is made

16 2021 Wang et al.

(2021)

SVM NASA MCC, AUC,

F-measure

Proposed model is robust to dataset
availability
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3.1 Research questions

To steer the research in this above-mentioned direction, the

following research questions are formulated:

RQ1 Does the proposed filtering technique (FILTER)

improve the condition of dataset to be used for the

training of the SVM based SDP classifier?

RQ2 Which SVM variant trained with the FILTERed

dataset, performs the best as a Software Defect Predic-

tion model?

RQ3 Does the answer to above mentioned research

question RQ2 bear the statistical proof?

3.2 Proposed filtering technique (FILTER)

The proposed filtering technique filters out the data-points

from majority class. It maximizes the visibility of minority

data-points by achieving better balance in the count of the

majority class and minority class.

In SDP, the minority class is the set of data instances

which are faulty and the majority class is the set of data

instances which are non-faulty.

Assume {(xij,yi)} denotes the dataset f with m attri-

butes and n instances (data-points) for SDP as 2-class

classification problem; where 1 B i B n (instances),

1 B j B m (attributes). xij denotes jth attribute for ith

instance in the dataset. Xi = {xij |1 B j B m for all i}. yi
denotes the class for ith instance in the dataset and yi [
{faulty, non-faulty}.

The proposed technique (FILTER) identifies few non-

faulty data-points strategically and filters these out. In this

way, the IR value is minimized to achieve more balanced

class distribution. The strategy to select the non-faulty

data-points for filtering is explained below as

Algorithm_1.

The key idea is to locate the non-faulty instances which

are in the proximity of faulty instances. The presence of

large number of non-faulty instances in close surroundings

of faulty instances, hinders the visibility of faulty instances.

Subsequently, the training of SDP classifiers gets nega-

tively affected and so as the classification accuracy of

predictors.

Hence, the proposed FILTER removes selected few non-

faulty data-instances to bring balance in the training

dataset.
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The FILTER works as follows:

(1) For each faulty instance of training dataset, its

proximity is scanned for P closest instances; where

P is imbalance ratio of the original dataset f. (Refer

Step 3 and Step 4)

(2) From the data instances obtained, non-faulty data-

instances are searched for (Refer Step 5)

(3) Sort the non-faulty instances in proximity in non-

decreasing order by the distance metrics (Refer Step

8)

(4) The instances to be filtered are identified by applying

Step 9. The top [(((Proximity_size-1) mod

P=3)) 1 1)] instances from the sorted list are

removed.

(5) Updated dataset is returned with more balanced class

distribution.

FILTER is demonstrated for training subset from KC1

dataset. Figure 1 shows the original dataset with IR& 6.27.

Figure 2 highlights the non-faulty instances which qualify

as Filter_Proximity. Figure 3 shows the filtered dataset

with reduced IR& 5.30.

The proposed technique FILTER is effective for SVM

classifiers due to robust nature of SVM with availability of

small datasets (Wu et al. 2007). It filters out at maximum

‘one-third of IR’ non-faulty data-instances. Hence, it

minimizes the loss of information along with improving the

visibility of faulty data instances.

4 Experimental set-up

In previous section, the research methodology is explained.

Now, this section covers the experimental design, set-up

and the description of datasets utilized for the experiment.

4.1 Experimental design

The proposed experimental design is depicted in Fig. 4

which is logically divided into four phases: Phase-I com-

prises of dividing the dataset into training and testing data

subsets. The dataset is divided randomly in two partitions

with 80% and 20% of total data-points. The partition with

80% data-samples is to be used as training dataset and the

portion with 20% data-samples is to be used as testing

dataset for the classification algorithms; Phase-II includes

filtering of training dataset to balance the class distribution

by applying FILTER technique; Phase-III is training the

SDP models using the FILTERed dataset and making the

predictions. Phase-IV is testing the performance of SDP

models and drawing comparative analysis.

4.1.1 Description to dataset and software metrics used

The experiment is designed using five fault prediction

datasets named CM1, KC1, KC2, PC1, and JM1. The Data

is collected from NASA projects using McCabe metrics

which are available publicly in the PROMISE repository

(Sayyad and Menzies 2005; PROMISE). Table 2 describes

the dataset used for this study (Rao and Reddy 2020; Rong

et al. 2016; Chen et al. 2018).

Fig. 1 KC1 DATASET (IR&6.27)
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The datasets are comprising of the most popular static

code metrics (Huda et al. 2018) including McCabe’s and

Halstead’s complexity metrics (Thomas 1976; Menzies

et al. 2007). All five datasets possess 21 metrics and 1

response variable (tabulated as Table 3). The effectiveness

of these metrics is empirically proven and accepted (Song

et al. 2018; Son et al. 2019; Tsai et al. 2019).

4.1.2 Parameter setting for SDP models

Phase-III involves the training of our SVM classifiers using

the training dataset received from the previous phase and

Phase IV tests the trained classifier over the test dataset.

The parameter settings for all three classifiers are given as

Table 4.

Fig. 2 Demonstration of Filter_Proximity instances

Fig. 3 Updated KC1 dataset after applying FILTER (IR&5.30)
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4.2 Performance evaluation criteria

The performance of proposed SVM classifiers is evaluated

using the widely accepted evaluation metrices namely

Confusion matrix, ROC, AUC, Accuracy and F-measure.

The opted evaluation criteria for this paper are explained

below:

• Confusion matrix contains information about the actual

values and predicted values for the output class variable

in the form of a matrix (as in Fig. 5). The predicted

values for the classifications done by the fault predic-

tion model are compared and performance is evaluated

(Kumar et al. 2018).

• The sensitivity (recall) of the model is defined as the

percentage of the ‘buggy’ modules that are predicted

‘buggy’ and the specificity of the model is defined as the

percentage of the ‘clean’ modules that are predicted

‘clean’. These are computed as Eqs. (2) and (3).

sensitivity or recallð Þ ¼ true positive

true positiveþ false negative

ð2Þ

specificity ¼ true negative

true negativeþ false positive
ð3Þ

• Receiver Operating Characteristics (ROC) curve is

analyzed to evaluate the performance of the prediction

model. During the development of the ROC curves,

many cutoff points between 0 and 1 are selected; the

sensitivity and 1� specificityð Þ at each cut off point is

calculated (see Fig. 6). It is interpreted that closer the

classifier gets to the upper left corner, better is its

performance. To compare the performance of classi-

fiers, the one above the other is considered better (see

Fig. 7).

DEFECT 
DATASET 

TRAINING
DATASET 

TESTING 
DATASET 

FILTERING THE DATA 

TRAINING THE 
SVM CLASSIFIERS 
USING BALANCED 
DATA 

TESTING  

THE  

CLASSIFIERS 

AUC, 
ACCURACY 

Fig. 4 Experimental design of proposed work

Table 2 Dataset description
# Data-set name # total instances #buggy instances # clean instances

1 CM1 498 49 449

2 KC1 2109 326 1783

3 KC2 522 107 415

4 PC1 1109 77 1032

5 JM1 10,885 2106 8779

Table 3 Metrics set in used dataset

# Feature name Feature definition

1 loc LOC (McCabe’s)

2 v_(g) Cyclomatic Complexity (McCabe’s)

3 ev_(g) Essential Complexity (McCabe’s)

4 iv_(g) Design Complexity (McCabe’s)

5 _n’ Operator and Operand total (Halstead)

6 _v’ Volume (Halstead)

7 _l’ Program Length (Halstead)

8 _d’ Difficulty (Halstead)

9 _i’ Intelligence (Halstead)

10 _e’ Effort (Halstead)

11 _b’ (Halstead)

12 _t’ Time (Halstead)

13 lOC_Code LOC (Halstead)

14 lOC_Comment Line of Comments (Halstead)

15 lOfBlank Line of Blanks (Halstead)

16 lOfCode ? Comment Line of Code and Comment (Halstead)

17 Uniq-Op No. of unique operator

18 Uniq-Opnd No. of unique operand

19 Total-Op Total operator

20 Total-Opnd Total operands

21 Branch-Count Count of Branch

22 Reponse_Variable {Faulty,Non-Faulty}
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• Area Under the ROC Curve (AUC) is a combined

measure of the sensitivity and specificity. It gives the

averaged performance for the classifier over different

situations. AUC = 1 is considered ideal.

• Accuracy is the measure of the correctness of prediction

model. It is defined as the ratio of correctly classified

instances to the total number of the instances (Hanley

and McNeil 1982) and computed as Eq. (4)

• F-measure is harmonic mean of precision and recall and

computed as Eq. (5)

F � measure ¼ 2 � Precision � Recall
Precisionþ Recall

ð5Þ

The above criteria are widely used in the literature for

the evaluation of predictor performance (Goyal and Bhatia

2020b; Rathore and Kumar 2017; Ozakıncı and Tarhan

2018; Song et al. 2018; Chen et al. 2019; Son et al. 2019;

Tsai et al. 2019). This set of metrices is appropriate and

suitable for comparing the performance of multiple SDP

classifiers.

5 Result analysis and discussion

In this section, the results are being reported which are

obtained from the experimental work and answers are

drawn to the research questions mentioned in the former

section of this paper. All three research questions are dis-

cussed one by one in this section to find the answers.

5.1 Proposed filtering technique (FILTER)

improves the condition of dataset to be used

for the training of the SVM based SDP

classifier—finding answer to RQ1

The author investigates the impact of FILTER technique on

training datasets to find the answer to first research

question of this work; RQ1. Table 5 reports the experi-

mental results of applying the proposed filtering technique

i.e. FILTER over all five selected datasets.

Table 6 reports the accuracy of classifiers with and

without the application of filtering technique, so that the

impact of proposed filtering technique can be measured on

the performance of SDP classifiers (also plotted as Fig. 8).

(Bold values highlight the best values).

The inferences drawn are:

i. FILTER is effective to reduce the IR by 17.3%,

20.9%, 15.4%, 24.1% and 16.3% for CM1, JM1,

KC1, KC2 and PC1 dataset respectively.

ii. The average value of reduction in IR value is

18.81%. It implies that on average FILTER will

reduce the False_Negative Faulty[[Non-Faulty by

18.81%.

iii. FILTERed dataset results in improved accuracy of

SVMs. It increases the performance by 9.32% for

SVM-Linear, by 16.74% for SVM-RBF and by

14.06% for SVM-Polynomial SDP models.

Answer to RQ1: From the above experimental results,

analysis and inferences; YES, the proposed filtering tech-

nique (FILTER) improves the condition of dataset to be

used for training the SVM based SDP classifier.

ACTUAL 
Classifier 

   CLASS 

BUGGY True_PositiveBuggy>>Buggy False_NegativeBuggy>>Clean

CLEAN False_PositiveClean>>Buggy True_NegativeClean>>Clean

Confusion 
Matrix 

BUGGY CLEAN 
PREDICTED CLASS 

Fig. 5 Confusion matrix

Table 4 Parameter settings for

classifier
Classifier Parameter: value

Support vector machine (SVM) with Linear Kernel C = 10

Support vector machine (SVM) with RBF Kernel C = 10, = 0.1

Support vector machine (SVM) with Polynomial Kernel C = 10, = 0.01

Accuracy ¼ true positiveþ true negative

true positiveþ false positiveþ true negativeþ false negative
: ð4Þ
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5.2 Best SVM variant trained with the FILTERed

dataset, for defect prediction—finding answer

to RQ2

To answer RQ2, the performance of all 03 variants of SVM

classifiers are evaluated over 5 datasets using evaluation

criteria mentioned in former section. The observation is

recorded for both scenario—(1) without the application of

FILTER and (2) with the application of FILTER. Tables 7

Fig. 6 ROC

Fig. 7 Multiple ROC

Table 5 Impact of application of proposed filtering technique on the

datasets

Dataset #Faulty #Non-Faulty #Total IR

CM1 35 364 399 10.4

FILTER_CM1 35 301 336 8.6

JM1 1045 7663 8708 7.33

FILTER _JM1 1045 6061 7106 5.8

KC1 232 1456 1688 6.27

FILTER _KC1 232 1231 1463 5.30

KC2 68 349 417 5.13

FILTER _KC2 68 265 333 3.89

PC1 67 821 888 12.2

FILTER _PC1 67 687 754 10.2

Table 6 Accuracy measure for all classifiers with and without fil-

tering technique on the datasets

Accuracy Classification algorithm

Dataset SVM-Linear SVM-RBF SVM-Polynomial

CM1 0.791 0.77 0.75

Filtered CM1 0.83 0.881 0.825

JM1 0.764 0.801 0.791

Filtered JM1 0.821 0.967 0.867

KC1 0.83 0.821 0.80

Filtered KC1 0.94 0.973 0.962

KC2 0.812 0.863 0.815

Filtered KC2 0.923 0.976 0.902

PC1 0.89 0.843 0.79

Filtered PC1 0.954 0.987 0.945
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and 8 report the AUC and F-measure for all 06 models. It is

observed that out of all classifiers, the SVM-RBF classifier

with proposed filtering technique performs best for all 5

datasets in terms of AUC, Accuracy and F-measure.

From the results, it is clear that SVM-RBF over FIL-

TERed dataset performs best (shown with bold values in

Tables 7 and 8) among all SDP models based on SVM

variants.

It is desirable to gain deep insight into the obtained

results before reporting the final answer to RQ2.

At initial step, the performance of all three variants of

SVM is compared over 5 datasets. The recorded values for

AUC, Accuracy and F-measure are shown as box plots in

Figs. 9, 10 and 11 respectively. It is seen that the classifier

‘SVM_RBF’ shows the highest median value of ‘1’ for the

criteria (AUC, accuracy, F-measure) and minimum

outliers.

Hence, it can be inferred that SVM variant with RBF

kernel is best among all three SVM variants.

At next level, the behaviour of SDP model built using

SVM_RBF variant is observed ‘with the application of

FILTER’ in contrast to ‘without the FILTER’.

For this agenda, the ROC curves for SVM-RBF ‘with

the application of FILTER’ in contrast to ‘without the

FILTER’ are plotted in Fig. 12. Figure 12 has 5 sub-fig-

ures, one for each of the five datasets namely Fig. 12a–e. It

shows that the classifier with ROC curve closer to top-left

corner is better performer. Through, all sub-figures, on the

average the ROC for FILTERed dataset with SVM-RBF

classifier is above the ROCs of SDP model without

FILTER.
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Fig. 8 Accuracy measure for all

classifiers with and without

filtering technique on the

datasets

Table 7 AUC measure for all classifiers with and without filtering

technique on the datasets

AUC Classification algorithm

Dataset SVM-Linear SVM-RBF SVM-Polynomial

CM1 0.754 0.787 0.76

Filtered CM1 0.8216 0.845 0.723

JM1 0.723 0.919 0.80

Filtered JM1 0.787 0.979 0.853

KC1 0.768 0.781 0.643

Filtered KC1 0.829 1 0.787

KC2 0.835 0.853 0.801

Filtered KC2 0.901 1 0.845

PC1 0.735 0.79 0.74

Filtered PC1 0.776 1 0.798

Table 8 F-Measure for all classifiers with and without filtering

technique on the datasets

F-Measure Classification algorithm

Dataset SVM-Linear SVM-RBF SVM-Polynomial

CM1 0.8216 0.91 0.723

Filtered CM1 0.856 0.967 0.821

JM1 0.801 0.901 0.85

Filtered JM1 0.821 0.968 0.903

KC1 0.81 0.884 0.85

Filtered KC1 0.901 0.941 0.907

KC2 0.814 0.821 0.782

Filtered KC2 0.861 0.89 0.812

PC1 0.805 0.891 0.844

Filtered PC1 0.934 0.978 0.928
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Fig. 9 Box-plots for performance over AUC

Fig. 10 Box-plots for performance over accuracy
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Here the ‘SVM-RBF with FILTERed dataset’ can be

inferred as the best SDP model with following observations

made:

i. Minimum Type-II error; reaching to the value of zero

ii. Highest value for AUC, F-measure, accuracy metric

and the closest ROC curve to the top left corner.

iii. Generalized behaviour over five public datasets.

iv. The application of FILTER improves the perfor-

mance of SVM-RBF model by 16.73%, 16.8% and

7.65% in terms of accuracy, AUC and F-measure.

Answer to RQ2: From the above experimental results,

analysis and inferences; SVM variant with RBF kernel

trained with the FILTERed dataset, is the best SDP model.

5.3 Statistical evidence for being the best classifier

for software defect prediction—finding answer

to RQ3

Now, the investigation begins for the statistical evidence in

support of the answer reported for RQ2. The statistical

evidence is essential to confirm that answer to RQ2; the

proposed SVM-RBF with FILTER is the best performer; is

not subjective, or due to just by the chance. The hypothesis

testing framework is adopted, and non-parametric tests are

performed to find statistical evidence. Non-parametric tests

namely Friedman tests are found to be suitable for our

research work as we want to compare the performance of

multiple classification algorithms over several datasets

(Lehmann and Romano 2008; Ross 2005).

In Figs. 13, 14 and 15, the test statistic p values for

Friedman test at confidence level of 95% are shown over

AUC, accuracy and f-measure metrics respectively. It is to

be noted that p-static value less than 0.05. Hence, it can be

inferred that the performance of SVM-RBF with FILTER

in comparison to rest of the classifiers over 5 datasets in

terms of AUC, accuracy and f-measure is statistically

significant.

Answer to RQ3: From the reported results, analysis and

drawn inferences-YES, the proposed SVM-RBF with FIL-

TER statistically outperforms other classifiers.

6 Conclusion and future work

This study proposed a novel filtering technique (FILTER)

for SVM variants to construct effective SDP prediction

model. The experiments are conducted in MATLAB and

the findings are:

1. It is observed that the proposed FILTER effectively

reduces the IR by 18.81% and conditions the dataset

for the training of SVM based SDP models.

Fig. 11 Box-plots for performance over F-measure
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Fig. 12 (a) ROC curve over

dataset CM1. (b) ROC curve

over dataset JM1. (c) ROC
curve over dataset KC1.

(d) ROC curve over dataset

KC2. (e) ROC curve over

dataset PC1
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Fig. 12 continued

Fig. 13 p-statistic value (AUC)

Fig. 14 p-statistic value

(accuracy)
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2. From the experiments, it can be inferred that the

performance of SVM variant with RBF kernel per-

forms best when trained with FILTERed dataset with

average values of 95.68%, 96.48% and 94.88% for

accuracy, AUC and F-measure respectively.

3. Proposed filtering technique (i.e., FILTER) improves

the prediction power of SVM-RBF based SDP model

by 16.73%, 16.80% and 7.65% in terms of accuracy,

AUC and F-measure respectively.

Further, the results are statistically validated using

Friedman’s test at the confidence level of 95% with

a = 0.05. Therefore, it can be concluded that the

results obtained in the experiments are statistically

significant.

In future, the author proposes to extend this work to

predict the number of faults with deep learning model. The

work can be replicated with larger industry based real-life

dataset.
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