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Abstract Wire electrical discharge machining (WEDM)

process used in a wide spectrum of industrial applications.

AISI 1045 is medium carbon steel, because of its excellent

physical and chemical properties, it is used in many

applications. However, the review of the state of the art

literature reveals that literature is lacking research to

optimize WEDM process for machining AISI 1045 steel.

The objectives of this research are building ANN model to

predict metal removal rate (MRR) and surface roughness

(Ra) values for machining AISI 1045 steel, identifying the

significance of the pulse on-time (TON), pulse off time

(TOFF) and servo feed (SF) for the MRR and Ra, and

selecting optimal machining parameters that give maxi-

mum MRR value and that give the minimum Ra value.

Taguchi method (Design of Experiments), artificial neural

network (ANN), and analysis of variances (ANOVA) used

in this research as a methodology to fulfill research

objectives. This research reveals that the architecture (3-5-

1) of ANN models is the best architecture to predict the Ra

and MRR with about 98.136% and 97.3% accuracy

respectively. It can be realized that TON is the most sig-

nificant cutting parameter affecting Ra by P % value

42.922% followed by TOFF with a P % value of 24.860%.

SF was not a significant parameter for Ra because of

Fa[ F. For MRR, the most significant parameter is TON

with a P % value of (71.733%), i.e. about three times the

TOFF P % value (21.796%) and the SF parameter has a

small influence with P % value 3.02%. The analysis con-

firmed that the optimal cutting parameters for maximum

MRR were: TON at the third level (25 ls), TOFF at the first

level (20 ls), and SF at the third level (700 mm/min). On

the other hand, the optimal cutting parameters for mini-

mum Ra were: TON at the first level (10 ls), TOFF at the

third level (40 ls), and SF at the first level (500 mm/min).

Future work may focus on optimizing the WEDM process

for machining other types of materials or other sets of

parameters and performance measures.

Keywords Wire EDM � Metal removal rate � Surface

roughness � Artificial neural network � AISI 1045

1 Introduction

Wire electrical discharge machining (WEDM) process is

one of the machining processes used to meet the increasing

demands of modern industrial applications. It is used in a

wide spectrum of industrial applications such as automo-

tive, die making, molds’ manufacturing and medical

equipment applications (Moulton 1999). Sridevi, Rao, and

Nagaraju stated that WEDM is a thermal machining
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process characterized by its capability of machining parts

with varying hardness or complex shapes. Machined parts

may have sharp edges and it’s difficult to be machined by

the classical machining processes (Sridevi et al. 2019).

WEDM is developed originally from conventional EDM

which is created based on the sparking phenomenon

(Mohapatra and Patnaik 2007). WEDM process can be

optimized by understanding the effect of machining

parameters on the performance measures. Therefore, the

selection of optimal machining parameters is very impor-

tant (Camposeco-Negrete 2019; Pramanik et al. 2019; Raju

and Balakrishnan 2020; Sahoo et al. 2019; Subrahmanyam

and Nancharaiah 2020). The review of the literature

showed that many researchers have contributed in opti-

mizing WEDM process (Spedding and Wang 1997; Obara

et al. 2004; Mohapatra and Patnaik 2007; Prajapati et al.

2011; Pant et al. 2014; Prathik et al. 2019; Singh et al.

2019) and it’s still one of the interesting and hot research

areas (Jarosz et al. 2019; Kulkarni et al. 2019; Magabe

et al. 2019; Nur et al. 2019; Priyadarshini et al. 2019).

Artificial neural network (ANN) is one of the opti-

mization techniques used widely and it has many applica-

tions such as Sleep Apnea analysis (Ferduła et al. 2019),

hourly electrical load forecasting in commercial buildings

(Jing et al. 2019), modeling and analysis of photovoltaic/

thermal system in buildings (Al-Waeli et al. 2019), Stock

Market Price Prediction (Chopra et al. 2019), some studies

related to atomistic modeling of materials (Pun et al. 2019)

…etc. Machining processes optimization is one of the

important applications of ANN, researchers used ANN

technique over the years and they still using it for opti-

mizing different machining processes such as milling

process (Varol and Ozsahin 2019), Electrical Discharge

Machining (EDM) process (Azadi Moghaddam and Kola-

han 2019), Additive manufacturing process (Nagarajan

et al. 2019), sheet metal free-forming process (Hartmann

et al. 2019) and WEDM process (Chalisgaonkar et al.

2019; Dutta et al. 2019; Singh et al. 2019).

AISI 1045 is medium carbon steel, because of the car-

bon availability in the steel chemical composition, steel

hardness and tensile strength improved. AISI 1045 steel,

because of its excellent physical and chemical properties, it

is used in many applications such as the machinery

industry and nuclear industry (Stašić et al. 2011). AISI

1045 steel used for manufacturing many important parts

such as shafts, gears, axles, machine parts, studs, pinions,

and pins (Singh et al. 2014). Vishnuja, and Bhaskar con-

ducted a study to review the applications of AISI 1045,

they reviewed 116 references and stated that AISI 1045

steel were studied with many processes such as ‘‘turning,

milling, machining, nitriding, boride layers, drilling, laser

process, cold forming, cryogenic thin film deposition, grind

hardening, fatigue tests, EDM, Microstructures, Brazed

process, corrosion, and Nanoindentation related studies’’

(Vishnuja and Bhaskar 2018). However, the analysis con-

ducted on Vishnuja, and Bhaskar work confirmed that lit-

erature is lacking optimization research for optimizing the

WEDM process for machining AISI 1045. To confirm this

above statement, on March 14, 2020, we search on Google

scholar database by using the keywords ‘‘Wire EDM’’,

‘‘Metal Removal Rate’’, ‘‘Surface Roughness’’, ‘‘ANN’’,

‘‘AISI 1045’’. The search resulted in a list of 15 publica-

tions only (Davies et al. 2003; Singh 2009; Rao 2011;

Yusup et al. 2012; Patel et al. 2013; Choudhary and Jadoun

2014a, b; Srivastava et al. 2014; Sharma et al. 2015;

Schoop et al. 2016; Liu et al. 2016; Kumar et al. 2017;

Prasad and Babu 2017; Pathak 2018; Zolpakar et al. 2020)

and none of them match our research approach. The

researchers on the current research, motivated by the above

statement, decide to conduct this research to optimize the

WEDM process for machining AISI 1045.

The objectives of this research are building ANN model

to predict performance measures (Metal Removal Rate

(MRR) and Surface Roughness (Ra)) for WEDM process

for machining AISI 1045 steel, identifying the significance

of the machining Parameters (Pulse On-time (TON), Pulse

Off time (TOFF) and Servo feed (SF)) for the aforemen-

tioned performance measures, and selecting optimal

machining parameters that give maximum MRR value and

optimal machining parameters that give the minimum Ra

value. Taguchi method (Design of Experiments), Artificial

Neural Network (ANN), and Analysis of Variances

(ANOVA) will be used in this research as a methodology

to fulfill research objectives. This research reveals the

creation of ANN models able to predict the Ra and MRR

values with about 98.136% and 97.3% accuracy respec-

tively. Moreover, machining parameters’ significance for

performance measures detected and optimal machining

parameters for maximum MRR and minimum Ra were

calculated. After the introduction, the paper will follow the

following structure, in the second section research method

will be explained. In the third section, a literature review

will be conducted. In the fourth section, experimental work

will have outlined. In the fifth section, the WEDM process

modeling and optimization approach will be presented.

After that, in the sixth section, results will be discussed,

and in the last section, conclusions, future research direc-

tions, research implications, and research limitations will

be presented.

2 Research methodology

The methodology used in the current research consists of

three steps. The first step starts by using the Taguchi

method to design the experimental part of the research, run
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the experiments, collect the data, and measure the MRR

and Ra values. In the second step, the ANN model will be

developed to predict MRR and Ra values from machining

parameters. In the third step, ANOVA will be conducted to

identify the contribution of each one machining parameters

on each one of performance measures and select the opti-

mal machining parameters that will give maximum MRR

and optimal machining parameters that will give minimum

surface roughness.

3 Literature review

The methodology used in this literature review adapted

from Crossan and Apaydin’s work and it consists of three

steps namely Data collection, results’ analysis, and results’

synthesis (Crossan and Apaydin 2010). The objectives of

the literature review are proving that the approach used in

the current research is useful and effective, and proving the

significance of the performance measures and machining

parameters selected in the current research. The literature

reviewed for 24 years (between 1995 and 2019). The

keywords used to search on Google scholar database were

‘‘Wire EDM’’, ‘‘Metal Removal Rate’’, ‘‘Surface Rough-

ness’’, and ‘‘Artificial Neural Network’’. The search

resulted in a list of 310 publications, however, after

screening the 310 publications and excluding irrelevant and

duplicated research efforts, a list of 32 publications selec-

ted for review in the current research. In the following sub-

sections, the literature review details will be presented.

3.1 Data collection

The contains of the papers selected for review in this

research will be presented in this section. Many approaches

have been used in the literature to optimize the WEDM

process and to identify the effect of machining parameters

on the WEDM process performance measures. Tarng, Ma

and Chung used ANN and simulated annealing (SA)

algorithms to identify the optimal machining parameters

based on a performance index value calculated from per-

formance measures (Tarng et al. 1995). Response Surface

Methodology (RSM) and ANN used to create a model of

the WEDM process. Machining parameters that used as an

input to the model include TON, TOFF, Wire tension (WT),

and the injection set-point. Output parameters of the model

were cutting speed, Ra and the surface waviness (Spedding

and Wang 1997). ANN proves its effectiveness and accu-

racy in modeling the WEDM process wither its integrated

with other methods as its shown in the aforementioned

paper, or alone as Shunmugam, Kumar, and Kaul proved

(Shunmugam et al. 1999).

Another example of using ANN in modeling the WEDM

process can be seen in the work of Sarkar, Mitra, and

Bhattacharyya as they identified the optimum machining

parameters of WEDM for machining titanium aluminide.

ANN model for WEDM machining process developed,

model outputs (performance measures) were cutting speed,

Ra and wire offset while model inputs include six param-

eters namely TON, TOFF, peak current (A), WT, dielectric

flow rate and servo reference voltage (VS) (Sarkar et al.

2006). In addition to WEDM process optimization and

process outputs prediction, ANN in integration with expert

systems used as well to create a maintenance-schedule and

fault-diagnosis system (Huang and Liao 2000). ANN and

Fuzzy logic used as well to improve the quality of the

WEDM process because it is used to predict the thickness

of the white layer generated during the WEDM process.

ANN and Adaptive Neuro-Fuzzy Inference System

(ANFIS) used to create a model to predict the thickness of

the white layer and the average Ra. Model inputs were

TON, VO dielectric flushing pressure (FP) and wire feed rate

(WF) (Çaydaş et al. 2009). Multiple regression analysis

methods and ANN used to create a model to predict the Ra

in WEDM. Model inputs were four levels of TON, open

voltage (VO), wire-speed and FP. The developed model

used to improve the efficiency and accuracy of the WEDM

process for machining Cr–Mo–V alloyed special steel

(Reddy et al. 2010). The same researchers used the same

approach to develop a model to predict the Ra value in the

WEDM process during machining WP7V steel. Research-

ers used the same input parameters used in the previous

research, i.e. TON, VO, wire-speed (WS) and FP (Reddy

et al. 2013).

ANN used also to predict the MRR, Ra, and minimum

electric kerf (Ek) values, optimize WEDM process

parameters and improve process efficiency and accuracy

during machining Aluminum Silicon Carbide with 10%

weight Metal Matrix Composite (Al/SiC10%MMC)

(Kapgate and Tatwawadi 2013). WEDM process perfor-

mance measures (accuracy, Ra, and MRR) estimated by

using Multiple Regression Analysis (MRA), Group Method

Data Handling Technique (GMDH) and Artificial Neural

Network (ANN). The input parameters to the model were

TON, TOFF, A and bed speed (BS). Model estimation

accuracy checked by comparing the estimated values with

the values measured from experiments and it was highly

acceptable (Ugrasen et al. 2014a). Ugrasen, Ravindra,

Prakash, Naveen, and Keshavamurthy, in the second part of

their work, developed an ANN model and its application to

optimize WEDM machining parameters that include TON,

TOFF, A, and BS. Similar to the first part, performance

measures used were accuracy, Ra, and MRR (Ugrasen et al.

2014b). ANN used as well to study and specify the relation

between machining parameters and performance measures
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for the WEDM process in machining Pure zirconium

diboride (ZrB2). In this research, the ANN approach

effectiveness proved again in identifying the relation

between machining parameters and performance measures

(Pramanick et al. 2014).

Shakeri, Ghassemi, Hassani and Hajian stated that ‘‘in-

vestigating the effect of process parameters on MRR and

Ra is very important for process planning in WEDM

machining’’. Shakeri et al. studied the machining of ‘‘ce-

mentation alloy steel 1.7131’’ by using ANN and linear

regression model and predicted Ra and MRR values for

effective machining. Machining parameters used in this

research were A, frequency of the pulse, WS, and SF.

Shakeri et al. stated that ‘‘the comparison of the results

showed that the neural network is more robust with better

accuracy’’ (Shakeri et al. 2016). Surya, Kumar, Keshava-

murthy, Ugrasen, and Ravindra used ANN to maximize

MRR, minimize Dimensional Error (DE) and minimize Ra

during machining ‘‘Al7075-TiB2 in situ composite’’. In

this research, the machining parameters of the WEDM

process that used as inputs to the ANN model were TON,

TOFF, A, and BS. good agreement noticed in this research

between Predicted and measured performance measures

(Surya et al. 2017). Conde, Arriandiaga, Sanchez, Portillo,

Plaza, and Cabanes used the Elman-based Layer Recurrent

Neural Network (LRNN) and SA technique to propose

away ‘‘to predict the accuracy of components produced by

WEMD’’ and to develop an algorithm to design wire paths

of variable radius correct it via software. Conde et al. stated

that ‘‘the average deviation was reduced by as much as

80%, and the Coefficient of Variation (CV) was decreased

by 43%’’, which confirms ANN approach effectiveness

(Conde et al. 2018).

Sridevi, Rao, and Nagaraju optimized WEDM and pre-

dicted process performance measures (MRR and Ra) for

machining medium carbon steel AISI 1040. ANN and

Multiple Regression approach used to create a model.

model inputs include FP, TON, TOFF, VS, WF, and WT.

Results showed that the ANN model’s ability to predict

process outputs was satisfactory (Sridevi et al. 2019). ANN

used also for modeling the WEDM process for machining

AA6063 material. Model inputs were TON, TOFF, A, and

VS. The model output was MRR. The predicted MRR

values in this research are found close to experimental

results. Thus, as researchers stated, the model is ‘‘appro-

priate for prediction purpose and smart manufacturing’’

(Singh et al. 2019). Aforementioned results confirmed by

the work of Prathik, Ravindra, Prakash, and Ugrasen as

they used ANN for optimizing the WEDM process for

machining titanium material. ANN used to estimate Elec-

trode Wear (EW), Acoustic Emission (AE) signal strength,

and AE count (Prathik et al. 2019).

WEDM process accuracy improved by 50% especially

in corner parts machining by using a fuzzy logic approach.

The data collected from experiments and operator experi-

ences were the main sources for creating fuzzy rules (Lin

et al. 2001). RSM approach used to improve the WEDM

process by modeling white layer depth. Inputs of the model

were TON, wire tool offset, and constant cutting speed and

model output was white layer depth (Puri and Bhat-

tacharyya 2005). RSM used also to optimize WEDM pro-

cess parameters for machining of SiCp/6061 Al metal

matrix composite (MMC). Model inputs include VS, TON,

TOFF, and WF (Shandilya et al. 2012). ANFIS and grey

relational analysis used to study the effect of machining

parameters (TON, TOFF, gap voltage, A, WT, and WF) on

the performance measures (cutting velocity (CV) and Ra) in

the dry WEDM process for machining of Al/SiC metal

matrix composite. Researchers were able to prove that that

‘‘oxygen gas and brass wire guarantee superior cutting

velocity’’ and TON and current were found to have a sig-

nificant effect on CV and Ra (Bagherian Azhiri et al. 2014).

Principal Component Analysis (PCA) approach used for

optimizing machining parameters of WEDM during

machining En45A Alloy Steel. The control factors of

analysis were VO, VS, & WF. the PCA conducted to

identify control factors effect on the performance measures

that include MRR, Machining Time (MT) and Gap voltage

(GV). VO was the most significant (Dhakad and Vimal

2017). The effect of machining parameter (TON, TOFF, and

A) of the WEDM process on the Ra studied from

machining Inconel superalloy and parameters optimized by

using only the Taguchi method and ANOVA. The results

of this research proved that ‘‘TON is the most significant

factor and A is an insignificant factor’’ (Vijaya Babu and

Soni 2017). The Taguchi method and ANOVA proved as

the most significant and effective methods that can be used

in optimization researches and they have been used in

almost all papers reviewed in the current research.

The review of the literature showed that despite that

more than three decades, as per the literature reviewed in

the current research, already passed but still WEDM pro-

cess optimization one of the hot research area (Camposeco-

Negrete 2019; Chalisgaonkar et al. 2019; Dutta et al. 2019;

Kulkarni et al. 2019; Magabe et al. 2019; Nur et al. 2019;

Priyadarshini et al. 2019; Raju and Balakrishnan 2020;

Sahoo et al. 2019; Subrahmanyam and Nancharaiah 2020).

Researchers still motivated to conduct more research to fill

the current gaps in the knowledge, this is because the

WEDM process has many parameters and many conflicting

performance measures and the process results always

depend on the workpiece material type used.
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3.2 Results’ analysis

The literature reviewed in the previous section will be

analyzed in this section to extract the necessary results and

build insights to fulfill the literature review objectives.

Figure 1 shows that 65.7% of publications were published

between 2014 and 2019 and 40% of publications were

published during 2019. The stated facts confirm the

importance of this research topic and indicate that recently

researchers are focusing their efforts on optimizing the

WEDM process. The analysis conducted showed that

similarity existed between input parameters were used in

different papers, however, they were used in under differ-

ent names. Therefore, the input parameters listed, analyzed,

similarity identified, input parameters unified, and then a

list of 17 input parameters generated. See Fig. 2, the most

used parameters in the literature were TON, TOFF, A, and

VS, while other parameters such as WS, SF, WT, and

injection pressure were less investigated. Other parameters

shown in the Fig. 2 seems irrelevant because it wasn’t

investigated by many researchers.

Regarding the performance measures used in the liter-

ature, the analysis conducted on the literature showed that

14 performance measures were used in the literature,

however, only two performance measures were found to be

significant because it was used by most of the published

researches, see Fig. 3. Those performance measures are Ra

and MRR. Regarding wire materials, the wire materials

used in the literature were brass wire, copper wire, zinc-

coated brass wire, molybdenum wire, and zinc-coated

copper wire. See Fig. 4, it is clear that brass wire was

highly used in the literature followed by copper wire, zinc-

coated brass wire, and molybdenum wire which were

equally used. zinc-coated copper wire was rarely used in

the literature. For workpiece material, the analysis con-

ducted showed that a wide range of materials was used in

the published researches, however, the material targeted in

this research not used before in the reviewed literature, see

Table 1. Priyadarshini, Biswas, and Behera stated that

‘‘mostly the wires of WEDM are made up of metals, such

as copper, tungsten, and molybdenum. Nowadays, zinc

coated wire is greatly used for better results’’ (Priyadar-

shini et al. 2019).

3.3 Results’ synthesis

As it was presented in the results’ analysis section, the

WEDM process optimization research topic is attracting

many researchers. Researchers still attracted to solve all

issues related to the optimization of the WEDM process.

WEDM process optimized for a wide range of materials,

however, for the reviewed papers, the literature review

confirmed that no research yet optimized the WEDM

process, predicted the process performance measures’

values, studied the effect of the machining parameters, or

select the optimal machining parameters for machining

AISI 1045 material, see Table 1. The analysis conducted

showed that many types of electrode materials were used,

however, the recent studies confirmed that zinc-coated is

giving better results. Taking the previous fact into con-

sideration, and considering that zinc-coated copper wire

was used in very few researches, in the current research we

will use zinc-coated copper wire.

ANN, Taguchi method, and ANOVA used in most

reviewed researches and proved as useful tools/methods for

optimization researches (Shakeri et al. 2016; Mohapatra

et al. 2017; Conde et al. 2018; Chalisgaonkar et al. 2019;

Nur et al. 2019; Priyadarshini et al. 2019; Sridevi et al.

2019), which confirm the effectiveness and usefulness of

the approach used in the current research. Regarding the

machining parameters, it was proved in the analysis section

that TON and TOFF were the most significant parameters

Fig. 1 Publications’ years Vs numbers
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and used by the majority of researches along with A and

VS. However, in the current research, in addition to TON

and TOFF, we will use one of the less investigated param-

eters that are SF to explore the interaction of this parameter

with other parameters and its significance for the WEDM

process. The analysis confirmed as well that Ra and MRR

performance measures were the most important measures

and used in the majority of the optimization researches, see

Fig. 2 The percentage of parameters’ usage in the literature

Fig. 3 The percentage of performance measures used in the literature
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Fig. 3. Therefore, we will use it in the current research. All

in all, this literature review and conducted analysis proved

that the approach used in the current research for opti-

mizing the WEDM process for machining AISI 1045 steel

is useful and novel and, up to our knowledge level, not

tackled before.

4 Experimental setup

The experiments performed on the three-axis CNC WEDM

machine model Elektra, type EL Pulse 15. The machine

used to conduct experiments shown in Fig. 5. The wire

used in the experiments is 0.3 mm Cu–Zn wire (Zinc

coated copper wire). Wire material consists of Cu 63% and

Zn 37%, which improves the cutting speed. The workpiece

is AISI 1045 Carbon steel with dimension (50 9 50 9 25)

mm, the chemical compositions, analyzed on laboratory,

and mechanical properties of the workpiece are listed in

Tables 2 and 3.

5 WEDM process modelling and optimization

5.1 Measurement of metal removal rate (MRR)

and surface roughness (Ra)

MRR can be defined as a volume of material removed

during manufacturing time. MRR unit of measurement is

(mm3/min). MRR can be calculated based on the following

equations (Sadeghi et al. 2011):

MRR ¼ F � K � H ð1Þ
F ¼ L=T ð2Þ

F = Cutting speed in (mm/min), L = length of cut in (mm),

T = Cutting time in (min), K = Width of kerf

(mm) = (2*gap between wire and workpiece) ? D, D =

Wire diameter in (mm) = 0.3 mm, H = Thickness of the

workpiece in (mm) = 25 mm.

Ra is one of the important performance measures used in

the literature to measure WEDM process performance.

Roughness is a measure of the texture of a surface, ‘‘it is

quantified by the vertical deviations of a real surface from

its ideal form. If these deviations are large, the surface is

rough; if small, the surface is smooth’’ (Nourbakhsh 2012).

In the current research, the Ra of all machined surfaces

measured by using a portable surface roughness tester

(pocket surf). During the Ra measurement, the tracing

speed and the sample length were fixed at 1 mm/s and

3 mm. The angles of measuring roughness were 33�, 40�,
37� as shown in Fig. 6 based on the shape of the product.

The measuring implemented perpendicular on the cutting

direction with three different locations in the cutoff length

of (3 mm). Figure 7 shows the process of measuring sur-

face roughness using a special holder to give the Pocket

Surf more freedom in measuring with any angle.

Fig. 4 Wire material usage % by the 32 reviewed papers

Table 1 Number of times workpiece material used in the reviewed

literature

Workpiece Material Number of times workpiece

material used in the

reviewed literature

AISI 1040 1

AISI 420 1

AISI D2 1

AISI D5 1

AISI O1 tool steel 1

Al7075-TiB2 in situ composite 1

Aluminum Alloy 6063 1

Cementation alloy steel 1.7131 1

Cr–Mo-V alloyed special steel 1

EMS 45 steel 1

EN-31 2

En45A Alloy Steel 1

Inconel 625 2

Inconel 800 1

M2-Die steel 1

Ni55.8Ti shape memory alloy 1

NiTi (Nickel-Titanium) shape

memory alloy

1

P2 tool steel 1

SiCp/6061 Al metal matrix

composite (MMC)

4

SKD-11 1

SS-304 1

Titanium alloy 5

WP7V steel 1
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5.2 Design of experiments (Taguchi method)

Taguchi method used to design the experiments, by using

the orthogonal array, to help researchers to have balanced

experiments that consider the effect of process parameters

with their levels on the process performance measures, i.e.

using Taguchi method will help to collect all necessary

data to understand which factors have the major effect on

the product quality by using a minimum number of

experiments (Patel et al. 2015). The ‘‘orthogonal array is

represented by La (bc), where the subscript represents the

number of parameter combinations, b represents the num-

ber of control factor levels, and c represents the number of

control factors. The control factors are the parameters that

may influence the quality characteristics i.e. performance

measures’’ (Kuo and Lin 2017).

Three machining parameters and three levels for each

parameter will be used in the current research. Therefore,

the orthogonal array will be L27 (33), which means that

twenty-seven parameter combinations will be used and

twenty-seven experiments will be conducted. Experiments

conducted to study the effects of machining parameters

(TON, TOFF, and SF) on performance measures (Ra and

MRR). The levels of cutting parameters listed in Table 4

and the machining parameters combinations with the

measured MRR and Ra listed in Table 5.

5.3 Artificial neural network (ANN)

ANN is a technique developed to simulate the learning

process of the human brain by creating an artificial repre-

sentation of it. ANN uses mathematical modeling or

computational model to create a group of interconnected

artificial neurons to process the information ‘‘based on a

connectionist approach to computation’’. ANN model

consists of interconnecting neurons, which ‘‘may share

some properties of biological neurons’’. ANN neurons

networks represent an artificial model that simulates the

biological nervous system. ANN structure consist of a

group of neurons plays the role of simple processors.

Together neurons work as a non-linear mapping system

(Ugrasen et al. 2014b). Each neuron weights each con-

nection with the other neurons. The inputs from all pre-

ceding neurons calculated by using a specific formula to

create net input for each neuron and the neuron will gen-

erate output which can be an input to the next neurons or it

may represent the model output if this neuron is the output

layer (Ozcelik et al. 2005). The net input to the neurons can

be calculated by the following equation (Oktem et al.

2006):

netj ¼
XN

j¼0

wijxi ð3Þ

where N: the number of inputs to the jth neuron, netj: is a

total or net input, wij: are the weights of the connections for

the ith neuron with the forward layers to the jth neuron in

the hidden layers, xi: is the input from the ith neuron.

A neuron in the networks produce it is output (outj) by

processing the net input through an activation function (f)

calculated based on the following equation (Ozcelik et al.

2005):

outj ¼ f ðnetjÞ ¼
1 � e�netj

1 þ e�netj
ð4Þ

Back-propagation algorithms are a systematic method-

ology used for ANN network training and used as well to

‘‘minimize the total squared error of the network output’’

(Chalisgaonkar et al. 2019). There are many types of ANN

Fig. 5 Machine used in the experimental work

Table 2 Chemical composition

of the workpiece (steel AISI

1045)

Element Content (%)

C % 0.47

Mn % 0.7

S % 0.05

P % 0.04

Fe % Balance

Table 3 The Mechanical properties of workpiece material (steel

AISI 1045)

Properties Values

Yield Strength 530 Mpa

Tensile Strength, Ultimate 565 Mpa

Elongation 13%

Hardness (Brinell) 163 HB
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models available, however, ‘‘feed-forward neural network

with backward propagation model performs well’’ for

solving problems similar to our research problem (Singh

et al. 2019). Therefore, Back-propagation based on the

Levenberg–Marquardt algorithm selected in this research

to train the networks.

ANN architecture layers and number of neurons

depends on the number of inputs and outputs of the model.

one specific structure usually fit for each research problem

and again it depends on the number of inputs and outputs,

for instance, 8-14-2 architecture used by Tarng et al.

(1995), 4-16-3 architecture used by Spedding and Wang

(1997), 4-5-5-1 architecture used by Reddy et al. (2013),

6-8-3 architecture used by Sridevi et al. (2019), and 7-7-1

architecture used by Chalisgaonkar et al. (2019) to solve

their research problems. In the current research, based on

the used algorithm, the combination of squared errors was

minimized then the correct combination to produce a well-

generalized network using ANN determined. Optimum

neural network architecture was designed by the MATLAB

program. Single hidden layer with (3) inputs and (1) output

were used to model the process, as it’s shown in Fig. 8. The

three inputs parameters are (TON, TOFF, and SF) and the

output parameters are (Ra and MRR). Twenty-seven

experiments represent the data distribution, therefore, the

training subsets include twenty-one groups, i.e. 76% of the

data, and the testing subsets include six groups, i.e. 24% of

the data. Different architectures tested and the model with

3-5-1 architecture was found to be the most suitable for the

task.

ANN model networks weights will be updated and

networks will be trained by using Back Propagation

learning algorithm until the mean square error (MSE) will

reach to a minimum value between the targeted output and

the network output (Öktem 2009):

MSE ¼ 1

km

XM

m¼1

XK

k¼1

DESmk � OUTmkð Þ2 ð5Þ

where DESmk and OUTmk: the desired output and the

network output, K: is the number of output neurons, M: is

the overall number of data set.

Fig. 6 Angles of measuring

roughness

Fig. 7 Ra measuring equipment (Pocket Surf)

Table 4 Machining parameters

levels
No Parameter Symbol Units Level 1 Level 2 Level 3

1 Pulse on time TON Micro Second (ls) 10 20 25

2 Pulse off time TOFF Micro Second (ls) 20 30 40

3 Servo feed SF mm/min 500 600 700
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For weights variables calculations, which usually given

network training name, a quasi-random value will be given

to the weights keeping in mind that initial values should be

intelligently chosen. The gradient descent method will be

used iteratively to update the weights until it reaches cer-

tain values. Gradient descent method updates the weights

to minimize the MSE between the network prediction and

training data set by using the following equations (Oktem

et al. 2006):

wnew
ij ¼ wold

ij þ Dwij ð6Þ

Dwij ¼ �g
oE

owij
outj ð7Þ

TON

TOFF

SF

MRR & Ra

Input 
layer

Hidden 
layer

Output 
layer

.

.

.

Fig. 8 ANN structure used in

the research

Table 5 machining parameter

combinations with the measured

MRR and Ra

No# TON (ls) TOFF (ls) SF (mm/min) MRR (mm3/min) Ra (lm)

1 10 20 500 4.993 1.51

2 10 20 600 5.693 1.82

3 10 20 700 5.827 1.98

4 10 30 500 3.762 1.31

5 10 30 600 4.167 1.43

6 10 30 700 4.592 1.61

7 10 40 500 2.362 1.25

8 10 40 600 2.817 1.37

9 10 40 700 3.697 1.52

10 20 20 500 11.391 2.23

11 20 20 600 12.096 2.4

12 20 20 700 13.021 2.45

13 20 30 500 8.604 1.81

14 20 30 600 10.753 1.88

15 20 30 700 11.676 1.99

16 20 40 500 5.656 1.55

17 20 40 600 6.141 1.59

18 20 40 700 6.803 1.65

19 25 20 500 13.524 2.24

20 25 20 600 14.083 2.41

21 25 20 700 16.236 2.47

22 25 30 500 12.392 2.03

23 25 30 600 12.718 2.34

24 25 30 700 14.646 2.39

25 25 40 500 8.859 1.93

26 25 40 600 9.316 2.25

27 25 40 700 10.42 2.35
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where E: is the MSE, outj: is the jth neuron output, g: this

symbol represents the learning rate parameter necessary to

control the stability and evaluate the degree to which ANN

model networks are closed to the targeted value. g value

usually constant and it falls in the range between 0 and 1.

In this research g value chosen to be 0.001.

To check prediction model accuracy, we will use the

percentage error (Øi) and average percentage error (Ø),

which can be calculated by the following equations

(Prakasvudhisarn et al. 2009):

£i ¼
Raie � Raip

�� ��
Raie

� 100% ð8Þ

where Øi = Percentage error for each experiment, Raie-

= Experimental Ra or MRR, Raip = Predicted Ra or MRR.

£ ¼
Pm

i¼1 £i

m
ð9Þ

where Ø = average percentage error, m = number of

experiments.

5.4 Analysis of variances (ANOVA)

ANOVA is a technique used to determine significant fac-

tors based on their contribution to process outcomes/re-

sults/performance measures. Factors effects obtained by

separating the total outcomes variability. Variability mea-

sured by ‘‘calculating the sum of the squared deviations

(SST) from the total mean of the process outcomes, the

variability of the process parameters (SSF), and the error

(SSE)’’. SST, SSF, and SSE formulas are as follows

(BesterField et al. 2015):

SST ¼
Xa

i¼1

Xni

j¼1

y2
ij �

T2

N
ð10Þ

SSF ¼
Xa

i¼1

A2
i

ni
� T2

N
ð11Þ

SSE ¼ SST � SSF ð12Þ

where a: Number of factor levels, ni: Number of obser-

vations at each factor level (i = 1 …. a), yij: jth observation

at the ith factor level, Ai: Total of observations under the ith

factor level, T: Total of observations under all factor levels,

N: Total number of observations.

MSF ¼ SSF
VF

ð13Þ

MSE ¼ SSE
VE

ð14Þ

F ¼ MSF
MSE

ð15Þ

where MSF: Mean squares of the factor, MSE: Mean

squares of the error, VF: Degree of freedom of the factor,

VE: Degree of freedom of the error, F: F test that is used to

compare the ratio of factor variances with error variances,

F-Ratio in the analysis used to determine the significance

of factors. F ratio represents a 95% confidence level in the

calculation which is accurately equal to (3.369) for F0.05,

2,26. P values report the significance level (suitable and

unsuitable). For the current calculation, P value in this

section represents the significance rate of the process

parameter on MRR.

6 Results and discussion

6.1 Effect of pulse on time and servo feed

on the MRR

Figures 9, 10, and 11 shows the effect of TON and SF on

MRR at constant TOFF. It can be seen that the increase in

TON leads to increase MRR. This is due to the high energy

generated during machining which leads to high spark then

high melting rates of material. Also, the increase in SF

leads to increase MRR because of the high energy gener-

ated during machining. Also, from these figures, it can be

seen that high rates of MRR can be reached at low levels of

TOFF, except for some readings which lie out of its

expected location because of some reasons like electricity

shut down and wire breakage. Figures 12, 13, and 14 which

shows the effect of TON and SF on the predicted values of

MRR, it can be seen that the predicted results show that the

change of TON at different SF gives the same relationship

obtained from experimental results, which confirm pre-

diction model accuracy.

6.2 Effect of pulse on time and pulse off time

on the MRR

Figures 15, 16, and 17 show the effect of TON and TOFF on

MRR while maintaining SF constant. From these figures, it

can be seen, that the increase in TON leads to increase

MRR, but the increase in TOFF leads to decrease MRR.

This is due to low rates of melting at high values of TOFF

while SF has a little effect on MRR. Also, from these fig-

ures, it can be seen, that high rates of MRR can be reached

at low levels of TOFF. Figures 18, 19, and 20 show the

effect of TON and TOFF on the predicted values of MRR. It

can be noted that the predicted results show that the change

of TON at different TOFF gives the same relationship

obtained from experimental results, which confirm pre-

diction model accuracy.
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6.3 MRR regression graphs for ANN model

The relationship between ANN model networks’ output

and desired targets shown on the regression graph. Learn-

ing data, validation test data and all data regression graphs

shown in Fig. 21. In this graph, the optimal condition

represented by the dotted line which means the area where

Y (output) = T (target). In the graphs, for a particular

sample, the actual output presented as a dots while the solid

line presenting the best fit linear regression line between

outputs and targets. The more solid line close to the dotted

line the more outputs fit with targets. Figure 21 represents

regression coefficients of the MRR model based on the data

which are 1 for the training set, 0.99571 for the validation

set, 0.98977 for the test set and 0.99221 for all data set.

Based on the plotted graphs, we can conclude that the

learning of the network is proper and ANN model networks

are accurate enough to predict MRR. We can conclude as

well, based on the value of the regression coefficient of
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Fig. 9 Effect of pulse on-time and servo feed on experimental MRR

at fixed pulse off time (20 ls)

Fig. 10 Effect of pulse on-time and servo feed on experimental MRR

at fixed pulse off time (30 ls)
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Fig. 11 Effect of pulse on-time and servo feed on experimental MRR

at fixed pulse off time (40 ls)
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Fig. 12 Effect of pulse on-time and servo feed on predicted MRR at

fixed pulse off time (20 ls)

Fig. 13 Effect of pulse on-time and servo feed on predicted MRR at

fixed pulse off time (30 ls)

Fig. 14 Effect of pulse on-time and servo feed on predicted MRR at

fixed pulse off time (40 ls)
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training set which is approximately 1, that exact linear

relationship between outputs and targets.

6.4 Analysis of experimental results for MRR

6.4.1 Analysis of variances

ANOVA conducted to determine the effect of machining

parameters on the MRR. MRR as a dependent variable and

TON, TOFF and SF as independent variables. The results of

the ANOVA for MRR are shown in Table 6 for three

machining parameters. A significance level of a = 0.05

used for this analysis, which means that the confidence

level is 95%. The F ratio value for the TON is 207.869

which is the greater among the parameters. Therefore, the

most significant parameter is TON with a P % value of

(71.733%), i.e. about three times the TOFF P % value

(21.796%). SF has a small influence with a P % value of

3.02%. In the analysis, F-ratio is a ‘‘ratio of mean square

error to residual and is traditionally used to determine the

Fig. 15 Effect of pulse on-time and pulse off time on experimental

MRR at fixed servo feed (500 mm/min)

Fig. 16 Effect of pulse on-time and pulse off time on experimental

MRR at fixed servo feed (600 mm/min)

Fig. 17 Effect of pulse on-time and pulse off time on experimental

MRR at fixed servo feed (700 mm/min)

Fig. 18 Effect of pulse on-time and pulse off time on predicted MRR

at fixed servo feed (500 mm/min)

Fig. 19 Effect of pulse on-time and pulse off time on predicted MRR

at fixed servo feed (600 mm/min)

Fig. 20 Effect of pulse on-time and pulse off time on predicted MRR

at fixed servo feed (700 mm/min)

123

1326 Int J Syst Assur Eng Manag (December 2020) 11(6):1314–1338



Fig. 21 Regression graphs for MRR

Table 6 ANOVA for MRR
Source of variance Degree of freedom (t) Sum of squares (ss) Variance (V) F ratio P (%)

TON (lsec) 2 315.670 157.835 207.869 71.733

TOFF (lsec) 2 95.916 47.958 63.161 21.796

SF (mm/min) 2 13.288 6.644 8.750 3.02

Error (e) 20 15.186 0.7593 3.451

Total 26 440.060 100

123

Int J Syst Assur Eng Manag (December 2020) 11(6):1314–1338 1327



significance of a factor. F-ratio corresponding 95% confi-

dence level, in the calculation of process parameters, is

F0.05,2,20 = 3.4928. F value reports the significance level

(suitable and unsuitable). Percent value (P %) is defined as

‘‘the significance rate of process parameters on process

performance measures’’ (BesterField et al. 2015). The P %

confirm that TON, TOFF, and SF has significant effects on

MRR, i.e. TON, TOFF and SF parameters are statistically and

physically significant for MRR because F Test[ Fa = 5%.

6.4.2 Optimal machining parameters for maximum MRR

SPSS software package used to plot the main effects graphs

to determine the optimal design conditions that should be

used to obtain the optimum MRR value and hence select

the optimal machining parameters. Figure 22 shows the

main effect plot for MRR with the process inputs. This

graph shows the variation of individual response with three

parameters, i.e. TON, TOFF, and SF separately. The results

confirmed that the optimal machining parameters for

maximum MRR were: TON at level-3 (25 ls), TOFF at

level-1(20 ls), and SF at level-3 (700 mm/min).

6.5 Comparison of the measured and predicted

results for MRR

Figures 23 and 24 show the variation of MRR, measured

from experiments and predicted from the ANN model,

values for 27 experiments. The twenty-one MRR values

used in training the ANN model and the rest of the data (6

MRR values) were used for testing the trained ANN model.

ANN Matlab toolbox used for training and testing the ANN

model. The relationship between the 21 measured and

predicted values of MRR shown in Fig. 23. It can be seen

from this figure that the measured MRR values were very

close to the predicted MRR values with 96.588% per-

centage. In Fig. 24 we can see the relationship between the

six measured and predicted values of MRR which indicates

a good agreement between measured and predicted values.

Figures 23 and 24 explaining the high match between

measured and predicted values for MRR which indicate the

accuracy and efficiency of the ANN model in predicting

MRR values.

Table 7 shows MRR predicted values resulted from

ANN model training and MRR values measured from

experiments. The training data sets consists of 21 MRR

values selected from 27 MRR values measured from

experiments. A good correlation can be seen between the

measured and the predicted values of MRR, which confirm

ANN model accuracy and effectiveness for predicting

MRR values in WEDM process. The maximum value of

MRR was (16.236 mm3/min) in Table 7 at TON (25 ls),

TOFF (20 ls) and SF (700 mm/min). Table 8 shows the

results of MRR predicted values from testing the trained

ANN model and the MRR values measured from experi-

ments. The data set is consisting of six MRR values

selected randomly from 27 MRR experiments, which were

not used for the training of the ANN model. It can be seen

from Table 8 that the ANN model showed a good agree-

ment between predicted and measured MRR values. The

average prediction error of the data set is found to be

2.69%, i.e., the accuracy is 97.3% and the MSE is 0.13.

6.6 Pulse on time and servo feed effect

on the surface roughness

Figures 25, 26, and 27 show the effect of TON and SF on Ra

at constant TOFF. It can be seen that the increase in TON

leads to increase Ra. This is due to the high spark that

generated at high values of TON which caused surface

irregularities, also it can be seen that the values of Ra

decreased with the increase of TOFF, and an increase in SF

value will increase Ra’s value. Figures 28, 29, and 30

shows the effect of TON and SF on the predicted Ra values.

From figures, we can see that the predicted results confirm

that the change in TON values at different levels of SF will

give the same relationship discussed in the experimental

results graphs, which means confirm ANN model accuracy

and effectiveness in predicting the performance measures

in WEDM process.

6.7 Pulse on time and pulse off time effect

on the surface roughness

Figures 31, 32, and 33 show the effect of TON and TOFF on

Ra while maintaining the SF parameter constant. From

these figures it can be seen that the increase in TON leads to

increase Ra, this is due to the high melting rates that occur

at high values of TON which caused surface irregularities. It

can be also seen that the values of Ra increased with the

increase of SF. Finally, Ra decreased with the increase of

TOFF. It can be seen that low ranges of Ra can be reached at

low levels of TOFF. Figures 34, 35, and 36 show the effect

of TON and TOFF on the Ra predicted values. From the

predicted results we can see that the change in TON values

at different TOFF will give the same relationship obtained in

the case of experimental results, which confirm that ANN

model accuracy and effectiveness in predicting the outputs

of the WEDM process is good.

6.8 Regression graphs for ANN model for Ra

Figure 37 shows the regression graphs of Ra learning data,

validation data, test data, and all data. In this graph, the

optimal condition represented by the dotted line which

means the area where Y (output) = T (target). In the
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graphs, for a particular sample, the actual output presented

as a dots while the solid line presenting the best fit linear

regression line between outputs and targets. The more solid

line close to the dotted line the more outputs fit with tar-

gets. Figure 37 represents Regression coefficients of Ra

model, based on the data, which are 0.99932 for the

training set, 0.97684 for the validation set, 0.99482 for the

test set and 0.98301 for all data set. Regression coefficients

of Ra model confirm that the learning of the network is

proper and this ANN model can be used to predict Ra. We

can conclude as well, based on the value of the regression

coefficient of training set which is approximately 1, that

exact linear relationship between outputs and targets.

Fig. 22 Main effects plots for MRR with inputs

Fig. 23 The comparison of the measured with the predicted of MRR

values (training sets)

Fig. 24 The comparison of the measured with the predicted of MRR

values (testing sets)
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6.9 Analysis of experimental results for Ra

6.9.1 Analysis of variances

ANOVA conducted to determine the effect of machining

parameters on Ra. Ra as the dependent variable and TON,

TOFF and SF as independent variables. The results of the

ANOVA with Ra are shown in Table 9 for three machining

parameters. A significance level of a = 0.05 used for this

analysis, which means that the confidence level is 95%.

The F-ratio value of TON is (16.920), i.e. it is the biggest

value among the parameters. From P value, we can con-

clude that the most significant parameter is a TON

(42.922%) it is about twice the TOFF (24.860%). P values

show that TON and TOFF have significant effects on Ra, i.e.

TON and TOFF parameters are statistically and physically

significant for Ra because Test F[ Fa = 5%, but SF has no

significant effect on surface roughness because of Fa[ F.

Fig. 25 Effect of pulse on-time and servo feed on experimental

surface roughness at fixed pulse off time (20 ls)

Fig. 26 Effect of pulse on-time and servo feed on experimental

surface roughness at fixed pulse off time (30 ls)

Table 7 Comparison of the training sets (predicted with measured

MRR values) for the trained ANN model

No# TON (ls) TOFF (ls) SF (mm/min) MRR(mm3/min)

Measured Predicted

1 10 20 600 5.693 5.636

2 10 20 700 5.827 5.821

3 10 30 500 3.762 3.726

4 10 30 700 4.592 4.597

5 10 40 500 2.362 1.783

6 10 40 600 2.817 2.836

7 10 40 700 3.697 3.513

8 20 20 500 11.391 11.392

9 20 20 600 12.096 12.107

10 20 30 500 8.604 8.651

11 20 30 600 10.753 10.705

12 20 30 700 11.676 11.331

13 20 40 600 6.141 6.124

14 20 40 700 6.803 6.807

15 25 20 500 13.524 13.014

16 25 20 600 14.083 14.093

17 25 20 700 16.236 14.204

18 25 30 500 12.392 10.913

19 25 30 700 14.646 13.704

20 25 40 500 8.859 8.861

21 25 40 600 9.316 9.331

Table 8 Comparison of the test sets (predicted with measured MRR values) for testing the ANN model

No# TON (ls) TOFF (ls) SF (mm/min) MRR(mm3/min) Error (%) ANN results

Measured Predicted Ø (%) MSE Accuracy (%)

1 10 20 500 4.993 5.04 0.88 2.69 0.13 97.3

2 10 30 600 4.167 4.14 0.62

3 20 20 700 13.02 12.3 5.64

4 20 40 500 5.656 5.21 7.92

5 25 30 600 12.72 12.7 0.02

6 25 40 700 10.42 10.5 1.02
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6.9.2 Optimal machining parameters for minimum Ra

Optimal design conditions that will ensure getting the

optimum (minimum) Ra value and hence select the optimal

machining parameters estimated by using the main effects

plots. SPSS software package used in this analysis. Fig-

ure 38 shows the main effect plot for Ra with the process

parameters. From Fig. 38, the optimal conditions for

minimum Ra were: TON at first level (10 ls), TOFF at the

third level (40 ls), and SF at first level (500 mm/min).

6.10 Comparison of the measured and predicted

results for Ra

In this section, we will compare the obtained results from

experimental work with the predicted results obtained from

the suggested model to identify matching between them.

Figures 39 and 40 show the variation between predicted

and measured Ra value for 27 experiments. Twenty-one Ra

values were used for training the ANN model. The

remaining data sets (six Ra values) were used for testing

the trained ANN model. Matlab toolbox used for training

and testing the ANN model. The relationship between the

Fig. 27 Effect of pulse on-time and servo feed on experimental

surface roughness at fixed pulse off time (40 ls)

Fig. 28 Effect of pulse on-time and servo feed on predicted surface

roughness at fixed pulse off time (20 ls)

Fig. 29 Effect of pulse on-time and servo feed on predicted surface

roughness at fixed pulse off time (30 ls)

Fig. 30 Effect of pulse on-time and servo feed on predicted surface

roughness at fixed pulse off time (40 ls)

Fig. 31 Effect of pulse on-time and pulse off time on experimental

surface roughness at fixed servo feed (500 mm/min)

Fig. 32 Effect of pulse on-time and pulse off time on experimental

surface roughness at fixed servo feed (600 mm/min)
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21 Ra values (measured and predicted) shown in the

Fig. 39. It can be seen that the measured Ra values were

very close to the predicted Ra values. From Fig. 40 we can

see that the relationship between the six Ra values (mea-

sured and predicted) confirms the existence of a good

agreement between these values. Figures 39 and 40

explaining the high match between measured and predicted

values for MRR which indicate the accuracy and efficiency

of the ANN model in predicting Ra values.

Table 10 shows Ra predicted values resulted from ANN

model training and Ra values measured from experiments.

The training data set is consisting of 21 Ra values selected

from 27 Ra values measured from experiments. A good

match can be seen between the measured and the predicted

Ra values, which confirm that ANN model accuracy and

effectiveness for predicting WEDM process outputs. The

minimum value of Ra was (1.25 lm) in Table 10 at TON

(10 ls), TOFF (40 ls) and SF (500 mm/min).

Table 11 shows the results of Ra predicted values from

testing the trained ANN model and the Ra values measured

from experiments. The data set is consisting of six Ra

values selected randomly from 27 Ra values measured

during experiments, which were not used for training of the

ANN model. It can be seen from Table 11 that the ANN

model showed a good agreement between predicted and

measured Ra values. From Table 11 we can see that the

prediction error average for data set is found to be 1.864%,

i.e., the accuracy is 98.136% and the MSE is 0.0018

consecutively.

7 Conclusions

The objectives of this research are building ANN model to

predict performance measures (Metal Removal Rate

(MRR) and Surface Roughness (Ra)) for WEDM process

for machining AISI 1045 steel, identifying the significance

of the machining Parameters (Pulse On-time (TON), Pulse

Off time (TOFF) and Servo feed (SF)) for the aforemen-

tioned performance measures, and selecting optimal

machining parameters that give maximum MRR value and

optimal machining parameters that give the minimum Ra

value. Taguchi method (Design of Experiments), Artificial

Neural Network (ANN), and Analysis of Variances

(ANOVA) will be used in this research as a mythology to

Fig. 33 Effect of pulse on-time and pulse off time on experimental

surface roughness at fixed servo feed (700 mm/min)

Fig. 34 Effect of pulse on-time and pulse off time on predicted

surface roughness at fixed servo feed (500 mm/min)

Fig. 35 Effect of pulse on-time and pulse off time on predicted

surface roughness at fixed servo feed (600 mm/min)

Fig. 36 Effect of pulse on-time and pulse off time on predicted

surface roughness at fixed servo feed (700 mm/min)

123

1332 Int J Syst Assur Eng Manag (December 2020) 11(6):1314–1338



fulfill research objectives. As a result of the used approach,

the developed ANN model was able to predict MRR and

Ra values with high accuracy. This research reveals that

the architecture (3-5-1) of the ANN model is the best

architecture to predict the Ra and MRR with about

98.136% and 97.3% accuracy respectively.

The analysis showed that the increase in TON leads to

increase MRR. This is due to the high energy generated

during machining which leads to high spark then high

melting rates of material. Also, the increase in SF leads to

increase MRR because of the high energy generated during

machining. Moreover, the analysis showed that high rates

of MRR can be reached at low levels of TOFF, i.e. the

Fig. 37 Regression graphs for Ra
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Fig. 38 Main effects plots for Ra with inputs

Table 9 ANOVA for Ra
Source of variance Degree of freedom (t) Sum of squares (ss) Variance (V) F ratio P (%)

TON (ls) 2 2.450 1.225 16.920 42.922

TOFF (ls) 2 1.419 0.710 9.807 24.860

SF (mm/min) 2 0.391 0.196 2.707 6.850

Error (e) 20 1.448 0.0724 25.367

Total 26 5.708 100

Fig. 39 The comparison of the measured with the predicted of Ra

values for the training set

Fig. 40 The comparison of the measured with the predicted values of

Ra for the testing set
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increase in TOFF leads to decrease MRR except for some

readings which lie out of its expected location because of

some reasons like electricity shut down and wire breakage.

The analysis conducted to study the effect of machining

parameters on Ra’s value showed that the increase in TON

leads to increase Ra. This is due to the high spark that

generated at high values of TON which caused surface

irregularities, also it can be seen that the values of Ra

decreased with the increase of TOFF, and an increase in SF

value will increase Ra’s value. Machining parameters’

contribution to the performance measures values identified

from ANOVA results. It can be realized that TON is the

most important cutting parameter affecting Ra by P %

value 42.922% followed by TOFF with a P % value of

24.860%. SF was not a significant parameter for Ra because

of Fa[ F. From ANOVA, researchers can conclude as

well that, for MRR, the most significant parameter is TON

with P % value of (71.733%), i.e. about three times of the

TOFF P % value (21.796%) and SF parameter has a small

influence with P % value 3.02%. The analysis confirmed

that the optimal conditions for maximum MRR were: TON

at level-3 (25 ls), TOFF at level-1(20 ls), and SF at level-3

(700 mm/min). On the other hand, the optimal conditions

for minimum Ra were: TON at first level (10 ls), TOFF at

the third level (40 ls), and SF at first level (500 mm/min).

Practical and theoretical implications can result from

this research. For the practical side, research outcomes can

guide the practitioners to have an effective and efficient

WEDM process for machining AISI 1045 steel. On the

other hand, expanding knowledge of the WEDM process

database and having a clearer understanding of the rela-

tionships between machining parameters and performance

measures represent some of the theoretical implications.

Future work may include optimization of the WEDM

process for machining other types of materials or the same

material but other sets of machining parameters and per-

formance measures. Another research approach may be the

optimization of the WEDM process for machining the

same material but by using other optimization tools and

compare the results to authenticate current research

outcomes.

Table 10 Comparison of the training sets (predicted with measured

Ra values) for the trained ANN model

No# TON (ls) TOFF (ls) SF (mm/min) Ra (lm)

Measured Predicted

1 10 20 600 1.82 1.605

2 10 20 700 1.98 1.976

3 10 30 500 1.31 1.354

4 10 30 700 1.61 1.71

5 10 40 500 1.25 1.27

6 10 40 600 1.37 1.325

7 10 40 700 1.52 1.514

8 20 20 500 2.23 2.215

9 20 20 600 2.4 2.369

10 20 30 500 1.81 1.753

11 20 30 600 1.88 1.89

12 20 30 700 1.99 2.033

13 20 40 600 1.59 1.637

14 20 40 700 1.65 1.75

15 25 20 500 2.24 2.237

16 25 20 600 2.41 2.416

17 25 20 700 2.47 2.476

18 25 30 500 2.03 2.02

19 25 30 700 2.39 2.362

20 25 40 500 1.93 1.921

21 25 40 600 2.25 2.248

Table 11 Comparison of the test sets (predicted with measured Ra values) for the trained ANN model

No# TON (ls) TOFF (ls) SF (mm/min) Ra (lm) Error (%) ANN results

Measured Predicted Ø (%) MSE Accuracy (%)

1 10 20 500 1.51 1.477 2.185 1.864 0.0018 98.136

2 10 30 600 1.43 1.437 0.49

3 20 20 700 2.45 2.516 2.694

4 20 40 500 1.55 1.524 1.677

5 25 30 600 2.34 2.287 2.265

6 25 40 700 2.35 2.306 1.872
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