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Abstract In this paper, a new method for fault detection of

parallel shaft gearbox based on the Empirical Mode

Decomposition (EMD) and Multipoint Optimal Minimum

Entropy Deconvolution (MOMEDA) is proposed.

MOMEDA can overcome the shortcomings of minimum

entropy deconvolution (MED) and Maximum Correlated

Kurtosis Deconvolution (MCKD), and it is introduced to

extract the fault cycle of gearbox signals. The vibration

signals of gearbox are complex, including fault signals,

noise signals and deterministic signals such as gear

meshing component. Fault signal is often buried in these

other components, which increases the difficulty of gear-

box fault detection. Thus the EMD is proposed to decom-

pose the signal and extract the fault impact components

from the signal. The parallel shaft gearbox preset fault

experiment is carried out to verify the effectiveness of

method. In addition, some traditional methods, such as

Fourier transform, cepstrum analysis, MED and MCKD,

are used to compare with the proposed methods. Experi-

mental results show that the effectiveness of the proposed

method is better than that of traditional methods.

Keywords Gearbox � Fault diagnosis � EMD �MOMEDA �
Signal processing

1 Introduction

The parallel shaft gearbox is one of the most vital and

common component of rotating machinery. It is widely

used in some rotating machinery such as automobile,

power generating turbines, helicopters and more. The faults

of gearbox are common cause of rotating machinery

breakdown, and it can generally result in financial losses

even safety accidents. Therefore, gearbox fault detection

plays an important role in preventing breakdown accidents

of rotating machinery and reducing economic losses (Sa-

muel and Pines 2005). When faults occur on gearbox, fault

signals with periodic impact components will be generated

during gearbox operation. These impulsive components in

the vibration signal appear in a fixed period and form a

fixed frequency, which is the fault frequency (Golafshan

and Sanliturk 2015). The vibration signal analysis is a

common and effective method for gearbox fault detection

(McFadden and Smith 1985). Several signal analysis

techniques have been employed for gearbox fault detection,

such as acoustic emission technology, infrared thermal

imaging technology and oil analysis technology. Gu et al.

(2011) used Discrete Wavelet Transform (DWT) and

envelope analysis to analyze the collected acoustic emis-

sion signals, and achieved the purpose of gearbox fault

diagnosis. Lim et al. (2014) combines infrared thermal

imaging technology with Support Vector Machine (SVM)

to diagnose faults of rotating machinery. Hamilton and

Quail (2011) summarized the oil analysis technology used

in wind turbine gearbox. However, acquisition of acoustic

emission signals requires a higher sampling frequency,

resulting in a huge amount of data, which limits the engi-

neering application. Infrared thermal imaging technology

and oil analysis technology are more suitable for
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monitoring the running state of equipment, and the accu-

rate fault detection of rotating machinery is still in the

exploratory stage.

The traditional vibration analysis methods of gearbox

fault diagnosis include time domain analysis (McFadden

1991; Enayet et al. 2008; Hong and Dhupia 2014) and

frequency domain analysis (Feng et al. 2016; Hong and

Dhupia 2014). However, the raw vibration signal of gear-

box contains non-stationary and non-linear components,

which makes it difficult to detect gearbox faults by tradi-

tional time domain analysis and frequency domain analy-

sis. Thus, some time–frequency analysis methods are used

for gearbox fault detection. Wavelet transform is a com-

monly used time–frequency analysis method, which is

widely used in gearbox fault diagnosis (Yu et al. 2017).

However, the effect of wavelet transform depends on the

selection of suitable wavelet basis function, which limits

the application of wavelet transform (Honorio et al. 2012).

Norden E Huang proposed Hilbert Huang transform for the

non-linear and non-stationary signals, and the Empirical

Mode Decomposition (EMD) is the key technique of the

Hilbert Huang transform. EMD is a self-adaptive analysis

technique which can decompose non-stationary signals into

a series of intrinsic mode functions (IMFs) (Li et al. 2017).

However, EMD still has many shortcomings, such as the

criterion of IMF, over-decomposition, end effect and

modal mixing. To overcome these inherent defects, Peng

et al. (2005) combines Wavelet Packet Decomposition

(WPD) with EMD to ensure that each IMF obtained by

EMD is a single component. Yang (2008) uses band-pass

filter to preprocess the mechanical fault signal and then

decomposes the signal with EMD, which can restrain many

shortcomings of EMD. Tang et al. (2012) uses the

improved blind source separation method to suppress the

modal mixing effect of EMD. Wu and Huang (2009) pro-

poses the Ensemble Empirical Mode Decomposition

(EEMD) for the problem of modal aliasing in EMD. EMD

is used to decompose the signal in this work, and then IMFs

with large kurtosis are selected to reconstruct to enhance

the fault characteristics.

Therefore, the deconvolution technique is proposed to

identify the fault of rotating machinery. The minimum

entropy deconvolution (MED) is based on searching for a

linear time-invariant filter which maximizes kurtosis of the

filtered signal (Obuchowski et al. 2016). Compared with

the traditional deconvolution method, MED does not need

any assumptions and prior knowledge. It is an iterative

method which can construct filters adaptively to find sparse

spikes with simple characteristics (Cabrelli 1984). The

method has been applied to gearbox faults detection suc-

cessfully by Endo and Randall (2007, 2009). Meanwhile,

the MED also can be used to identify the rolling bearings

fault (Jiang et al. 2012; Sawalhi et al. 2007), and it proved

to be an effective method. Nevertheless, some drawbacks

of MED emerged during application to rotating machinery

fault diagnosis. One of drawbacks is that the use of MED

may produce spurious impulse whatever the signal is a

fault signal or a white noise signal. The other one is that

MED may not obtain optimal results due to iterative

operations.

In view of these problems of MED, GL. Mcdonald

proposed Maximum Correlated Kurtosis Deconvolution

(MCKD) for gearbox fault detection (McDonald et al.

2012). MCKD can solve the problems of MED mentioned

above. But MCKD is also an iterative process, it is usually

impossible to obtain the optimal filter, and the fault cycle

needs to be known beforehand. In addition, extra signal

resampling pretreatment is needed for non-integer fault

cycle, which increases computational complexity and

limits its practical application. Thus, GL. Mcdonald also

proposed a new deconvolution method called Multipoint

Optimal Minimum Entropy Deconvolution (MOMEDA)

for gearbox fault detection (McDonald and Zhao 2017).

The method solves the iterative problem and achieves good

results. However, vibration signals collected from a

mechanical system usually contain a large amount of noise.

For this reason, it often affects the effect of the above

method.

Thus, a fault detection method based on EMD and

MOMEDA is proposed in this paper. Firstly, the vibration

signal is decomposed to some IMFs by EMD. It is well

known that kurtosis is an impulse index for vibration sig-

nal, and the kurtosis of the fault signal is usually greater

than the kurtosis of the noise signal. Therefore, some large

kurtosis components are selected from these IMFs to

reconstruct the fault signal. Finally, the processed signals

are processed by MOMEDA to achieve the purpose of fault

detection. Experimental data on a gearbox with broken

tooth are used to verify the performance of the proposed

method.

The remains of this paper is organized as follows: Sect.

2 gives the theoretical background of the MED technique,

MCKD technique and the proposed method. In Sect. 3, the

performance of the described approach on experimental

gearbox faulty data is presented. Finally, the conclusion of

the paper is given in Sect. 4.

2 Theoretical background

2.1 Minimum entropy deconvolution

The minimum entropy deconvolution was originally pro-

posed by Wiggins (1978) for extraction of seismic wave

reflection parameters. Then the technology gradually

expanded to other fields. The basic principle of MED is to
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design the optimal filter rely on the property that MED can

enhance the impulse characteristic. After filtered, the pulse

impulse component of the filtered signal is enhanced, and

the calculation terminates when the maximum kurtosis

value is reached.

Suppose that the input signal is x(t), and the MED filter

is f(t). Thus, the output signal by using the MED filter is:

y tð Þ ¼ x tð Þf tð Þ ð1Þ

If the length of MED filter is L, the Eq. 1 can also be

written as follows:

yðtÞ ¼
XL

l¼1

f ðlÞxðt � lÞ ð2Þ

The kurtosis is large for the pulse impulse in vibration

signal. Therefore, the kurtosis value of the filtered signal is

considered as the result function to evaluate the filtering

effect. The result function is calculated in the following

formula:

Kðf ðlÞÞ ¼
PN

t¼1 y
4ðtÞ

PN
t¼1 y

2ðtÞ
� �2 ð3Þ

where the l equals 1, 2,……L. In order to obtain the

maximum of K(f(l)), the derivative of filter coefficients f(l)

for the above formula is obtained, and the derivative is

equal to zero so that the solution is obtained. After

deducing and simplifying, the following formula can be

obtained:

PN
t¼1 y

2ðtÞ
PN

t¼1 y
4ðtÞ

XN

t¼1

y3ðtÞ oyðtÞ
of ðlÞ

� �
¼
XN

t¼1

yðtÞ oyðtÞ
of ðlÞ

� �
ð4Þ

A, b, f are respectively equal to the following formula:

b ¼
PN

t¼1 y
2ðtÞ

PN
t¼1 y

4ðtÞ
XN

t¼1

ðy3ðtÞdðt � lÞÞ ð5Þ

A ¼
XN

t¼1

XL

p¼1

ðdðt � pÞdðt � lÞÞ ð6Þ

F ¼
XL

p¼1

f ðpÞ ð7Þ

Then it can be obtained in matrix form:

b ¼ AF ð8Þ

It also can be calculated as follows:

F ¼ A�1b ð9Þ

where b is a cross-correlation vector which is obtained by

calculating the correlation between the input and output

signals of the inverse filter; and A is the Toeplitz auto-

correlation vector that is a weighted summation of the

autocorrelations of the input signals; the F is the coeffi-

cients vector for the desired inverse filter.

The implementation steps of MED can be summarized

as follows:

Step 1 Compute the autocorrelation vector A

Step 2 Initialize the MED filter coefficients

Step 3 The output signal is calculated by using MED

filter

Step 4 Calculate the cross-correlation matrix b according

to the Eq. 8

Step 5 Compute the filter coefficients rely on Eq. 9

Step 6 Calculate the termination condition of the

iteration as follows:

d ¼
PN

t¼1 y
ðiÞ4ðtÞ

PN
t¼1 y

ðiÞ2ðtÞ
� �2 �

PN
t¼1 y

ði�1Þ4ðtÞ
PN

t¼1 y
ði�1Þ2ðtÞ

� �2 ð10Þ

where i is the number of iterations, the iteration process

will terminate when the variation of the kurtosis value

between the iterations is lower than the threshold value.

2.2 Maximum correlated Kurtosis deconvolution

The MCKD algorithm was putted forward to emphasize the

periodic pulse components for the signal with noise. The

evaluation criterion of this method is to maximize the

correlation kurtosis. Suppose that the signal collected by

sensor is:

xn ¼ hn � yn þ en ð11Þ

where xn is the original fault signal; hn is the response of

the system transmission path; yn is the failure periodic

impact component; en is the noise signal.

The hn masked the fault cycle impulse of the xn, and the

correlation kurtosis becomes smaller. The purpose of the

MCKD algorithm is use the deconvolution to highlight the

fault impact components, which is hidden in the raw signal.

The key of the MCKD method is to search a finite length

unit impulse response filter f. The filter can detect the

original pulse signal x(n) of the collected signal yn, and the

specific calculation process is shown as follows:

yn ¼ xn � fl ð12Þ

The objective function of MCKD is the maximum cor-

relation kurtosis. Firstly, the correlation kurtosis is defined

as follows:

CKMðTÞ ¼
PN

n¼1

QM
m¼0 yn�mT

� �2
PN

n¼1 y
2
n

� �Mþ1
ð13Þ

wherein M is the quantity of sequential pulses, which is to
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be deconvolution. The T is the separation cycle of these

pulses. Thus, the objective function is shown as follows:

MCKDMðTÞ ¼ max
fl

PN
n¼1

QM
m¼0 yn�mT

� �2
PN

n¼1 y
2
n

� �Mþ1
ð14Þ

To maximize the correlation kurtosis, we solve

dCKmðTÞ
dfl

¼ 0 ¼ 2 k y k�2M�2

XN

n¼1

YM

m¼0

yn�mT

 !2 XM

m¼0

xn�mT�kþ1

yn�mT

 !2

4

3

5

� 2ðM þ 1Þ k y k�2M�4
XN

n¼1

YM

m¼0

yn�mT

 !2
0
@

1
A

XN

n¼1

ynxn�kþ1

ð15Þ

The result of the filter is shown as follows by simplifi-

cation and representation in matrix form.

f ¼ k y k2
2 k B k2 ðX0X

T
0 Þ

�1
XM

n¼0

XmTAm ð16Þ

Am ¼

y�1
1�mTðy21y21�T � � � y21�MTÞ

y�1
2�mTðy22y22�T � � � y22�MTÞ

..

.

y�1
N�mTðy2Ny2N�T � � � y2N�MTÞ

2
6666664

3
7777775
;

B ¼

y1y1�T � � � y1�MT

y1y1�T � � � y1�MT

..

.

yNyN�T � � � yN�MT

2

66664

3

77775

The array X0X
T
0 is the Toeplitz autocorrelation array of

xn and the inverse ðX0X
T
0 Þ

�1
is supposed to exist. The flow

of the MCKD algorithm is shown as follows:

Step 1 Initialization deconvolution period T, number of

sequential M and the length of filter

Step 2 Calculate the X0X
T
0 and XmT of the input signal

Step 3 Calculate the filtered signal y

Step 4 Calculate the Am and B from the filtered signal

Step 5 Update filter coefficient fl

Step 6 If the DCKmðTÞ is less than the threshold, the

iteration is ended, or 3–5 steps are repeated

Step 7 Calculate the period T of the final filtered signal

2.3 Multipoint optimal minimum entropy

deconvolution

One drawback of MED is that the coefficients of the filter

have been determined when iteration is performed. To

overcome this shortcoming, Cabrelli (1985) has proposed a

new norm called D norm, which is mainly used to decon-

volution pulse signals. The D-Norm is shown as follows:

DðyÞ ¼ max
k¼1;2;:...N

ykj j
yk k ð17Þ

On this basis, Geoff L. McDonald proposed the concept

of Muti D-Norm and introduced a new algorithm called

Multipoint Optimal Minimum Entropy Deconvolution

Adjusted (MOMEDA). The Muti D-Norm is formulated as

the following:

MDNðy; tÞ ¼ 1

tk k
tTy

yk k ð18Þ

where the t is a constant vector in the deconvolution, which

determines the location and weight of the goal impulse.

The objective function of MOMEDA is to make the MDN

maximum as following:

max
f

MDNðy; tÞ ¼ max
f

tTy

yk k ð19Þ

To maximize the MDN, we solve

d

df

tTy

yk k

� �
¼ d

df

t1y1

yk k

� �
þ d

df

t2y2

yk k

� �
þ � � �

þ d

df

tN�LyN�L

yk k

� �
ð20Þ

After simplification,

d

df

tTy

yk k

� �
¼ yk k�1ðt1M1 þ t2M2 þ � � � þ tN�LMN�LÞ

� yk k�3
tTyX0y

ð21Þ

X0 ¼

xL xLþ1 xLþ2 � � � xN
xL�1 xL xLþ1 � � � xN�1

xL�2 xL�1 xL � � � xN�2

..

. ..
. ..

. . .
. ..

.

x1 x2 x3 xN�Lþ1

2
666664

3
777775

where the Mk ¼ xkþL�1; xkþL�2 � � � xk½ �T , then the equation

can be written as follows.

d

df

tTy

yk k

� �
¼ yk k�1

X0t � yk k�3
tTyX0y ð22Þ

The above formula is equal to zero and can be obtained:

yk k�1
X0t � yk k�3

tTyX0y ¼ 0 ð23Þ
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Since y ¼ XT
0 f and assuming ðX0X

T
0 Þ

�1
exists, the

Eq. 21 becomes:

tTy

yk k2
f ¼ ðX0X

T
0 Þ

�1
X0t ð24Þ

Hence the filter can be calculated as following:

f ¼ ðX0X
T
0 Þ

�1
X0t ð25Þ

Where the length of vector t is ðN � Lþ 1Þ, it is same as

the output signal.

2.4 Empirical mode decomposition

EMD is an adaptive signal processing method for nonlinear

and non-stationary signals. The precondition of the method

is that the signal is composed of a series of intrinsic mode

functions (IMFs). Moreover, each of IMFs is required to

satisfy the following conditions (Huang et al. 1998):

(1) The extreme points and zero crossing points of the

entire IMF signal must be equal or at least one

difference (Yang et al. 2006).

(2) For any data point, the envelope average value of its

local maximum and minimum must be zero, that is,

the local envelope signal is symmetrical with respect

to the time axis (Cheng et al. 2006).

EMD is based on the premise that any signal is com-

posed of many different IMFs. The process of decompos-

ing a given signal x (t) into a number of IMFs can be

summarized as follows:

(1) Indentify all the local extrema, the upper envelope of

the signal x(t) is determined according to its local

maxima. Similarly, the lower envelope of the signal

can be obtained rely on the local minima. Then

calculate the mean of upper and lower envelope

value as the m1.

(2) The first component h1 is the difference between the

signal xðtÞ and m1, the formula is as follows:

xðtÞ � m1 ¼ h1 ð26Þ

h1 will be the first IMF when it meets the above two

requirements.

(3) When h1 does not meet the above two requirements,

it will be used as the raw signal to duplicate the

above first two steps.

h1 � m11 ¼ h11 ð27Þ

Then repeat operation k times until h1k becomes an IMF

shown as follows:

h1ð1�kÞ � m1k ¼ h1k ð28Þ

Then make c1 equal to h1k as the first IMF of signal.

(4) The signal r1 is obtained after the signal c1 is

removed from the raw signal.

r1 ¼ xðtÞ � c1 ð29Þ

The r1 repeats the above processes as a new raw signal

and the second IMF can be obtained. A raw signal can get

several IMFs by repeating the above operation, the

decomposition is terminated until the remaining signal rn is

monotonic.

Therefore, the raw signal x(t) can be written as follows.

xðtÞ ¼
Xn

i¼1

ci þ rn ð30Þ

c1, c2,…,cn represent IMFs with different frequency bands,

which are arranged from high to low. Each frequency band

contains different frequency components and they varies

according to the raw signal x(t). The residual signal rep-

resents the overall trend of the raw signal x(t).

3 Proposed method

The proposed method of fault detection based on EMD-

MOMEDA is illustrated in this section. As known, the

MOMEDA is an efficient technique for detecting faults of

mechanical parts. However, the working environment of

the mechanical system is usually complex. For this reason,

the signals measured by accelerometers, which installed on

the rotating machinery, always contains large amounts of

random noise. Furthermore, the signal is also doped into

the noise signal during the acquisition process. These

Raw signal

IMF 1 IMF 2

IMF mIMF 1IMF 1

IMF 3 IMF n

EMD 
decomposition

n

Choose the IMFs 
with high kurtosis

signal

Reconstruction

result

MOMEDA

Fig. 1 Diagram of the proposed method
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causes affect the signal processing effect of the MOMEDA

method. To overcome this problem, EMD is proposed to

process the raw signal to eliminate noise interference, the

decomposition and reconstruction of signals using EMD

can eliminate the influence of random components.

Therefore, the method of fault detection based on EMD-

MOMEDA is proposed in this work.

The operation flow of the new method is shown as

Fig. 1.

4 Experimental data analysis

In order to make a qualitative validation of the mentioned

method, the gearbox preset fault experiments was carried

out to investigate the effectiveness of the new method.

4.1 Case study 1

4.1.1 Experimental setup

The test rig is composed of a 4 kW stepless speed motor, a

parallel shaft gearbox, a speed torque sensor, a magnetic

powder brake and signal acquisition system. The overall

structure of the test bed is presented in Fig. 2. The mag-

netic particle brake can provide the load for the experi-

ment. As shown in Fig. 3, the test gearbox is equipped with

a set of four gears and three shafts. The input shaft of the

gearbox is driven through stepless speed motor, the power

is transmitted from the input shaft to the output shaft by the

intermediate shaft. The magnetic powder brake can provide

load, which is connected with the output end of the gearbox

through a coupling. Thus the conservation of energy is

achieved. In the experiment, three different degrees of

broken teeth are implanted in gear 2 of intermediate shaft.

The width of broken teeth fault is 2 mm, 5 mm and 10 mm

respectively as shown in Fig. 4. Experiments are carried

out to test the performance of each degree broken tooth

fault under different speed and load combinations. Shaft

rotational speed is 800 rpm, 1000 rpm and 1200 rpm, the

loads are 10 Nm, 15 Nm and 20 Nm respectively. The

signal acquisition system consists of a computer, four

3065B4 piezoelectric accelerometer produced by

DYTRAN company, a PXI-1031 chassis of NI company,

data acquisition card and Labview software. The

accelerometers were mounted on the outside of the gearbox

such as the location of the digital mark shown in Fig. 3.

Data is sampled at 20 kHz per channel for six seconds.

As shown in the Fig. 3, the number of the gear teeth has

been known. Thus, the fault frequency of broken tooth is

calculated and given in Table 1.

4.1.2 Experiment result analysis

In this paper, the data of 2 mm broken tooth fault under the

condition of 800 rpm and 10Nm is used to investigate the

effectiveness of proposed method. First of all, the tradi-

tional Fourier spectrum and cepstrum are used to analyze

the fault signal and the normal state signal. The Fourier

spectrum and cepstrum are shown as Figs. 5 and 6. As

shown in the Fig. 5, there is no significant difference

between normal signal spectrum and fault signal spectrum,

no fault frequency component is found in fault signal

spectrum. It is illustrate that the Fourier spectrum is diffi-

cult to identify the fault accurately. As shown in the Fig. 6,

the cepstrum of fault signal also has no cycle time corre-

sponding to fault frequency. Therefore, it is difficult to

detect the gear fault only by traditional spectrum analysis.

Then the method proposed in this paper is used to detect

gear faults.Speed torque sensor Stepless speed motor

GearboxMagnetic powder brake

Fig. 2 Gearbox implanted fault test-rig

Gear 3 N=18

Gear 2 N=64

Gear 4 N=35

Intermediate 
shaft

Input shaft

Gear 1 N=81

Output shaft

1

2

3 4

Fig. 3 Gearbox structure and sensor position

Fig. 4 Broken tooth fault on gear 2 with different degrees

Table 1 Basic size and style requirements

Speed 800 rpm 1000 rpm 1200 rpm

Fault frequency 7.29 Hz 9.11 Hz 10.94 Hz
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Firstly, the raw signal is decomposed to several IMFs by

EMD. The result of signal decomposition is presented in

Fig. 7. After applying the EMD to the data, the IMFs needs

to be selected and reconstructed. In these IMFs, only some

IMFs that contain the fault impact signals are useful. The

signal components contained in the remaining IMFs are

useless for fault diagnosis, such as random noise. Because

kurtosis is widely used to reflect the characteristic of the

shock, the kurtosis of all the IMFs are calculated are given

in Fig. 8. Select IMF with kurtosis above 3.5 to reconstruct

the signal. As shown in the Fig. 8, IMF 2, IMF 4, IMF 5,

IMF 6 and IMF 7 are chosen to reconstruct the signal for

the fault diagnosis. The reconstructed signal is processed

by MOMEDA and the result is shown in Fig. 9. In the

Fig. 9, the T is sample count between two consecutive fault

impulses. Thus, the period of fault impulse can be com-

puted by T and sample rate. The fault impulse frequency

can be calculated by period. After calculation, the fault

impulse frequency is 7.3 Hz approximately. The fault

impulse frequency is consistent with the fault characteristic

frequency calculated above. Therefore, the broken tooth

fault can be diagnosed accurately by using proposed

method in this paper, then the effectiveness of the method

is proved.

To illustrate the influence of EMD in the method, the

signal also be processed by only using MOMEDA and the

result is presented in the Fig. 10. As shown in the figure,

the fault impulse can not be found obviously. Therefore, it

is necessary to carry out EMD before using MOMEDA for

diagnosis.

In order to further prove the validity of the proposed

method, a comparison of MCKD, MED and proposed

method is also carried out on the same signal. The per-

formance of the MCKD is shown in the Fig. 11, there are

two fault impulses can be found in the figure. However, it

is difficult to argue that the fault impact has periodicity.

Thus, the broken tooth fault of the gear can not be iden-

tified accurately. Figure 12 shows the process result by

using MED, and the fault impulse is blurred and confused

in the figure. In view of this, the broken tooth fault can not

be detected.

The data of 5 mm and 10 mm broken tooth fault under

the condition of 800 rpm and 10Nm are used to further

prove the effectiveness of the EMD-MOMEDA. The pro-

cessing results are shown in the Figs. 13 and 14 below. As

can be seen from the graphs, the impact pulses can be

clearly highlighted from the fault signal by used proposed

method. Therefore, the validity of the method can be fur-

ther proved.
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Fig. 6 Cepstrum of normal signal and fault signal a normal signal, b fault signal
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The length of the filter is the key factor that affects the

effect of EMD-MOMEDA. For the same signal, the EMD-

MOMEDA is used for processing with different length

filter, the result is shown in Fig. 15. As can be seen from

the figure, with the increasing of filter length, the impulses

of signal become stronger and clearer gradually. Thus, the

conclusion is drawn that the length of the filter can enhance

the effect of the proposed method.

The Fig. 16 is shown the result of using MCKD with

different length filter for the same signal. As shown in the
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Fig. 7 EMD decomposition results
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Fig. 16, increasing the length of the filter can reduce the

influence of noise on impact pulse. The Fig. 17 is shown

the result of using MED with different length filter for the

same signal. As can be seen from the figure, the length of

filter can also affect the effect of the MED, but it is not

obvious.

4.2 Case study 2

In order to further prove the feasibility of the proposed

method, another preset fault experiment of gearbox was

carried out. As shown in the Fig. 18, the test rig is com-

posed of a stepless speed motor, a parallel shaft gearbox, a

speed torque sensor, two vibration sensors, a magnetic

powder brake and signal acquisition system. The structure

of the experimental gearbox and the gear with broken tooth

are shown in the Fig. 19. Sampling rate is 20,480 Hz and
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sampling time is 9.6 s. The Fig. 20 displays the time

domain waveform of raw signal for broken tooth fault. The

rotation frequency is 20 Hz in the experiment. The fault

frequency of broken tooth fault is 10.38 Hz. After calcu-

lation, the period of fault impact is 1973 sample points.

After processing by the proposed method, the results are

shown in Fig. 21. As shown in the Fig. 21, there are

periodic shock characteristics in the result graph. The fault

impulse frequency is consistent with the fault characteristic

frequency calculated above. Therefore, the broken tooth

fault can be diagnosed accurately by using proposed

method in this paper and the effectiveness of the method is

proved.
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Int J Syst Assur Eng Manag (August 2019) 10(4):836–847 845

123



5 Conclusions

In this work, a novel hybrid method based on EMD and

MOMEDA is proposed to fault detection for gearbox. In

the proposed method, EMD is used to decompose the raw

signal to get IMFS and then select the IMFs with large

kurtosis value to reconstruct the signal. Then the recon-

structed signal is processed by MOMEDA to realize fault

detection. In order to illustrate the availability of the pro-

posed approach, a gearbox preposition fault experiment is

carried out. This combined approach is applied to
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Fig. 18 Gearbox implanted fault test-rig

Fig. 19 Gearbox structure and gear with broken tooth fault
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experimental signal. The experimental results illustrate that

the method is effective for fault detection of gearbox. The

experimental results also show that the method is more

competitive for fault detection of gearbox compared with

traditional methods such as Fourier spectrum, cepstrum,

MOMEDA, MCKD and MED. The influence of different

filter length on the proposed method is also analyzed, with

the increasing of filter length, the effect of the proposed

method is better.
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