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Abstract We study statistical inference of the inverted

exponentiated Rayleigh distribution under progressively

first-failure censoring samples in our paper. Specifically,

we deal with Maximum likelihood and Bayes estimators of

parameters. The observed Fisher matrix is conducive to

obtain asymptotic confidence interval. Parametric bootstrap

methods are applied to provide the confidence intervals.

Bayes estimators in terms of squared error loss function are

derived with Metropolis–Hastings technique, which are

helpful to construct highest posterior density credible

intervals. We compare the behavior of various estimators

by conducting Monte Carlo simulations. A set of actual

data is analyzed to introduce the proposed methods.

Keywords Maximum likelihood estimation � Parametric

bootstrap � Metropolis–Hastings algorithm � Progressively
first-failure censoring

1 Introduction

The definition of Rayleigh distribution was originally given

by Rayleigh who concerned a problem about the area of

acoustics, which was a particular form of the Weibull

distribution. Its hazard rate function would grow linearly

over time. Due to this important property, Rayleigh dis-

tribution is indispensable in numerous application fields.

Some applications of Rayleigh distribution could be found

in construction of physics model fields, for instance, sound

radiation, ray radiation, wave heights and wind speed.

Considering that Rayleigh distribution could exactly rep-

resent Instantaneous state, one would use it to describe

instantaneous peak values in communication theory, see

Gómez-Déniz and Gómez-Déniz (2013). Polovko (1968)

and Dyer and Whisenand (1973) pointed out that Rayleigh

distribution played a significant role in Electronic Vacuum

Devices and Communication Engineering such as the

swing of radio noise and envelopes of certain stochastic

processes, which had probability density function of Ray-

leigh. In addition, the Rayleigh distribution fits very well

with the model that grew rapidly over time. So it is very

popular in probability and statistics. It is widely used as a

useful life model in the field of reliability, while it applies

in other sciences, including operations, statistics and biol-

ogy. In the recent past, the distributions associated with the

Rayleigh distribution have attracted the attention of many

authors. Raqab and Madi (2009) considered informative

and non-informative priors to get estimation and prediction

of the exponentiated Rayleigh model. Mahmoud and

Ghazal (2016) proposed estimations of exponentiated

Rayleigh distribution with type-II censoring model. Also,

Kundu and Raqabb (2005) introduced different estimation

procedures to estimate the unknown parameter(s) of gen-

eralized Rayleigh distribution. Wu (2006) discussed the

problem of accepting the sampling scheme when the

samples came from the generalized Rayleigh distribution.

Apart from that, Ali (2015) derived the Bayesian estima-

tion for inverted Rayleigh distribution. Soliman et al.

(2010) obtained estimation and prediction under lower

record values for the inverted Rayleigh distribution. In a

recent study, Rastogi and Tripathi (2014) showed that the

estimation of unknown parameters using type-II
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progressive censoring, meanwhile the distribution was

inverted exponentiated Rayleigh distribution.

We note that the hazard rate of inverted exponentiated

Rayleigh distribution is not monotonous. In view of

numerous practical situations, it is universal that hazard

rate is nonmonotone. Therefore, we are interested in the

inverted exponentiated Rayleigh distribution when the

observed data is progressive first-failure censored. To the

best of our knowledge, there is no research about this case.

We consider the estimation of the parameters for the

inverted exponentiated Rayleigh distribution by using the

progressive first failure censored sample. The failure rate

function of the inverted exponentiated Rayleigh distribu-

tion is unimodal. With the help of the advantage, the

inverted exponentiated Rayleigh distribution is favored by

many statisticians. In fact, the lifetime of electrical and

mechanical components, the treatment of hospital patients

will change with time, and is not only decreasing with the

growth of time. Therefore, inverted exponentiated Ray-

leigh distribution can be used to fit the data, because its

failure rate function is not monotonous. When we estimate

the parameters of the inverted exponentiated Rayleigh

distribution, the progressive first-failure censoring is used

to obtain samples. The progressive first-failure censoring

sample is the most time saving and cost efficient sampling

method in the known censored modes. This method of

obtaining samples can help us save experimental costs and

carry out experiments at a fast speed.

In consideration of cost and time, many experimenters

pay more attention on censoring in life testing of reliability

analysis, such as Aslam et al. (2018), Aslam et al. (2019)

and Sajid Ali and Butt (2019). More importantly, deletion

is reasonable. Aslam et al. (2018), Muhammad (2018),

Aslam (2019) and Aslam and Arif (2018) have studied it.

The most common censoring schemes have been used

widely by many authors with all kinds of lifetime models,

which are type-I and type-II censoring, one can refer to

Kay (1976), Aslam et al. (2018) and Sinha (1986). How-

ever, there is a more popular censoring scheme, progres-

sive censoring that could removal test units at time points

not final terminal point by Balakrishnan and Aggarwala

(2000), Nasrullah Khan (2018) applied this censoring

method. And more, Balasooriya (1995) proposed that

experimenter could divide the test items into several groups

in order to cut short the time and cost of experiment.

However, the more attractive censoring is uniting the

characteristics of progressive censoring and grouping

censoring into a better censoring, namely, progressive first-

failure censoring scheme, Wu and Kus (2009) explained it

in detail. Some recent studies, one can refer to Soliman

et al. (2011) and Soliman et al. (2012).

The cumulative distribution funcution(cdf) of inverted

exponentiated Rayleigh distribution(IERD), denotes by

IERD ða; bÞ, is written as

Fðx; a; bÞ ¼ 1� 1� e�ðb=x2Þ
� �a

; x; a; b[ 0 ð1:1Þ

a is a shape parameter, the scale parameter as b. And

corresponding probability density function (pdf) can be

given by

f ðx; a; bÞ ¼ 2abx�3e� b=x2ð Þ 1� e�ðb=x2Þ
� �a�1

; x; a; b[ 0

ð1:2Þ

Next, we give the IERD’s reliability and failure rate fun-

cutions, respectively,

rðtÞ ¼ 1� eðb=t
2Þ

� �a
; t[ 0; ð1:3Þ

hðtÞ ¼ 2abt�3e�ðb=t2Þ 1� e�ðb=t2Þ
� ��1

; t[ 0 ð1:4Þ

Figure 1 shows the failure rate of inverted exponentiated

Rayleigh distribution for a ¼ 0:5; 0:8; 1 and b ¼ 1. It is not

hard to find that failure rate of IERD is nonmonotone.

We should firstly define this progressively first-failure

censored scheme as below: we assume there are n inde-

pendent groups in a life experiment, each of which has k

units. Once the first failed group is discovered, we will

remove the group and R1 groups from the experiment, and

the second failed group has taken place while R2 groups

and the group are got rid of samples at random, which is

discovered the second failure, and so on. The procedure

would work m times, then we can get

x1:m:n:k\x2:m:n:k\ � � �\xm:m:n:k with the progressively

censoring scheme R ¼ ðR1;R2; . . .;RmÞ as progressively

first-failure censoring order statistics, which comes from a

population with pdf f ð�Þ and cdf Fð�Þ. For simplicity, we

shall utilize xi to take place of xi:m:n:k. It is obvious that

mþ R1 þ R2 þ � � � þ Rm ¼ n. The joint pdf with progres-

sively first-failure censoring dataset was derived by Wu

and Kus (2009):

f ðx1; x2; . . .; xmÞ ¼ Ckm
Ym
i¼1

f ðxiÞð1� FðxiÞÞkðRiþ1Þ�1;

ð1:5Þ

0\x1\x2\ � � �\xm\1:
C ¼ nðn� R1 � 1Þðn� R1 � R2 � 1Þ � � � ðn� R1 � R2

� � � � � Rm�1 � mþ 1Þ. Note that the censored

scheme R ¼ ðR1;R2; . . .;RmÞ could be determined in

advance.

Obviously, if k ¼ 1 and R1 ¼ R2 ¼ � � � ¼ Rm ¼ 0, the

progressively first-failure censored scheme becomes the

complete sample. With group size k ¼ 1, the scheme de-

velops into the progressively type-II censoring. Also, when
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R ¼ ðR1 ¼ R2 ¼ � � � ¼ Rm�1 ¼ 0Þ and Rm ¼ n� m, the

progressively first-failure censoring scheme is changed into

first failure type-II sample, and it corresponds to first fail-

ure censored sample and let R ¼ ð0; . . .; 0Þ . And more

interesting, this censoring plan can be regarded as tradi-

tional type-II censoring plan while k ¼ 1 and

R ¼ ð0; . . .; n� mÞ. Hence, progressively first-failure cen-

sored is a generalization of censoring whose advantages is

considering test cost and time.

The structure of article is as below. Section 2 deals with

MLEs, which uses the observed Fisher information matrix

to obtain parameters’asymptotic confidence intervals (CI)

and coverage probabilities (CP). We provide the parametric

bootstrap CIs of the parameters with constructing the

censoring sample in Sect. 3. Section 4 discusses Bayesian

estimators of parameters, and we cover the Bayes estima-

tions using Metropolis–Hastings (M–H) technique to gain

highest posterior density (HPD) credible intervals of

parameters in the same section. Section 5 adopts a method

of simulation study by Monte Carlo. It is applied in order to

evaluate the performance of different censored schemes,

group number and group sizes. Finally, we illustrate all the

methods of this article by a real dataset in the last Section.

2 Maximum likelihood estimation

2.1 Point estimation

x1; x2; . . .; xm can be seen as a censoring sample, which is

from the inverted exponentiated Rayleigh distribution

ða; bÞ whose censoring scheme is R. Using Eqs. (1.1), (1.2)

and (1.5), the likelihood function can be obtained

Lða; bÞ ¼ ckm2mambm
Ym
i¼1

x�3
i e

Pm

i¼1
b=x2i e

Pm

i¼1
fakðRiþ1Þ�1g ln 1�e

�b=x2
i

� �
:

ð2:1Þ

We can also write the log-likelihood function as

logLða; bÞ / m lnðaÞ þ m lnðbÞ � b
Xm
i¼1

1

x2i

� �

þ
Xm
i¼1

fakðRi þ 1Þ � 1g ln 1� e�b=x2i
� � ð2:2Þ

By taking derivatives from Eq. (2.2) with respect to a and

b, then equating to zero in order to get the equations:

o logLða; bÞ
oa

¼ m

a
þ
Xm
i¼1

kðRi þ 1Þ ln 1� e�b=x2i
� �

¼ 0;

ð2:3Þ

o logLða; bÞ
ob

¼ m

b
�
Xm
i¼1

1

x2i

þ
Xm
i¼1

1

x2i

akðRi þ 1Þ � 1

1� e�b=x2
i

e�b=x2i ¼ 0:

ð2:4Þ

From Eq. (2.3) obtain that

â ¼ � mPm
i¼1 kðRi þ 1Þ ln 1� e�b=x2

i

� � ; ð2:5Þ

Then replacing the Eq. (2.4) with Eq. (2.5)

m

b
�
Xm
i¼1

1

x2i

� �

þ
Xm
i¼1

1

x2i

�mfkðRi þ 1Þ � 1g
f
Pm

i¼1 kðRi þ 1Þ ln 1� e�b=x2
i

� �
g 1� e�b=x2

i

� � e�b=x2i ¼ 0:

ð2:6Þ

The b̂ can be got with the help of Newtown-Raphson

iteration method. At the same time, with the invariance

character of MLEs, r(t) and h(t) can be derived at a pre-

determined time t
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IERD when b ¼ 1
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rðtÞ ¼ 1� e�ðb̂=t2Þ
� �â

ð2:7Þ

hðtÞ ¼ 2âb̂t�3e� b̂=t2ð Þ 1� e�ðb̂=t2Þ
� ��1

ð2:8Þ

Here, t[ 0.

2.2 Confidence interval estimation

On the base of likelihood equation, this section infers

observed Fisher information (OFI). We rename h ¼ ða; bÞ,
we can obtain h0s Fisher information matrix

IðhÞ ¼ E

� o2 log Lða; bÞ
oa2

� o2 logLða; bÞ
oaob

� o2 log Lða; bÞ
oboa

� o2 logLða; bÞ
ob2

2
6664

3
7775

Here,

o2 log Lða; bÞ
oa2

¼ � m

a2

o2 log Lða; bÞ
ob2

¼ � m

b2
�
Xm
i¼1

fkaðRi þ 1Þ � 1ge�b=x2i

x4i 1� e�b=x2
i

� �2

o2 log Lða; bÞ
oaob

¼ o2 log Lða; bÞ
oboa

¼
Xm
i¼1

kðRi þ 1Þe�b=x2i

x2i 1� e�b=x2
i

� �2

We use OFI matrix in our calculations, not the Fisher

information matrix, because the expectation of the above

expressions are hard to solve. The OFI matrix is obtained

as IðĥÞ wtih ĥ ¼ ðâ; b̂Þ

IðĥÞ ¼
� o2 log Lða; bÞ

oa2
� o2 log Lða; bÞ

oaob

� o2 log Lða; bÞ
oboa

� o2 log Lða; bÞ
ob2

2
6664

3
7775
h¼ĥ

Next, the inverted of OFI matrix is the observed variance-

covariance matrix of MLEs we need,

I�1ðĥÞ ¼
^VarðâÞ ^Covðâ; b̂Þ
^Covðb̂; âÞ ^Varðb̂Þ

" #

The asymptotic distribution of ĥ is a normal distribution as

ĥ�Nðh; I�1ðĥÞÞ by Lawless (2011) given, which estima-

tion method is MLE. Therefore, bivariate normal distri-

bution as 100ð1� eÞ% CI for h is ĥ� ze=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
^VarðĥÞ

q
. And

the CP can be gained by Monte Carlo simulation as

CPh ¼ P
ðĥ� hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

^VarðĥÞ
q

							

							
� ze=2

2
64

3
75

where the right ðe=2Þth percentile of standard normal dis-

tribution as ze=2, and h could be a or b.

3 Bootstrap estimation for confidence intervals

Obviously, the CIs with asymptotic normal is executed

well in view of the large effective sample m. Nevertheless,

the sample m in the actual situation is not always large. The

bootstrap method would be a wise choice. In this section,

we propose two parametric bootstrap algorithms: (I) per-

centile bootstrap (Boot-p) method utilizes theory of Efron

(1982) and (II) percentile bootstrap-t (Boot-t) method in

view of Hall (1988). We show the bootstrap procedures

below.

3.1 Boot-p method

(1) Step 1: Compute MLEs ðâ; b̂Þ with the original

sample x1; x2; . . .; xm, where n, k and R are the

amount of groups, the size of each group and cen-

sored schemes, respectively.

(2) Step 2: Use ðâ; b̂Þ to create an independent sample,

which in order to compute the MLEs ðâ�; b̂�Þ.
(3) Step 3: Repeat N times of Step 2, we can acquire a

series of bootstrap estimates ðâ�i ; b̂
�
i Þ, i ¼ 1; 2; . . .;N.

(4) Step 4: The 100ð1� 2�Þ% Boot-p CI of â is provided
as

ðâ�Boot�pð�Þ; â
�
Boot�pð1��ÞÞ

after ordering â�ð1Þ � â�ð2Þ � ; . . .; � â�ðmÞ. As for b, we

can use the same method to gain the similar result.

3.2 Boot-t method

The initial two steps of Boot-t method are alike as Boot-p

method.

(3) Step 3: Do last step N times to compute a series of

statistics:

T�
ai ¼

ðâ�Þ � âffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1ðâ�Þ

p

i ¼ 1; 2; . . .;N.

(4) Step 4: The circa 100ð1� 2�Þ% Boot-t CI of â is

given by

ðâ� T�
aBoot�tð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1ðâ�Þ

q
; âþ T�

aBoot�tð1��Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1ðâ�Þ

q
Þ

after ordering T�
ða1Þ � T�

ða2Þ � ; . . .; � T�
ðamÞ:
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Similarly, the same approach is used to b would achieve

the confidence interval of b.

4 Bayesian estimation

Although the traditional methods of estimation are always

effective, it is possible to appear hard in mathematical. In

the other hand, the simulation method would acquire more

attention, for example, Markov Chain Monte Carlo

(MCMC). And mroe, the simulation can get point estima-

tion, at the same time, provide the interval estimation. For

parameter estimation we have considered squared error

loss function. We suppose that gamma priors for both a; b:

p1ðaÞ ¼
ba

CðaÞ a
a�1e�ba; a[ 0; a[ 0; b[ 0; ð4:1Þ

p2ðbÞ ¼
dc

CðcÞ b
c�1e�db;b[ 0; c[ 0; d[ 0: ð4:2Þ

here a, b, c, d reflect prior knowledge about parameters.

The model shall more flexible because of hyper-parame-

ters, and when the super-parameters are zero, which is the

non-informative prior. In addition, the prior distribution of

gamma distribution is very reasonable, many authors have

applied this prior, see Gupta and Singh (2013) and Almu-

tairi et al. (2015). The posterior distribution of parameters

can be given with combining the likelihood function and

the prior distributions

ha;bða; bjdataÞ ¼
lðdataja; bÞp1ðaÞp2ðbÞR1

0

R1
0

lðdataja; bÞp1ðaÞp2ðbÞdadb
ð4:3Þ

the joint posterior can be written as

ha;bða; bjdataÞ / amþa�1bmþc�1

Ym
i¼1

e�bi=x
2
i

1� e�bi=x
2
i

e �a½b�
Pm

i¼1
kðRiþ1Þ lnð1�e

�bi=x
2
i Þ��db


 �

ð4:4Þ

Because we don’t have enough prior information, so con-

sider a ¼ b ¼ c ¼ d ¼ 0. Next, we should give the mar-

ginal posterior distributions of parameters a; b,
respectively:

haða; bjdataÞ / amþa�1e �a½b�
Pm

i¼1
kðRiþ1Þ lnð1�e

�bi=x
2
i Þ�


 �

ð4:5Þ

hbða;bjdataÞ / bmþc�1
Ym
i¼1

e�bi=x
2
i

1� e�bi=x
2
i

e
Pm

i¼1
akðRiþ1Þ lnð1�e

�bi=x
2
i Þ�db


 �

ð4:6Þ

We can find that haða; bjdataÞ is a gamma density whose

parameters are ðmþ a;b�
Pm

i¼1 kðRi þ 1Þ lnð1� e�bi=x
2
i ÞÞ,

it’s not difficult to use any gamma generating algorithm to

obtain samples of a. However, the samples of b are not

directly to get by standard approaches. For this reason, we

consider to apply Metropolis–Hastings algorithm.

4.1 Point estimation of Metropolis–Hastings

algorithm

There are many methods to solve Bayesian estimation, for

example, Lindley’s method, importance sampling proce-

dure and Metropolis–Hastings algorithm (M–H). However,

M–H is more attractive than other two methods, because:

(I) the numerical procedures and computational are relative

straightforward, (II) it provides point estimations, also

gives HPD intervals for parameters, and (III) it allows a full

analysis of the data. M–H approach is more flexible, simple

and effective. For applications of the algorithm, one can

refer to Dey and Pradhan (2014).

M–H approach is developed by Metropolis et al. (1952)

and later extended by Hastings (1970), and now it is a more

popular MCMC method. The M–H algorithm works as

below:

(1) Step 1: give an initial surmise of b0 and make t=1.

(2) Step 2: Crate at by using Gamma

ðmþ a; b�
Pm

i¼1 kðRi þ 1Þ lnð1� e�bi=x
2
i ÞÞ.

(3) Step 3: Crate b� from hbða; bjdataÞ with the proposal

distribution Nðbt�1; r2Þ, where r2 is the variance of

b.

(4) Step 4: Calculate qðb�jbt�1Þ ¼ min

f f ðb�jxÞqðbt�1jb�Þ
f ðbt�1jxÞqðb�jbt�1Þ

; 1g:

(5) Step 5: Take t from Uniform(0,1).

(6) Step 6: If t� qðb�jbt�1Þ then bt ¼ b�, otherwise

bt ¼ bt�1.

(7) Step 7: let t ¼ t þ 1:

(8) Step 8: Repeat Step 2–7 N times.

We discardM initial samples in order to get an independent

sample. Thus, the approximate Bayes estimation of h ¼
ða; bÞ is obtained as

ĥMH ¼ 1

N �M

XN
j¼Mþ1

hj

4.2 Highest posterior density credible interval

The point estimation does not take the sampling error into

consideration. It is difficult to make a judgement by simply
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relying on one value in the case of the inevitable occur-

rence of the sampling error. The advantage of interval

estimation will be highlighted at this case. Interval esti-

mation takes into account the sampling error on the basis of

point estimation, and ensures that the error does not exceed

a given range with a certain probability. So interval esti-

mation provides more reliable information.

With the help of the Bayesian point estimation in the last

section, we will build the HPD credible interval for

parameter h based on the previously used MCMC method.

In the last section, we have got N �M values of h. By
sorting the hNþ1; hNþ2; . . .; hM , a series of ordered values

hðNþ1Þ\hðNþ2Þ\; . . .;\hðMÞ can be obtained. Therefore,

we can construct a HPD credible interval for h. The strict

theory of this method proof, one can see Chen and Shao

(1999). Soliman et al. (2010), Soliman et al. (2012) and

Dube et al. (2016) also apply this method to construct the

HPD credible intervals of parameters. In the case of setting

the set letter level d, the 100ð1� 2dÞ% HPD credible

interval of h as follows:

ðh½dðN�MÞ�; h½ð1�dÞðN�MÞ�Þ ð4:7Þ

where h½dðN�MÞ� is the number ½d � ðN �MÞ� value of

hðNþ1Þ\hðNþ2Þ\; . . .;\hðMÞ, and ½d � ðN �MÞ� is the

integral part of d � ðN �MÞ.

5 Simulation study

We conduct the simulation study to compare the behavior

of the different estimates for diverse censored schemes

with various group sizes and number of groups, and dif-

ferent priors with different criterions in this section. We

assess the performance of MLEs and Bayes estimations in

view of bias and mean squares errors (MSE). In addition,

we analyse some interval estimates of asymptotic CIs,

bootstrap CIs and HPD credible intervals in respect of the

average confidence lengths (AL), and CP. When computing

the Bayes estimator, we suppose the two priors:

(1) Prior 1: a ¼ b ¼ c ¼ d ¼ 0,

(2) Prior 2: a ¼ b ¼ c ¼ d ¼ 1.

It is clear that prior 2 carries more information, comparing

with prior 1. Six censoring schemes (CS) and four com-

binations of (k, n, m) are considered, they are list next.

(1) six CS: (25, 0 * 24), (1 * 25), (0 * 24, 25), (20, 0 *

29), ((2, 0, 0) * 10), (0 * 29, 20),

(2) four (k, n, m) : (2, 50, 25), (2, 50, 30), (3, 50, 25), (3,

50, 20).

where (1 * 25) means that (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Tables 1 and 2 report the results above average absolute

bias and MSE with MLEs and Bayes estimate of a; b when

a ¼ 0:5; b ¼ 1. From Tables 1 and 2, we have the fol-

lowing conclusions:

(1) with the increasing of group size k, the MSE would

not decrease, however, bias and MSE will decrease

with effective m increasing;

(2) Bayesian estimators based on informative prior

perform better than non-informative prior;

(3) Bayes estimate is better than MLEs in terms of MSE.

The estimated values ^rðtÞ and ^hðtÞ are presented in

Tables 3 and 4. One can note that

(1) all the cases show underestimating of ^rðtÞ and vice

versa for ^hðtÞ;
(2) as group size k increasing and sample size m is

decreasing, the estimates of both MLEs and Bayes

are increasing according as bias and MSE;

(3) Bayes estimates obtained with informative prior is

outperform.

The AL and CP of the parameter a; b in Tables 5 and 6.

And, we can see that

(1) the AL of asymptotic CIs, bootstrap CIs and HPD

credible intervals would become narrow as effective

sample size m and group size k increasing;

(2) Bayes estimates work better than MLEs with a view

to AL and CP, especially the information priori

Bayesian performance very great;

(3) bootstrap CIs are worse than other CIs in accordance

with AL and CP at the case of not large effective

sample.

6 Real data

We seek out a real dataset, which helps us to illustrate the

estimations of our paper. At first, we will analyze the

strength data set, which is initially used by Badar and Priest

(1982). The data of numerical example gave the strength

meterage in GPA of single carbon fibers, and impregnates

1000-carbon fiber tows, which was tested under tension at

gauge lengths of 10mm. The dataset is given in Table 7.

This data was analyzed previously by Kundu and Gupta

(2006) and Kundu and Gupta (2005).

Before progressing further, we verify the inverted

exponentiated Rayleigh distribution to the data, which is

removed the first data and is subtracted 0.75 from the data

in order to group the dataset, and compare its fitting with

inverted exponentiated exponential (IEER) and inverted

exponentiated Pareto distributions (IEPD). The pdfs of

them as follows:
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Table 1 Bias and MSE of MLE

and Bayes estimate of the a
assume a ¼ 0:5;b ¼ 1

(k, n, m) CS âML âBayes âBayes

Prior 1 Prior 2

Bias MSE Bias MSE Bias MSE

(2, 50, 25) (25, 0 * 24) 0.0587 0.0306 0.0313 0.0273 0.0499 0.0271

(1 * 25) 0.0871 0.0552 0.0521 0.0403 0.0685 0.0408

(0 * 24, 25) 0.0872 0.0905 0.0713 0.0722 0.0910 0.0623

(2, 50, 30) (20, 0 * 29) 0.0457 0.0224 0.0259 0.0212 0.0369 0.0203

((2, 0, 0) * 10) 0.0687 0.0372 0.0355 0.0307 0.0428 0.0260

(0 * 29, 20) 0.0692 0.0492 0.0534 0.0484 0.0656 0.0356

(3, 50, 25) (25, 0 * 24) 0.0989 0.0359 0.0272 0.0283 0.0530 0.0307

(1 * 25) 0.1056 0.1158 0.0654 0.0609 0.0830 0.0537

(0 * 24, 25) 0.1305 0.1429 0.1116 0.1716 0.1027 0.0738

(3, 50, 30) (1 * 25) 0.0522 0.0249 0.0201 0.0218 0.0333 0.0196

((2, 0, 0) * 10) 0.0558 0.0434 0.0343 0.0321 0.0554 0.0328

(0 * 29, 20) 0.0596 0.0577 0.0634 0.0611 0.0850 0.0462

Table 2 Bias and MSE of MLE

and Bayes estimate of the b
assume a ¼ 0:5;b ¼ 1

(k, n, m) CS b̂ML b̂Bayes b̂Bayes

Prior 1 Prior 2

Bias MSE Bias MSE Bias MSE

(2, 50, 25) (25, 0 * 24) 0.0638 0.0672 - 0.0013 0.0616 0.0263 0.0557

(1 * 25) 0.0915 0.0781 0.0160 0.0571 0.0425 0.0525

(0 * 24, 25) 0.0790 0.0872 0.0169 0.0719 0.0412 0.0598

(2, 50, 30) (20, 0 * 29) 0.0680 0.0584 0.0112 0.0548 0.0135 0.0464

((2, 0, 0) * 10) 0.0799 0.0664 0.0136 0.0501 0.0135 0.0454

(0 * 29, 20) 0.0747 0.0756 0.0071 0.0580 0.0425 0.0530

(3, 50, 25) (25, 0 * 24) 0.0529 0.0573 - 0.0004 0.0466 0.0291 0.0460

(1 * 25) 0.0697 0.0693 0.0123 0.0518 0.0310 0.0456

(0 * 24, 25) 0.0911 0.0783 0.0291 0.0674 0.0343 0.0545

(3, 50, 30) (1 * 25) 0.0614 0.0503 - 0.0047 0.0413 0.0158 0.0366

((2, 0, 0) * 10) 0.0520 0.0517 0.0011 0.0421 0.0183 0.0370

(0 * 29, 20) 0.0600 0.0571 0.0059 0.0500 0.0404 0.0462

Table 3 Bias and MSE of MLE

and Bayes estimate of

r(t) assume t=2

(k, n, m) CS ^rðtÞML
^rðtÞBayes ^rðtÞBayes

Prior 1 Prior 2

Bias MSE Bias MSE Bias MSE

(2, 50, 25) (25, 0 * 24) - 0.0139 0.0058 - 0.0107 0.0056 - 0.0134 0.0056

(1 * 25) - 0.0192 0.0109 - 0.0161 0.0071 - 0.0250 0.0071

(0 * 24, 25) - 0.0080 0.0187 - 0.0241 0.0091 - 0.0296 0.0077

(2, 50, 30) (20, 0 * 29) - 0.0122 0.0050 - 0.0114 0.0047 - 0.0108 0.0043

((2, 0, 0) * 10) - 0.0181 0.0060 - 0.0086 0.0051 - 0.0178 0.0051

(0 * 29, 20) - 0.0143 0.0099 - 0.0113 0.0064 - 0.0224 0.0060

(3, 50, 25) (25, 0 * 24) - 0.0184 0.0068 - 0.0110 0.0059 - 0.0200 0.0058

(1 * 25) - 0.0091 0.0163 - 0.0196 0.0095 - 0.0313 0.0086

(0 * 24, 25) - 0.0267 0.0195 - 0.0317 0.0126 - 0.0434 0.0115

(3, 50, 30) (1 * 25) - 0.0173 0.0059 - 0.0103 0.0054 - 0.0133 0.0050

((2, 0, 0) * 10) - 0.0128 0.0093 - 0.0126 0.0066 - 0.0270 0.0069

(0 * 29, 20) - 0.0023 0.0171 - 0.0243 0.0087 - 0.0250 0.0078
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f ðx; a; bÞ ¼ abx�2e�ðb=xÞ 1� e�ðb=xÞ
� �a�1

; x[ 0; a[ 0; b[ 0

f ðx; a; bÞ ¼ ab
1

xð1þ xÞ e
�b lnð1þ1=xÞ 1� e�b lnð1þ1=xÞ

� �a�1

;

x[ 0; a[ 0; b[ 0

We present different criterions to evaluate the optimum

degree for fitting these distributions, which applying MLE

to compute subtractive log-likelihood function(� ln L),

Akaike information criterion (AIC), Bayesian information

criterion(BIC) and Kolmogorov-Smirnov (K–S) statistic,

we just to know p values of K–S. Here, the maximum value

for likelihood function of an estimated model is named L.

And AIC is defined that AIC ¼ 2	 ðp� lnðLÞÞ, and the

amount of distribution’s parameters as p. We also give

definition of BIC : BIC ¼ p	 lnðnÞ � 2	 lnðLÞ, and the

sum of observations in sample as n. Thus the minimum

� ln L;AIC;BIC and highest p values of K–S statistics

values would be the criterions for best distribution. Apart

from that, we propose a graphic method for the optimum

degree of fitting different distributions at Fig. 2.

Table 8 lists that � ln L;AIC;BIC and p values.

Next, we divide the dataset into n ¼ 31 groups, which

has k ¼ 2 units in each group, to generate first-failure

censored sample. Then, we consider three progressive

Table 4 Bias and MSE of MLE

and Bayes estimate of

h(t) assume t=2

(k, n, m) CS ^hðtÞML
^hðtÞBayes ^hðtÞBayes

Prior 1 Prior 2

Bias MSE Bias MSE Bias MSE

(2, 50, 25) (25, 0 * 24) 0.0068 0.0004 0.0033 0.0003 0.0042 0.0002

(1 * 25) 0.0108 0.0008 0.0056 0.0005 0.0065 0.0005

(0 * 24, 25) 0.0145 0.0016 0.0079 0.0008 0.0078 0.0005

(2, 50, 30) (20, 0 * 29) 0.0061 0.0003 0.0027 0.0003 0.0037 0.0002

((2, 0, 0) * 10) 0.0080 0.0004 0.0036 0.0004 0.0042 0.0003

(0 * 29, 20) 0.0102 0.0007 0.0051 0.0005 0.0064 0.0004

(3, 50, 25) (25, 0 * 24) 0.0075 0.0005 0.0037 0.0003 0.0049 0.0003

(1 * 25) 0.0108 0.0014 0.0062 0.0008 0.0073 0.0005

(0 * 24, 25) 0.0161 0.0019 0.0013 0.0147 0.0109 0.0008

(3, 50, 30) (1 * 25) 0.0075 0.0004 0.0034 0.0002 0.0038 0.0002

((2, 0, 0) * 10) 0.0082 0.0005 0.0047 0.0003 0.0060 0.0003

(0 * 29, 20) 0.0098 0.0008 0.0075 0.0008 0.0073 0.0005

Table 5 AL and associated CP of the parameter a ¼ 0:5 with 95% asymptotic CI, bootstrap CI, HPD credible interval

(k, n, m) CS âML âBoot�p âBoot�t âBayes âBayes

Prior 1 Prior 2

AL CP AL CP AL CP AL CP AL CP

(2, 50, 25) (25, 0 * 24) 0.5738 0.96 0.6998 0.93 0.6545 0.71 0.5557 0.95 0.5334 0.96

(1 * 25) 0.7256 0.96 1.0055 0.87 1.0523 0.68 0.6979 0.94 0.6541 0.96

(0 * 24, 25) 0.8584 0.93 1.3734 0.88 1.3591 0.64 0.8796 0.93 0.7812 0.94

(2, 50, 30) (20, 0 * 29) 0.5104 0.96 0.6536 0.89 0.7406 0.68 0.5000 0.94 0.4982 0.95

((2, 0, 0) * 10) 0.5899 0.97 0.7560 0.89 0.9881 0.68 0.5660 0.95 0.5453 0.96

(0 * 29, 20) 0.6896 0.96 0.9260 0.93 1.3020 0.60 0.6584 0.95 0.6265 0.95

(3, 50, 25) (25, 0 * 24) 0.6247 0.97 0.8397 0.89 0.8694 0.70 0.6063 0.95 0.5940 0.94

(1 * 25) 0.7686 0.92 1.2403 0.90 1.1614 0.80 0.7665 0.94 0.7325 0.95

(0 * 24, 25) 0.9960 0.94 1.6846 0.89 1.8679 0.68 1.0489 0.94 0.9204 0.96

(3, 50, 30) (1 * 25) 0.5592 0.98 0.7424 0.89 0.7279 0.72 0.5481 0.94 0.5391 0.96

((2, 0, 0) * 10) 0.6668 0.96 0.8764 0.92 0.9143 0.64 0.6413 0.95 0.6230 0.95

(0 * 29, 20) 0.7328 0.88 1.0421 0.93 1.1710 0.65 0.7658 0.96 0.7416 0.96
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censoring schemes with the last sample. Table 9 presentes

the censoring schemes and corresponding samples.

We estimate the two parameters and reliability charac-

teristics with MLEs and Bayes estimators in Table 10.

And, we compute r(t) and h(t) corresponding to real data by

using t ¼ 4. This section considers Bayes estimation with

non-informative prior, due to that we don’t have prior

information about the parameters. Table 11 lists the 95%
asymptotic, Boot-p, Boot-t CIs and HPD credible intervals

for parameters.

7 Conclusion

Censoring is an ordinary technique to acquire sample from

various experiments. Progressively first-failure censored is

an extension of censoring, which helps to reduce time and

cost. And, the hazard rate of IERD is nonmonotone. It is

common that nonmonotone of hazard rate in many practi-

cal situations. We study the estimation of parameters of

IERD under progressively first-failure censored in our

paper. We propose MLE and corresponding asymptotic CI

estimate of the parameters with IERD. We then compute

confidence intervals with bootstrap method. The Bayesian

estimates and the associated HPD interval estimates under

square error loss function are developed. It is hard to obtain

explicit forms of Bayes estimators, however, we make use

of M–H algorithm for Bayes estimation. A simulation is

used to evaluate the various estimators’work. And the

theoretical results have been applied with real data.

Moreover, the methodology is discussed in our article

could be helpful to data analyst and reliability practitioners.

Table 6 AL and associated CP of the parameter b ¼ 1 with 95% asymptotic CI, bootstrap CI, HPD credible interval

(k, n, m) CS b̂ML b̂Boot�p b̂Boot�t b̂Bayes b̂Bayes

Prior 1 Prior 2

AL CP AL CP AL CP AL CP AL CP

(2, 50, 25) (25, 0 * 24) 0.9249 0.96 1.0417 0.92 0.9785 0.81 0.9098 0.93 0.8784 0.95

(1 * 25) 0.9274 0.94 1.0416 0.90 1.0279 0.68 0.9068 0.94 0.8627 0.97

(0 * 24, 25) 1.0173 0.93 1.0983 0.93 1.1624 0.65 0.9820 0.93 0.9395 0.96

(2, 50, 30) (20, 0 * 29) 0.8902 0.95 0.9637 0.95 1.0291 0.73 0.8657 0.94 0.8446 0.93

((2, 0, 0) * 10) 0.8601 0.94 0.9711 0.88 1.0653 0.74 0.8401 0.96 0.8194 0.95

(0 * 29, 20) 0.9369 0.94 1.0505 0.89 1.1154 0.66 0.8926 0.93 0.8645 0.94

(3, 50, 25) (25, 0 * 24) 0.8592 0.95 0.9171 0.95 0.9391 0.73 0.8358 0.94 0.8060 0.94

(1 * 25) 0.8508 0.93 0.9734 0.88 0.9141 0.84 0.8401 0.96 0.8194 0.95

(0 * 24, 25) 0.9446 0.94 1.0914 0.88 1.0755 0.71 0.8254 0.94 0.8645 0.94

(3, 50, 30) (1 * 25) 0.8075 0.96 0.8805 0.91 0.8650 0.75 0.7845 0.94 0.7678 0.96

((2, 0, 0) * 10) 0.7929 0.94 0.8422 0.92 0.8515 0.72 0.7782 0.94 0.7495 0.94

(0 * 29, 20) 0.8585 0.92 0.9496 0.93 0.9669 0.65 0.8421 0.96 0.8151 0.95

Table 7 Data set (gauge lengths of 10mm)

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397

2.445 2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614

2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917

2.928 2.937 2.997 2.977 2.996 3.030 3.125 3.139 3.145

3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346

3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628

3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.020
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Table 8 Fitting of the real data
Parameters IERD IEED IEPD

â ¼ 5:6503; b̂ ¼ 10:7621 â ¼ 55:7988; b̂ ¼ 10:0187 â ¼ 119:1140; b̂ ¼ 14:2503

� lnL - 47.6455 - 46.9101 - 46.0216

AIC - 91.2912 - 89.8203 - 88.0430

BIC - 87.0369 - 85.5660 - 83.7889

K–S 0.0897 0.0903 0.0904

p values 0.7002 0.6929 0.6915
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Fig. 2 quantile-quantile plots of three distributions with actual example
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