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Abstract Practically, reliability-based system designs are

modeled in various kinds of uncertainty such as expert’s

information character, qualitative statements, vagueness,

etc. Fuzzy set theory is suitable for tackling such types of

uncertainty effectively. In most of the practical situations,

where reliability enhancement is an essential requirement,

decision-making is a complicated task due to the presence

of several mutually conflicting objectives such as system’s

cost, weight, and volume. To solve such problems, multi-

objective evolutionary algorithms (MOEAs) are efficient

techniques for finding multiple Pareto-optimal solutions in

a single simulation run. This paper applies an elitist

MOEA, namely, NSGA-II to fuzzy multi-objective relia-

bility optimization problem consisting of conflicting

objectives such as system reliability and its cost. Linguistic

hedges (or modifiers) are used to modify the Pareto-opti-

mal solution set obtained by NSGA-II in terms of the

membership grades of the objective values. The max–min

composition of the membership grades gives the maximum

satisfaction level to each possible combination of the lin-

guistic hedges. After that, fuzzy rule-based system (FRBS)

is proposed for evaluating the system efficiency to each

case which is used in the decision-making of reliability. A

numerical example is given to illustrate the method.

Finally, the proposed approach is comparatively studied

with the existing approach.

Keywords System reliability � Fuzzy multi-objective

optimization problem (FMOOP) � Pareto-optimal front

(POF) � NSGA-II � Linguistic hedges � Fuzzy rule-based

system

1 Introduction

In the broadest sense, reliability is defined as a ‘‘measure of

performance of the systems’’. A design engineer is usually

asked to maximize the system reliability and reduce its cost

simultaneously. These conflicting objectives affect system

efficiency. A system is considered more efficient if it

achieves its optimum goals simultaneously. Niwas and

Garg (2018) proposed an approach for analyzing the reli-

ability and profit of an industrial system based on the cost-

free warranty policy. However, multi-objective reliability

models of the system design provide a better interpretation

in such a situation. Moreover, various kinds of uncertainty

such as vagueness, incompleteness, and unreliability of

input information are found in the decision making of

reliability. So, the models of real-world application should

be more flexible and adaptable to the human judgment and

decision-making process (Garg and Sharma 2013). Fuzzy

set theory (Zimmermann 1996) deals with the kind of

uncertainty that arises due to imprecision associated with

the complexity of the system as well as vagueness of

human judgement (Chen 1994; Utkin and Gurov 1996;

Bing et al. 2000; Mohanta et al. 2004; Bag et al. 2009;

Mahapatra and Roy (2009); Garg and Sharma 2012; Garg

2016, 2017; Mahata et al. 2018; Hussain et al. 2018; Sal-

ahshour et al. 2018; Mondal 2018).

The fuzzy optimization techniques to multi-objective

reliability problems can be viewed in Park (1987), Dhingra
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(1992), Rao and Dhingra (1992), Huang (1997), Ravi et al.

(2000), Mahapatra and Roy (2006), Huang et al.

(2005, 2006), Kishor et al. (2009), Kumar and Yadav

(2017, 2019), and Muhuri et al. (2018). Generally,

achieving the optimal reliability design is considered quite

difficult due to its NP-hard character (Chern 1992). To

resolve it, various heuristic approaches for solving relia-

bility optimization can be found in the literature such as

Huang et al. (2009), Ayyoub and El-Sheikh (2009), Ebra-

himipour and Sheikhalishahi (2011), Damghani et al.

(2013), Mutingi and Mbohwa (2014), Garg and Sharma

(2013), Garg (2014), Garg et al. (2014a; 2014b), Pant et al.

(2015), Garg (2015a, b, c), Kim and Kim (2017) etc.

The preference-based approach (Deb 2001) suggests

converting the multi-objective optimization problem

(MOOP) to a single-objective optimization problem

(SOOP) by emphasizing one Pareto-optimal solution at a

time. In a practical situation, such a method needs to be

applied many times for getting multiple Pareto-optimal

solutions. The other drawback of such method is the

dependency on a number of user-defined parameters, which

are difficult to set in the arbitrary problem. To fix up these

issues, a number of MOEAs have been suggested. The

primary reason for their developments is to find multiple

Pareto-optimal solutions in a single simulation run.

MOEAs work with a population of solutions and generate a

well-diverse set of solutions near the true Pareto-optimal

region. Over the past decades, many generations of

MOEAs emerged in the literature such as MOGA-Multi-

Objective Genetic Algorithm (Fonseca and Fleming 1993),

NPGA-Niched Pareto Genetic Algorithm (Horn et al.

1994), NSGA-Non-dominated Sorting Genetic Algorithm

(Srinivas and Deb 1994), SPEA-Strength Pareto Evolu-

tionary Algorithm (Zitzler and Thiele 1998), PAES-Pareto

Archived Evolution Strategy (Knowles and Corne 1999),

PESA-Pareto Envelop-based Selection Algorithm (Corne

et al. 2000), MOMGA-Multiobjective Optimization with

Messy Genetic Algorithm (Veldhuizen and Lamont 2000),

PESA-II (Corne et al. 2001), SPEA2 (Zitzler et al. 2002),

NSGA-II (Deb et al. 2002), MOEA/D-Multi-objective

Evolutionary Algorithm based on Decomposition (Zhang

and Li 2007), AGE-Approximation Guided Evolutionary-II

(Wagner and Neumann 2013), NSGA-III (Jain and Deb

2013; Deb and Jain 2014) etc. NSGA-II is a very popular

second-generation elitist MOEA which has significant

applications in the engineering design problems. It is

known of its some of the features like parameter-less

sharing, elitist strategy, classifying the solutions into the

fronts, and less computational complexity. Simulation

results on difficult test problems show that NSGA-II gives

much better convergence and diversity near the true Pareto-

optimal front (Deb et al. 2002) compared to especially

elitists MOEAs like SPEA, PAES. Many MOEAs and their

solution approaches can be viewed in Deb (2001), Konak

et al. (2006), Coello et al. (2007), Das and Panigrahi

(2009), and Zhang and Xing (2017). MOEA approach is

well-suited to multi-objective reliability problems which

are addressed by some researchers such as Salazar et al.

(2006), Taboada et al. (2007), Wang et al. (2009), Kishor

et al. (2009), and Kumar and Yadav (2017).

In this paper, a methodology is proposed to find the best

optimal system design in fuzzy multi-objective reliability

optimization problem. However, Kishor et al. (2009) pro-

posed interactive fuzzy multi-objective reliability opti-

mization problem as per the preference of the Decision-

Maker (DM) using convex-concave, concave-convex, and

sigmoidal shapes of the membership functions, but it does

not give the best trade-off optimal solution which is a

demand of the system design for a practical purpose. This

leads to the motivation for finding the best trade-off or

compromise solution using various combination of lin-

guistic modifiers such as very, more or less and indeed and

FRBS. This is an ideal approach as suggested by Deb

(2001), where an effort is made to find multiple trade-offs

optimal solutions with a wide range of values for the

objectives and then one of the obtained solutions is chosen

using higher-level information. The advantage of using

NSGA-II is to find a well distributive set of Pareto-optimal

solutions in a single simulation run. The proposed approach

shows the efficacy over the existing approach (Ravi et al.

2000), where various kinds of aggregate operators are used

to determine the optimal system design. The proposed

approach is comparatively studied with the existing

approach using box-plot comparison. The rest of the paper

is organized as follows. Section 2 gives some preliminaries

such as basic definitions, fuzzy rule-based system and the

mathematical model of the problem. Section 3 gives a brief

description of the NSGA-II algorithm. Section 4 gives the

proposed methodology with an illustrative example. Sec-

tion 5 gives the results with its discussion and Sect. 6 gives

the conclusions.

2 Preliminaries

Definition 1 In general, an MOOP is defined as follows

(Miettinen 2001):

Minimize F Xð Þ ¼ f1 Xð Þ; f2 Xð Þ; . . .; fk Xð Þ½ �T ð1Þ
subject to X 2 X;

involving k� 2ð Þ conflicting objective functions fi : R
n !

R need to be minimized simultaneously. The decision

(variable) vector X ¼ x1; x2; . . .; xn½ �T2 X � Rn, where X is

the feasible region formed by constraint functions. The

image of the feasible region denoted by Z � Rk and it is
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called a feasible objective region. The elements of Z are

called objective vectors denoted by z ¼
f1 Xð Þ; f2 Xð Þ; . . .; fk Xð Þ½ �T consisting of objective functions

values. If fi is to be maximized, it is equivalent to minimize

�fi. When all the objective and the constraint functions are

linear then the problem is called multi-objective linear

programming problem (MOLPP). If at least one of the

functions is nonlinear then the problem is called a multi-

objective nonlinear programming problem (MONLPP).

Correspondingly, if all the objective functions and the

feasible region are convex then the problem is convex and

if some of the functions are non-convex then the problem is

non-convex. The concept of optimality in the MOOP is

studied in terms of Pareto terminology, which is defined as

follows.

Definition 2 Pareto dominance (Ngatchou et al. 2006;

Coello et al. 2007): A vector X 2 X is said to dominate

another Y 2 X denoted by X�Y iff fi Xð Þ� fi Yð Þ8i ¼
1; 2; . . .; k; and there exists at least one

fj Xð Þ\fj Yð Þ; j 2 1; 2; . . .; kf g; j 6¼ i.

Definition 3 Pareto-optimal solution (Jimenez and Bilbao

2009; Garg and Sharma 2013): A solution vector X 2 X is

said to be Pareto-optimal solution (Pareto optimal) iff there

does not exist another vector X0 2 X which dominates

X 2 X.

Definition 4 Pareto-optimal set (Coello et al. 2007; Garg

and Sharma 2013): The Pareto-optimal set is defined as

PS :¼ X 2 Xj:9X0 2 X : X0�Xf g

Definition 5 Pareto-optimal front (Garg and Sharma

2013; Kumar and Yadav 2019): The Pareto-optimal front is

defined as

PF :¼ F Xð Þ ¼ f1 Xð Þ; f2 Xð Þ; . . .; fk Xð Þ½ �T2 ZjX 2 PS
� �

:

Definition 6 Fuzzy set (Zimmermann 1996): Let X be a

collection of objects generically denoted by x. A fuzzy set
~A in X is a set of ordered pair defined in the form as

~A ¼ x; l ~A xð Þ
� �

: x 2 X
� �

where l ~A : X ! 0; 1½ � is called the membership function

and its function value is called grade of membership of x in
~A.

Definition 7 Linguistic hedge (or modifier) (Zimmer-

mann 1996; Kerre and De Cock 1999): A linguistic hedge

(or a linguistic modifier) is an operation that modifies the

meaning of the term. Suppose ~H is a fuzzy set in X, then

the modifier m generates the composite term ~M ¼ mð ~HÞ.
Modifiers are frequently used in mathematical models as

follows.

Concentration: It decreases the membership grades of all

the members of ~H by spreading in the curve. It is defined

as:

lconð ~HÞ xð Þ ¼ lð ~HÞ xð Þ
� �2

for all x 2 X

Dilation: It increases the membership grades of all

members by spreading out the curve. It is defined as:

ldilð ~HÞ xð Þ ¼ lð ~HÞ xð Þ
� �1=2

for all x 2 X

Contrast intensification: It affects an increase of the

membership grades greater than or equal to 0.5 and a

decrease of the membership grades smaller than 0.5. It is

defined as:

lintð ~HÞ xð Þ ¼
2 lð ~HÞ xð Þ

� �2
� 	

; lð ~HÞ xð Þ 2 0; 0:5½ �

1 � 2 1 � lð ~HÞ xð Þ
� �2

; otherwise

8
><

>:

Therefore, in general, strong and weak modifiers are

given as: md lð ~HÞ xð Þ
� �

¼ lð ~HÞ xð Þ
� �d

= a strong modifier

or concentrator, if d[ 1 and a weak modifier or dilator if

d\1.

The following linguistic hedges are associated with

above mathematical operators: very ~H ¼ conð ~HÞ; more or

less ~H ¼ dilð ~HÞ; Indeed ~H ¼ Intð ~HÞ; plus ~H ¼ ~H1:25;

slightly ~H= int[plus ~H and not (very ~H].

2.1 Fuzzy rule-based system (FRBS)

An FRBS (Cordon 2011) is one of the major applications

of fuzzy set theory. In a broad sense, fuzzy rule-based

system is a system of rule-based, where fuzzy sets and

fuzzy logic are used as tools for representing different

forms of knowledge, modeling the interactions, and rela-

tionships between its variables. The architecture of FRBS

is as shown in Fig. 1. It consists of four principal units: the

fuzzifier module, fuzzy inference engine, knowledge base,

and the defuzzifier module. These units are described as

follows.

• Fuzzifier module: The inputs of the system are usually

given by the crisp values. Since the data manipulation

in FRBS is based on fuzzy set theory, so fuzzification is

necessary. In this process, the numerical values of each

crisp input are converted into a set of the membership

grades defined by the membership functions of the

linguistic values. A knowledge base expert or an

optimization algorithm usually determines the shape
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and distribution of the membership functions on the

universe of discourse.

• Knowledge-base: It contains the knowledge specific to

the domain of application. An FRBS is characterized by

a set of linguistic statements derived by a domain expert

to map inputs to outputs. Domain knowledge is usually

represented in the form of a set of ‘‘IF–THEN’’ rules,

also known as production rules, and it is expressed as:

IF (a set of conditions are satisfied) THEN (a set of

actions can be inferred).

• Inference engine: To deal with the fuzzy information

described above, the fuzzy inference engine employs

the fuzzy knowledge-based methods such as Mamdani,

Sugeno, etc., (Zimmermann 1996; Cordon 2011; Sup-

tami et al. 2019) to simulate human decision-making

and infer outputs.

• Defuzzifier module: This module defuzzifizes the

processed fuzzy data into the crisp data which suits to

real-world applications.

2.2 Mathematical model of the problem

Reliability is one of the crucial design parameters that

affect the system’s performance significantly. Practically,

the problem of system reliability is constructed as a typical

nonlinear programming problem with nonlinear cost

functions. Suppose the system consists of m components,

the reliability of each component is given by rj; j = 1, 2,

…, m and their corresponding costs are denoted by CjðrjÞ.
Moreover, in reliability optimization, we need to be opti-

mized several mutually conflicting objectives subject to

several design constraints. For instance, a design engineer

is asked to improve the system reliability (RS) with the

reduction of system cost (CS) simultaneously. Therefore,

multiple objectives have become an essential part of the

reliability-based design of the engineering systems. In

addition, the cost of reliability is assumed to be a mono-

tonically increasing function of reliability (Aggarwal and

Gupta 1975; Huang et al. 2005). Therefore, a suit-

able multi-objective reliability optimization model (Garg

et al. 2014b) of the system design by considering the sys-

tem reliability and the system cost as objectives is given as

follows:

Maximize RS r1; r2; ; . . .; rmð Þ

¼

Qm

j¼1

rj for series system

or

1 �
Qm

i¼1

1 � rj
� �

for parallel system

or

combination of series and parallel system

8
>>>>>>>>><

>>>>>>>>>:

ð2Þ

Minimize CS r1; r2; . . .; rmð Þ ¼
Xm

j¼1

Cj rj
� �

Or, Minimize ð�RS;CSÞ

subject to rj;min � rj � 1, RS;min �RS � 1, for j ¼ 1; 2; . . .;m.

3 Elitist non-dominated sorting genetic algorithm
(NSGA-II)

Non-dominated sorting genetic algorithm (NSGA) was

initially developed by Srinivas and Deb (1994). NSGA

uses Goldberg’s domination criterion (1989) to rank the

solutions and utilizes fitness sharing approach to maintain

the diversity in the solution set. It has been criticizing

especially for non-elitist approach, high computational

complexity and specifying the sharing parameter. To cope

up these issues, Deb et al. (2002) developed an improved

version of NSGA and called it as NSGA-II by introducing

some new features such as fast non-dominated sorting

algorithm, crowding distance, crowded-comparison

operator.

A fast-non-dominated sorting approach gives the worst-

case computational complexity as O k 2Nð Þ2
� �

, where k is

the number of objectives and N is the population size. This

approach searches iteratively non-dominated solutions into

different fronts. First, for each solution i in the population,

the algorithm calculates two entities:

(i) ni, the number of solutions dominating i,

(ii) Si, a set of solutions dominated by i.

The solutions for which ni ¼ 0 belong to the first front.

Second, for each member j in the set Si, the value of nj is

reduced by one. If any nj is reduced to zero during this

Fig. 1 Architecture of fuzzy

rule-based system
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stage, the corresponding member j is put in the second

front. The above process is continued with each member in

the second front to identify the third front and so on.

Furthermore, NSGA-II applies the concept of crowding-

distance assignment with the worst-case computational

complexity as O k 2Nð Þ log 2Nð Þð Þ. The introduction of

crowding-distance replaces the fitness sharing approach

that requires a sharing parameter to be set by the user. The

crowding-distance of the ith solution in the pth objective

function is denoted by dip and its overall crowding-distance

value is denoted by CDi (See Fig. 2). These values are

calculated as follows:

dip ¼
f iþ1
p � f i�1

p

f maxp � f minp

ð3Þ

CDi ¼
Xk

p¼1

dip ð4Þ

where f iþ1
p and f i�1

p denote the pth objective function of the

iþ 1ð Þth and i� 1ð Þth individual (solution) respectively,

and f maxp and f minp represent the maximum and minimum

values of the pth objective function.

A higher value of crowding-distance gives the lesser

crowded region and vice versa (Deb et al. 2002). So, the

crowding-distance selects the solutions located in less-

crowded regions which are extended up to the entire front

for making diversity in the solution set. Finally, NSGA-II

introduces an elitist strategy with the worst-case compu-

tational complexity O 2N log 2Nð Þð Þ. The elitist strategy

(Zitzler et al. 2000; Laumanns et al. 2002) is used to

enhance the convergence of an MOEA and avoid the loss

of optimal solutions after getting it. In Fig. 3, an evaluation

cycle of the NSGA-II is shown. First, an offspring Qt of

size N is obtained by using the genetic operators such as

selection, recombination, and mutation. A combined pop-

ulation Rt of size 2 N is then formed which consists of the

current population Pt and the offspring population Qt. By

using fast non-dominated sorting, Rt is divided into

different fronts PF1;PF2; . . .;PFl. Let the number of

solutions in each front PFi be Ni. Next, we choose mem-

bers for the new population Ptþ1 from the front PF1 to

PFt�1, noting that N1 þ N2 þ � � � þ Nt [N and

N1 þ N2 þ � � � þ Nt�1 �N. Afterwards, to get the exactly N

population members in Ptþ1, we sort the solutions in front

PFt using the crowding distance sorting procedure and

choose the best solutions to fill any empty slot in the new

population Ptþ1. This process is continued until the ter-

mination condition is satisfied. The pseudo code of the

NSGA-II algorithm is given as follows.

Step 1. Initialize randomly a parent population P0 of size

N. Set t ¼ 0.

Step 2. Assign fitness (rank) according to non-domina-

tion level and crowded-comparison operator.

Step 3. while t\ number of maximum generations do

(i) Create an offspring population Qt of size N apply-

ing selection, crossover, and mutation.

(ii) Combine via Rt ¼ Pt [ Qt.

(iii) Sort on Rt and classifying them into non-domi-

nated fronts PFi, i ¼ 1; 2; . . .; etc.

(iv) Set a new population Ptþ1 ¼ ; and set a counter

i ¼ 1.

while Parent population size Ptþ1j j þ PFij j\N do

(i) Calculate the crowding distance of PFi.

(ii) Add the ith non-dominated front PFi to the parent

population Ptþ1.

(iii) i = i ? 1.

end while

(v) Sort the PFi using the crowding distance-

based comparison operator.

(vi) Fill the parent population Ptþ1 with the first

N � Ptþ1j j solutions of PFi.

(vii) Generate the offspring population Qtþ1.

(viii) Set t ¼ t þ 1.

end whileFig. 2 Fitness evaluation and individual crowding distance estima-

tion of NSGA-II

Fig. 3 Evaluation cycle of the NSGA-II algorithm (Deb et al. 2002)
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Step 4. Collect the non-dominated solutions in vector P.

4 Proposed methodology

The proposed methodology is given step by step as follows.

Step 1. Fuzzification of the given model of the problem.

The values of the first objective RS in (2) belong to [0,

1]. The fuzzy set ~RS is created as per the degree of satis-

faction aR with values of RS. Similarly, the second objec-

tive in (2) is CS and its possible value lies in [0, 1). The

fuzzy set ~CS is created as per the degree of satisfaction aC
with values of CS. The membership functions of ~RS and ~CS

are respectively, defined as:

l ~RS
¼

0;RS �Rl
S

h1 RSð Þ;Rl
S �RS �Ru

S

1;RS �Ru
S

8
<

:
ð5Þ

l ~CS
¼

1;CS �Cl
S

h2 CSð Þ;Cl
S �CS �Cu

S

0;CS �Cu
S

8
<

:
ð6Þ

where Rl
S and Ru

S are the lower and upper limits on RS; C
l
S

and Cu
S are the lower and upper limits on CS; h1 RSð Þ is a

monotonically increasing function of RS; h2 CSð Þ is a

monotonically decreasing function of CS. These values are

determined by the DM according to the actual situation.

Each membership function is required to be maximized so

that it could achieve the maximum degree of satisfaction

(Kumar and Yadav 2017). The shapes of l ~RS
and l ~CS

are

shown in Figs. 4 and 5 respectively. The mathematical

model of the problem given in (2) is reformulated as

follows.

Maximize ðl ~RS
; l ~CS

Þ ð7Þ

or, Minimize ð�l ~RS
;�l ~CS

Þ

subject to rj;min � rj � 1; j ¼ 1; 2; . . .;m

Theorem 1 The Pareto-optimal solutions of the FMOOP

(7) satisfy the MOOP (2).

Proof Let R* be a Pareto-optimal solution vector of (7).

Then by definition of Pareto-optimal solution,

9=R 2 X (feasible region) such that �l ~RS
Rð Þ� �

l ~RS
R	ð Þ and �l ~CS

Rð Þ\� l ~CS
R	ð Þ.

, 9=R 2 X such that �h1 RS Rð Þ½ � � � h1 RS R	ð Þ½ � and

�h2 CS Rð Þ½ �\� h2 CS R	ð Þ½ �
, 9=R 2 X such that h1 RS Rð Þ½ � � h1 RS R	ð Þ½ � and

h2 CS Rð Þ½ �[ h2 CS R	ð Þ½ �
, 9=R 2 X such that RS Rð Þ�RS R	ð Þ and

CS Rð Þ\CS R	ð Þ (since h1 is a monotonically increasing

and h2 is a monotonically decreasing function).

, 9=R 2 X such that �RS Rð Þ� � RS R	ð Þ and

CS Rð Þ\CS R	ð Þ
, R	 2 X is a Pareto-optimal solution of the MOOP

given by (2). h

Step 2. Find the Pareto-optimal solutions (POF) of the

fuzzy multi-objective reliability problem in terms of the

membership grades.

NSGA-II is applied to the FMOOP (7). The POF is

obtained by settings the parameters of NSGA-II such as

crossover probability (pc), mutation probability (pm),

maximum number of generations tmaxð Þ, distribution indi-

ces for crossover ðgcÞ and mutation ðgmÞ. On the basis of

rigorous experiments and tuning of the parameters, the best

POF is obtained.

Step 3. Modify the Pareto-optimal solutions (POF) in

various forms of linguistic hedges.

Linguistic hedges modify the membership function

values of RS and CS as (Indeed high, Indeed low), (Indeed

high, Very low), (Indeed high, Low), (Indeed high, More or

less low), (Very high, Indeed low), (Very high, Very low),

(Very high, Low), (Very high, More or less low), (High,

Indeed low), (High, Very low), (High, low), (High, More or

less low), (More or less high, Indeed low), (More or less

high, Very low), (More or less high, low), (More or less

high, More or less low). It can be defined as follows.Fig. 4 Monotonically increasing membership function for system

reliability

Fig. 5 Monotonically decreasing membership function for system

cost
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Indeed High (IDH): It is a linguistic form of modifier

‘‘intensification’’ applied to ~RS defined by

l ~RS
¼

0; RS �Rl
S

2
RS � Rl

S

Ru
S � Rl

S

� 	2

; Rl
S �RS �ðRu

S þ Rl
SÞ=2

1 � 2 1 � RS � Rl
S

Ru
S � Rl

S

� 	� 	2

; ðRu
S þ Rl

SÞ=2�RS �Ru
S

1; RS �Ru
S

8
>>>>>>><

>>>>>>>:

Very High (VH): It is a linguistic form of modifier

‘‘concentration’’ applied to ~RS defined by

l ~RS
¼

0; RS �Rl
S

RS � Rl
S

Ru
S � Rl

S

� 	2

; Rl
S �RS �Ru

S

1; RS �Ru
S

8
>><

>>:

High (H): It is a linguistic form but no modification is

applied to ~RS which is the linear membership function as:

l ~RS
¼

0; RS �Rl
S

RS � Rl
S

Ru
S � Rl

S

� 	
; Rl

S �RS �Ru
S

1; RS �Ru
S

8
>><

>>:

More or Less High (MOLH): It is a linguistic form of

modifier ‘‘dilation’’ applied to ~RS defined by

l ~RS
¼

0; RS �Rl
S

RS � Rl
S

Ru
S � Rl

S

� 	1=2

; Rl
S �RS �Ru

S

1; RS �Ru
S

8
>><

>>:

Indeed Low (IDL): Similarly, it is a linguistic form of

modifier ‘‘intensification’’ applied to ~CS defined by l ~CS
¼

1; CS �Cl
S

2 	 Cu
S � CS

Cu
S � Cl

S

� 	2

; Cl
S �CS �ðCu

S þ Cl
SÞ=2

1 � 2 	 1 � Cu
S � CS

Cu
S � Cl

S

� 	� 	2

; ðCu
S þ Cl

SÞ=2�CS �Cu
S

0; CS �Cu
S

8
>>>>>>><

>>>>>>>:

Very Low (VL): It is a modifier ‘‘concentration’’ applied

to ~CS defined by

Fig. 6 Flow diagram of the proposed methodology
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Fig. 7 Block diagram of the life-support system

Table 1 Parameter settings for NSGA-II

Population size (N) 60

Maximum number of generations (tmax) 100

Crossover probability (pc) 0.8

Mutation probability (pm) 0.2

Distribution index for crossover ðgcÞ 20

Distribution index for mutation ðgmÞ 80

Random seed 0.9876

Number of design variables 4

Table 2 Linguistic hedges applied to the system reliability RS ¼ ~R1

MOLH H VH IDH

0.1313 0.0172 0.0003 0.0006

0.2076 0.0431 0.0019 0.0037

0.2565 0.0658 0.0043 0.0087

0.3006 0.0903 0.0082 0.0163

0.3501 0.1226 0.0150 0.0300

0.3831 0.1468 0.0215 0.0431

0.4118 0.1696 0.0288 0.0575

0.4373 0.1913 0.0366 0.0732

0.4623 0.2137 0.0457 0.0913

0.4924 0.2425 0.0588 0.1176

0.5100 0.2601 0.0676 0.1353

0.5258 0.2764 0.0764 0.1528

0.5476 0.2998 0.0899 0.1798

0.5641 0.3183 0.1013 0.2025

0.5836 0.3406 0.1160 0.2321

0.6034 0.3641 0.1325 0.2651

0.6235 0.3888 0.1512 0.3024

0.6408 0.4106 0.1686 0.3372

0.6640 0.4409 0.1944 0.3887

0.6820 0.4652 0.2164 0.4328

0.6984 0.4877 0.2379 0.4758

0.7117 0.5065 0.2566 0.5130

0.7321 0.5359 0.2872 0.5693

0.7504 0.5632 0.3172 0.6184

0.7643 0.5842 0.3413 0.6542

0.7871 0.6196 0.3839 0.7106

0.8062 0.6513 0.4225 0.7550

0.8200 0.6723 0.4520 0.7853

0.8335 0.6948 0.4828 0.8137

0.8536 0.7286 0.5309 0.8527

0.8729 0.7620 0.5806 0.8867

0.8856 0.7843 0.6152 0.9070

0.8971 0.8048 0.6477 0.9238

0.9089 0.8261 0.6824 0.9395

0.9241 0.8540 0.7292 0.9573

0.9348 0.8739 0.7638 0.9682

0.9495 0.9015 0.8127 0.9806

0.9566 0.9150 0.8373 0.9856

0.9680 0.9370 0.8780 0.9921

0.9771 0.9547 0.9115 0.9959

0.9813 0.9631 0.9275 0.9973

0.9919 0.9838 0.9678 0.9995

0.9982 0.9964 0.9927 0.9998

Fig. 8 Linguistic hedges applied to ~RS

Fig. 9 Linguistic hedges applied to ~CS
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l ~CS
¼

1; CS �Cl
S

Cu
S � CS

Cu
S � Cl

S

� 	2

; Cl
S �CS �Cu

S

0; CS �Cu
S

8
>><

>>:

Low (L): It is a linguistic form but no modification is

applied to ~CS which is the linear membership function as:

l ~CS
¼

1; CS �Cl
S

Cu
S � CS

Cu
S � Cl

S

� 	
; Cl

S �CS �Cu
S

0; CS �Cu
S

8
>><

>>:

More or Less Low (MOLL): It is a linguistic form of

modifier ‘‘dilation’’ applied to ~CS defined by

l ~CS
¼

1; CS �Cl
S

Cu
S � CS

Cu
S � Cl

S

� 	1=2

; Cl
S �CS �Cu

S

0; CS �Cu
S

8
>><

>>:

Step 4. Construct the composition of fuzzy relations.

Let ~R1 x; yð Þ; x; yð Þ 2 X 
 Y and ~R2 y; zð Þ; y; zð Þ 2 Y 
 Z

be two fuzzy relations. These are constructed as:
~R1 = [MOLH H VH IDH]; ~R2 = [MOLL L VL IDL];

The composition of ~R1 and ~R2 is defined by ‘‘max–min’’ as:
~R ¼ ~R1 � ~R2 ¼ x; zð Þ;maxy min l ~R1

x; yð Þ; l ~R2

��
�

y; zð Þgg�jx 2 X; y 2 Y ; z 2 Zg, l ~R1� ~R2
is the membership

function of a fuzzy relation on fuzzy sets ~RS and ~CS.

The fuzzy relation ~R is 4 by 4 composition matrix called

the matrix of maximum satisfaction level achieved by each

combination of fuzzy relation.

Step 5. Induce the FRBS in each combination.

In this Step, FRBS is induced to infer the output called

the efficiency of the system for each element of the fuzzy

relation ~R. Input variables RS and CS are categorized as

LOW, HIGH, MEDIUM and EXTREME while output ES

(system efficiency) as POOR, BELOW AVERAGE,

GOOD, VERY GOOD, EXCELLENT and OUT-

STANDING. Triangular membership functions are used to

define the membership grades for each variable. Mamdani

type fuzzy inference and centroid defuzzification methods

are adopted in this model. The efficiency matrix of the

system is denoted by ES. The corresponding values of RS

and CS to each element in ~R is substituted in rule-viewer of

MATLAB Fuzzy Logic Toolbox. This value gives the

system efficiency to each relation. The flow diagram of the

proposed methodology is as shown in Fig. 6.

Step 6. Find the best trade-off or compromise solution.

The best compromise solution in the fuzzy relation ~R or

find the best relation in ~R which gives the maximum sat-

isfaction level as well as maximum efficiency in the system

design. It is obtained by max–min composition as well. The

optimal system design is proposed as:

lS;max ¼ ~R � ~ES

Table 3 Linguistic hedges applied to the system cost CS ¼ ~R2

MOLL L VL IDL

0.9998 0.9995 0.9990 0.9999

0.9964 0.9928 0.9856 0.9999

0.9888 0.9777 0.9559 0.9990

0.9811 0.9626 0.9265 0.9972

0.9732 0.9471 0.8970 0.9944

0.9655 0.9321 0.8688 0.9908

0.9553 0.9127 0.8330 0.9847

0.9471 0.8970 0.8045 0.9788

0.9406 0.8847 0.7827 0.9734

0.9288 0.8627 0.7442 0.9623

0.9233 0.8524 0.7266 0.9564

0.9140 0.8354 0.6980 0.9458

0.9028 0.8151 0.6643 0.9316

0.8953 0.8015 0.6424 0.9212

0.8896 0.7913 0.6262 0.9129

0.8770 0.7692 0.5917 0.8935

0.8663 0.7505 0.5632 0.8755

0.8546 0.7303 0.5334 0.8546

0.8419 0.7088 0.5024 0.8304

0.8264 0.6830 0.4665 0.7990

0.8132 0.6613 0.4374 0.7706

0.8036 0.6457 0.4170 0.7490

0.7901 0.6243 0.3898 0.7177

0.7737 0.5986 0.3583 0.6778

0.7600 0.5770 0.3329 0.6422

0.7385 0.5454 0.2975 0.5868

0.7141 0.5099 0.2600 0.5196

0.6991 0.4887 0.2388 0.4776

0.6766 0.4578 0.2096 0.4192

0.6485 0.4205 0.1768 0.3537

0.6194 0.3836 0.1472 0.2943

0.6012 0.3615 0.1307 0.2613

0.5807 0.3373 0.1137 0.2275

0.5536 0.3064 0.0940 0.1878

0.5201 0.2705 0.0732 0.1463

0.4879 0.2381 0.0567 0.1134

0.4430 0.1962 0.0385 0.0770

0.4250 0.1806 0.0326 0.0653

0.3879 0.1504 0.0226 0.0453

0.3449 0.1189 0.0141 0.0283

0.3034 0.0921 0.0085 0.0170

0.2361 0.0557 0.0031 0.0062

0.1078 0.0116 0.0001 0.0003

Int J Syst Assur Eng Manag (October 2019) 10(5):953–972 961

123



where ‘�’ is the composition defined in Step 4.

4.1 Illustration

Let us consider a life support system in a space capsule

(Ravi et al. 2000). This system needs a single path to its

success which contains two redundant subsystems. Each

subsystem connects with two redundant components 1 and

4, and each of the redundant subsystems connects in series

with component 2 and the resultant pair of series–parallel

arrangement forms two equal paths. In order to back up for

the pair, component 3 enters as a third path. This problem

forms a continuous nonlinear optimization problem and

consists of four components, each having component reli-

ability rj; j ¼ 1; 2; 3; 4. The Mathematical model of the life-

support system using block diagram (see Fig. 7) is given as

follows.

Maximize RS ¼ 1 � r3 1 � r1ð Þ 1 � r4ð Þ½ �2� 1 � r3ð Þ
1 � r2 1 � 1 � r1ð Þ 1 � r4ð Þf g½ �2

ð8Þ

Minimize CS ¼ 2
X4

j¼1

Kjr
aj
j

subject to 0:5� rj � 1; j ¼ 1; 2; 3; 4

where different parameters values of Kj, as K1 ¼ 100;K2 ¼
100;K3 ¼ 200;K4 ¼ 150 and aj as

a1 ¼ a2 ¼ a3 ¼ a4 ¼ 0:6.

The problem is posed as ‘‘Maximize system reliability

as close as possible to 1 with approximate system cost of

641.8 (cost units)’’.

The MOOP given in (8) is reformulated as FMOOP:

Maximize l ~RS
; l ~CS

� �
ð9Þ

subject to 0:5� rj � 1; j ¼ 1; 2; 3; 4;

where the linear membership functions of RS and CS are

given by

l ~RS
¼

0; RS � 0:9
RS � 0:9

0:99 � 0:9
; 0:9�RS � 0:99

1; RS � 0:99

8
><

>:
ð10Þ

l ~CS
¼

1; CS � 641
700 � CS

700 � 641
; 641�CS � 700

0; CS � 700

8
><

>:
ð11Þ

5 Results and discussion

After applying the proposed approach, the results are

graphically shown. The parameter settings for the NSGA-II

algorithm are given in Table 1. NSGA-II is applied to the

FMOOP (9). Here, Population size is taken as 60, out of

which 43 solutions are found non-dominated. Linguistic

hedges applied to the given problem are as shown in

Figs. 8 and 9. Tables 2 and 3 give the list of linguistic

hedges values applied to a set of optimal values. The POFs

for all possible cases are demonstrated in Fig. 10. Table 4

gives a composite relation (or maximum satisfaction level)

to each possible combination of linguistic hedges. The

proposed FRBS model (see Fig. 11) is then invoked in each

possible case. Table 5 gives encoding rules for the FRBS.

In Fig. 12, the domain of input variables changes dynam-

ically in each case and its output shows as a surface plot

correspondingly. On the basis of maximum satisfaction

level ðlmaxÞ, the optimal values of input variables RS and

CS are obtained. These values are put in the rule-viewer of

MATLAB Fuzzy Logic Toolbox (Coleman et al. 1999) of

FRBS for getting the efficiency of the system. Finally,

Table 6 gives the list of the optimal solutions and their

efficiencies towards the system. The DM can use this

information of his/her own perspectives in the decision-

making. From Table 6, it is observed that (MOLH, MOLL)

achieves the maximum satisfaction level highest at

0.75962, while (IDH, L) achieves the maximum satisfac-

tion level lowest at 0.00059. From the efficiency point of

view, (VH, L) reaches the highest efficiency at 59% and

(MOLH, MOLL) reaches the lowest efficiency at 53.9%. It

is also observed that (VH, MOLL) attains the highest

lS;max ¼ 0:582 with maximum satisfaction level at 0.60123

and its efficiency at 58.2%. This value is obtained as the

best optimal value in all the possible cases by the proposed

Table 4 Composition matrix ~R ¼ ~R1 � ~R2

MOLH H VH IDH

MOLL 0.7596 0.6820 0.5917 0.7177

L 0.6766 0.5770 0.4652 0.5868

VL 0.6012 0.4578 0.3329 0.4520

IDL 0.7141 0.0006 0.4374 0.6422

cFig. 10 POFs obtained on the basis of all possible combinations of

linguistic hedges
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approach. Ravi et al. (2000) solved this problem using

various kinds of aggregate operators to look into the

impacts of system design and different optimal designs are

found. The proposed approach does not need any kinds of

aggregators in the formulation of the FMOOP and solves

the problem in purely multi-objective manner as suggested

by Deb (2001). Figure 13 shows a box-plot comparison

between the optimal values obtained by Ravi et al. (2000)

and the proposed approach.

6 Conclusions

In this paper, a methodology is developed to provide the

best optimal system design in the fuzzy multi-objective

reliability optimization problem. FMOOP is solved by an

elitist MOEA, namely, NSGA-II and the Pareto-optimal

solution set is obtained in terms of the membership grades.

After that, linguistic hedges are used to modify the solution

set in various cases and FRBS is invoked effectively to find

the system efficiency in each case. The conclusions of the

proposed approach are drawn as follows:

• The proposed approach does not require any kind of

aggregator operators and deals with the problem in a

purely multi-objective manner.

• The advantage of using NSGA-II is to get a well-

distributive solution set in one simulation run, where

Fig. 10 continued
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Table 5 Encoded-rules for the

FRBS
1. If (RS is LOW) and (CS is LOW) then (EFFICIENCY is G) (1)

2. If (RS is LOW) and (CS is MEDIUM) then (EFFICIENCY is A) (1)

3. If (RS is LOW) and (CS is HIGH) then (EFFICIENCY is BA) (1)

4. If (RS is LOW) and (CS is EXTREME) then (EFFICIENCY is P) (1)

5. If (RS is MEDIUM) and (CS is LOW) then (EFFICIENCY is VG) (1)

6. If (RS is MEDIUM) and (CS is MEDIUM) then (EFFICIENCY is G) (1)

7. If (RS is MEDIUM) and (CS is HIGH) then (EFFICIENCY is A) (1)

8. If (RS is MEDIUM) and (CS is EXTREME) then (EFFICIENCY is BA) (1)

9. If (RS is HIGH) and (CS is LOW) then (EFFICIENCY is E) (1)

10. If (RS is HIGH) and (CS is MEDIUM) then (EFFICIENCY is VG) (1)

11. If (RS is HIGH) and (CS is HIGH) then (EFFICIENCY is G) (1)

12. If (RS is HIGH) and (CS is EXTREME) then (EFFICIENCY is A) (1)

13. If (RS is EXTREME) and (CS is LOW) then (EFFICIENCY is O) (1)

14. If (RS is EXTREME) and (CS is MEDIUM) then (EFFICIENCY is E) (1)

15. If (RS is EXTREME) and (CS is HIGH) then (EFFICIENCY is VG) (1)

16. If (RS is EXTREME) and (CS is EXTREME) then (EFFICIENCY is G) (1)

Fig. 11 The proposed FRBS model
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the DM gets more information such as non-dominated

and their characteristics.

• Various combinations of linguistic hedges (or modi-

fiers) are applied to determine the optimal system

design and FRBS is used to evaluate its efficiency.

Fig. 12 Surface viewer plot for each combination of linguistic hedges
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Fig. 12 continued
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• The optimal system design obtained by the combination

(MOLH, MOLL) gives the highest maximum satisfac-

tion (achievement) level, while (IDH, L) gives the

lowest.

• From an efficiency point of view, (VH, L) gives the

maximum system efficiency, while (MOLH, MOLL)

gives the minimum.

• The combination (VH, MOLL) gives the best optimal

system design in all possible cases.

• A box-plot comparison shows that the proposed

approach gives a better spread of the optimal values

in the entire search space compared to the existing

approach.

• The proposed approach gives flexibility to the DM for

choosing the best optimal system design of his/her own

interests.

• The proposed approach can be extended to other high

levels of uncertainty techniques such as type-2 fuzzy

set, intuitionistic fuzzy set, LR type intuitionistic fuzzy

set, interval-valued intuitionistic fuzzy set, etc.

• The proposed approach may be useful to determine the

optimal design in an engineering system.
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