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Abstract Whale optimization algorithm is a new member

of nature inspired optimization algorithm which is inspired

from foraging behaviour of humpback whales. Similar to

other heuristic algorithms, Whale optimization algorithm

suffers with immature convergence and stagnation prob-

lems while solving optimization problems. In this paper,

Whale optimization algorithm is hybridized with Laplace

Crossover operator and a new algorithm, Laplacian whale

optimization algorithm (LXWOA), has been proposed. It

has been used to solve a set of 23 classical benchmark

functions which consists of scalable unimodal functions,

scalable multimodal functions and low dimensional mul-

timodal functions and the results are compared with orig-

inal whale optimization algorithm, particle swarm

optimization, differential evolution, gravitational search

algorithm and Laplacian gravitational search algorithm. In

this paper, LXWOA and WOA have also been used to

solve the problem of extraction of compounds from

gardenia.

Keywords Whale optimization algorithm � Laplace
crossover � Numerical optimization � Heuristic algorithm �
Gardenia problem

1 Introduction

It is a great challenge for the research community to solve

real life nonlinear optimization problems arising from

various branches of scientific engineering. Researchers

have developed various techniques to provide the best

result for such problems but still there are many opti-

mization problems to be solved. Therefore, researchers are

working in this research area, hence, the literature available

for these methods are becoming rich. For simplicity, the

available literature of these methods to solve the given

problem can be classified into deterministic methods and

probabilistic methods. Deterministic methods follow a set

of rules and for a particular input, they always produce the

same output for a given problem. Deterministic methods

are applicable only to a restricted class of problems.

However, probabilistic methods are more general and they

are applicable to a wide range of problems. The inspiration

of mostly probabilistic methods is natural laws. Therefore,

they are also known as Nature Inspired Algorithms.

From the most recent couple of decades, Nature Inspired

Algorithms (NIA) are becoming more and more popular in

engineering application problems since they are based on

simple ideas and are easy to execute. The beauty of these

algorithms is that they bypass local optima. Classical

optimization methods require some information about the

functions like gradient etc. but NIA does not require any

such information. Therefore, it can be used in an extensive

variety of problems covering diverse disciplines.

Nature Inspired optimization algorithms mimic biolog-

ical or physical phenomena. The available literature of NIA

is vast. Genetic Algorithms (GA) (Holland 1992), Evolu-

tion Strategy (Rechenberg 1978), Genetic Programing

(Koza 1992), Probability-based Incremental Learning
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(Dasgupta and Zbigniew 2013), Biogeography-Based

Optimization (Simon 2008), Simulated Annealing (Kirk-

patrick et al. 1983), Gravitational Search Algorithms

(Rashedi et al. 2009; Singh and Deep 2015, 2017a, b),

Central Force Optimization (Formato 2007), Curved Space

Optimization (Moghaddam et al. 2012), Big-Bang Big-

Crunch (Erol and Eksin 2006), Small-World Optimization

Algorithm (Du et al. 2006), Particle Swarm Optimization

(Kennedy 2011), Ant Colony Optimization (Dorigo et al.

2006), Marriage in Honey Bees Optimization (Abbass

2001), Cuckoo Search (Yang and Deb 2009), Artificial Bee

Colony (Basturk and Karaboga 2006), Bat-inspired Algo-

rithm (Yang 2010), Monkey Search (Mucherino and Seref

2007), Firefly Algorithm (Yang 2010), Teaching Learning

Based Optimization (Rao et al. 2011), Tabu Search (Glover

1989, 1990), Harmony Search Algorithm (Geem et al.

2001), Firework Algorithm (Tan and Zhu 2010) etc. are the

popular nature inspired algorithms.

All NIA starts with a random population and share a

common feature and their search process have an explo-

ration phase and an exploitation phase. The exploration

phase corresponds to global search i.e. algorithm is capable

of exploring the search space globally. Whereas,

exploitation corresponds to local search i.e. algorithm is

capable of detailed investigation in the promising area(s) of

the search space. It is extremely difficult to maintain proper

balance between exploration and exploitation due to the

stochastic nature of the optimization procedure.

The literature to solve optimization problems is very

rich, but there is no single technique which can solve all the

problems (Wolpert and Macready 1997). Therefore new

algorithms are being introduced and existing algorithms are

being developed with the hope that they have some

advantage over the existing ones. Consequently, searching

a new heuristic algorithm is an open issue (Wolpert and

Macready 1997). The algorithms are being hybridized with

the operator which has the capability to search locally (to

improve solution quality) or search globally search (to skip

premature convergence) or both.

Whale Optimization Algorithm (WOA) (Mirjalili and

Lewis 2016) is a newly developed algorithm. It has been

tested on various optimization problems with different

difficulty level, but similar to other heuristic algorithms,

WOA suffers with immature convergence i.e. it may

rapidly converge towards a local optima instead of global

optima and stagnation in local solutions while solving

optimization problems. Hence, the quality of the final

solution may decrease dramatically. These issues may

happen when the optimizer could not have a fine balance

between its exploration and exploitation.

WOA has been hybridized with simulated annealing

(SA) to tackle the feature selection problems (Mafarja and

Mirjalili 2017). Kaveh and Ghazaan (Kaveh and Ghazaan

2017) have proposed a modified whale optimization algo-

rithm for sizing optimization of skeletal structures. Oliva

et al. (Oliva et al. 2017) utilized a chaos-embedded WOA

to deal with parameter estimation of photovoltaic cells.

WOA has been used to solve multilevel thresholding image

segmentation (El Aziz et al. 2017), the optimal renewable

resources placement problem in distribution networks

(Reddy et al. 2017) and to find the optimal weights in

neural networks (Aljarah et al. 2018). It also has been used

to attain the best parameters of SVM classifier (Tharwat

et al. 2017) for predicting the drug toxicity. Yan et al.

(2018) proposed ameliorative whale optimization algo-

rithm to solve multi-objective water resource allocation

optimization models. Nasiri and Khiyabani (2018) pro-

posed whale clustering optimization algorithm for cluster-

ing. Hasanien (2018) used whale optimization algorithm to

improve the performance of photovoltaic power systems.

Kaur and Arora (2018) proposed chaotic whale optimiza-

tion algorithm. Jadhav and Gomathi (2018) proposed a

technique for data clustering using whale optimization

algorithm. Elaziz and Oliva (2018) used opposition-based

learning to enhance the exploration phase of whale opti-

mization algorithm and used it to estimate the parameters

of solar cells using three different diode models. Algabal-

awy et al. (2018) employed whale algorithm to find the

optimal design of the system for minimizing the total

annual cost and system emissions. Mehne and Mirjalili

(2018) used whale optimization algorithm to solve optimal

control problems. Xiong et et al. (2018) proposed improved

whale optimization algorithm to extract the parameters of

different solar photovoltaic models accurately. Ala’m et al.

(2018) proposed a hybrid machine learning model based on

support vector machines and whale optimization algorithm

for the task of identifying spammers in online social net-

works. Saidala and Devarakonda (2018) proposed

improved whale optimization algorithm and applied to a

clinical dataset of an anaemic pregnant woman and

obtained optimized clusters and cluster heads to secure a

clear comprehension and meaningful insights in the clinical

decision-making process. Horng et al. (Horng et al. 2017)

proposed a novel multi-objective method for an optimal

vehicle traveling based on Whale optimization algorithm.

Hassan and Hassanien (2018) presented a novel automated

approach for extracting the vasculature of retinal fundus

images using whale optimization algorithm. Mostafa et al.

(2017) proposed a technique for liver segmentation in MRI

images based on whale optimization algorithm. Abdel-

Basset et al. (2019) used modified whale optimization

algorithm for solving 0–1 knapsack problem. El Aziz et al.

(2018) proposed a new method for determining the multi-

level thresholding values for image segmentation using

whale optimization algorithm. El Aziz et al. (2018) pro-

posed non-dominated sorting technique based on multi-
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objective whale optimization algorithm for content-based

image retrieval. Nazari-Heris et al. (2017) used whale

optimization to solve combined heat and power economic

dispatch problem. Sun et al. (2018) proposed a modified

whale optimization algorithm for large-scale global opti-

mization problems. Abdel-Basset et al. (2018) proposed a

modified whale optimization algorithm for cryptanalysis of

Merkle-Hellman Knapsack Cryptosystem. Luo and Shi

(2018) proposed hybrid whale optimization algorithm

based on modified differential evolution for global opti-

mization problems. Whale Optimization Algorithm has

been used in many application problems like feature

selection and land pattern classification (Bui et al. 2019).

Sreenu and Sreelatha (2017) proposed the task scheduling

algorithm based on the multi-objective model and the

whale optimization algorithm for task scheduling in cloud

computing. Eid (2018) proposed binary whale optimisation

algorithm for feature selection. Ghahremani-Nahr et al.

(2019) used whale optimization algorithm to minimize the

total costs of closed-loop supply chain network. Hussien

et al. (2019) proposed a binary whale optimization algo-

rithm to select the optimal feature subset for dimensionality

reduction and classifications problem using a sigmoid

transfer function. Laskar et al. (2019) proposed hybrid

whale-particle swarm optimization algorithm for solving

complex optimization problems. Yousri et al. (2019) pro-

posed four chaotic whale optimization variants. Elhosseini

et al. (2019) proposed A-C WOA and applied on a biped

robot to find the optimal settings of the hip parameters. The

more literature may be study in Mirjalili et al. (2020).

In this paper, the performance of WOA is improved by

hybridizing it with Laplace Crossover, which is a well-

known Real Coded Genetic Algorithm operator. The rest of

the paper is written as follows: In Sect. 2, the Whale

Optimization Algorithm is clarified. In Sect. 3, Laplace

Crossover is reproduced. In Sect. 4, LXWOA is described.

In Sect. 5, the numerical results are investigated. In Sect. 6,

the problem of extraction of compounds from gardenia is

discussed and solved using LXWO and WOA. At last, in

Sect. 7, the conclusions are drawn.

2 Whale optimization algorithm

Whale Optimization Algorithm (WOA) is proposed by

Mirjalili and Lewis in 2016 (2016). It is inspired from the

foraging behaviour of humpback whales. This foraging

mechanism is known by bubble-net feeding method. In this

mechanism, particular bubbles are created in a circle or ‘9’-

shaped path as shown in Fig. 1. Goldbogen et al. (2013)

utilized tag sensors to investigate the foraging behaviour of

humpback whale and found two maneuvers (1) upward-

spirals: humpback whales jump around 12 m down and

after that begin to rise in a winding shape around the prey

and swim towards the surface, and (2) double-loops: it

incorporates three distinct stages: coral loop, lobtail, and

capture loop. More details can be found in Goldbogen et al.

(2013).

Humpback whales use three strategies namely, search-

ing of prey, encircling prey and bubble-net feeding method

during the foraging behaviour. In the searching of prey,

humpback whales search according to the positions of each

other and explore new solutions randomly. In the encircling

prey, humpback whales perceive the area of prey and

recognize the location of prey after which they encircle

them. Since there is no priori information about the posi-

tion of the optimal solution in the search space, therefore,

WOA algorithm expects that the current best solution is the

target prey, or is close to the optimum. After defining it,

other search agents update their positions towards the best

search agent. In the bubble-net attacking, humpback

whales swim around the prey within a shrinking circle and

along a spiral-shaped path simultaneously. The working

procedure of whale optimization algorithm is as follows:

Let Np is the size of population and Mitr is the maximum

number of iterations. The algorithm has two parameters a

and b. The parameter a decreases linearly from 2 to 0 and

the parameter b decreases from - 1 to - 2 as the iteration

increases from 1 to Mitr. Then the coefficients Ai, Ci and a

random number li for agent i are evaluated as follows:

Ai ¼ a 2r1 � 1ð Þ
Ci ¼ 2r2

ð1Þ

li ¼ b� 1ð Þ r3 þ 1 ð2Þ

where r1; r2 and r3 are three uniformly distributed random

numbers in ½0; 1�. Then a random number pr is generated if

pr\0:5 and Aij j � 1 then ith agent updates the dth com-

ponent of next position i.e. xdi ðt þ 1Þ with the random agent

by the following equations:

Dd
i ¼ Ci � xdrandðtÞ � xdi ðtÞ

�
�

�
� ð3Þ

xdi ðt þ 1Þ ¼ xdrandðtÞ � Ai � Dd
i ð4Þ

where xdrandðtÞ is the position of a random agent in dth

dimension chosen from the current population. If pr\0:5

and Aij j\1 then ith agent updates the dth component of

next position i.e. xdi ðt þ 1Þ with the xdbest agent by the fol-

lowing equations:

Dd
i ¼ Ci � xdbestðtÞ � xdi ðtÞ

�
�

�
� ð5Þ

xdi ðt þ 1Þ ¼ xdbestðtÞ � Ai � Dd
i ð6Þ

if pr � 0:5 then, the distance D
0d
i ¼ xdbestðtÞ � xdi ðtÞ

�
�

�
�

between the whale located at xiðtÞ and prey located at

xbestðtÞ in dth dimension is evaluated and is used to mimic
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the helix-shaped movement of humpback whales in a spiral

equation.

xdi ðt þ 1Þ ¼ D
0d
i � ebli � cosð2p liÞ þ xdbestðtÞ ð7Þ

The constant b controls the shape of spiral.

3 Laplace crossover

Deep and Thakur (2007) proposed Laplace Crossover (LX)

to generate a pair of offspring y1 ¼ y11; y
2
1; . . .; y

m
1

� �

and

y2 ¼ y12; y
2
2; . . .; y

m
2

� �

from a pair of parents x1 ¼
x11; x

2
1; . . .; x

m
1

� �

and x2 ¼ x12; x
2
2; . . .; x

m
2

� �

. LX produces a

pair of offspring in such a manner that both the offspring

are symmetric with respect to the position of the parents. A

Laplacian distributed random number li is created by the

following rule:

li ¼
p� q logeðuiÞ; vi � 1=2

pþ q logeðuiÞ; vi [ 1=2

(

ð8Þ

where ui; vi are two uniformly distributed random numbers

in ½0; 1�. p 2 R is the location parameter and q[ 0 is the

scale parameter. The offspring are created by the following

rules:

yi1 ¼ xi1 þ li x
i
1 � xi2

�
�

�
�;

yi2 ¼ xi2 þ li x
i
1 � xi2

�
�

�
�;

ð9Þ

If generated offspring does not belong to search space i.e.

yi\yilow or yi [ yiup for some i; then yi is set a random

number from the interval ½yilow; yiup�.

When q is a small value, then it is likely that LX gen-

erates the offspring near to the parents and when q is a

great value, then it is likely that it generates the offspring

far from the parents. When p and q are fixed values, then

LX deploys offspring proportional to the spread of parents

(Deep and Thakur 2007). In literature, LX has been used to

improve the performance of GA (Deep and Thakur 2007),

GSA (Singh and Deep 2015), BBO (Garg and Deep 2016),

PSO (Deep and Bansal 2009), etc.

4 Proposed algorithm

In the present study, WOA has been hybridized with the

above defined Laplace crossover, which is a real coded

crossover operator for real coded genetic algorithm and

LXWOA is proposed.

In LXWOA algorithm, first a randomly distributed

population of size Np is initialized. At each iteration,

LXWOA follows the WOA procedure first, then two agents

are selected in which first one is the best agent and the

second one is selected randomly from the current popula-

tion. Laplace crossover is applied to the best and randomly

selected agents. It generates two offspring. The fitness of

both the offspring are tested with the worst agent in the

current population one by one. If offspring has better fit-

ness then it is replaced with the worst particle of the current

population. Best is updated and iteration is incremented.

Algorithm follows this procedure till termination criteria is

satisfied. The pseudo code of LXWOA algorithm is shown

in Fig. 2.

Fig. 1 Bubble-net feeding

behavior of humpback whales

(Mirjalili and Lewis 2016)
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Fig. 2 Pseudo code of

LXWOA algorithm

Table 1 Scalable unimodal

functions
No. Name Definition Domain Known optimum

1. Sphere F1ðxÞ ¼
Pn

i¼1 x
2
i ½�100; 100�n 0

2. Schwefel 2.22 F2ðxÞ ¼
Pn

i¼1 xij j þ
Qn

i¼1 xij j ½�10; 10�n 0

3. Schwefel 1.2
F3ðxÞ ¼

Pi
j¼1

Pi
j¼1 xj

� �2 ½�100; 100�n 0

4. Schwefel 2.21 F4ðxÞ ¼ max xij j; 1� i� 30f g ½�100; 100�n 0

5. Rosenbrock F5ðxÞ ¼
Pn�1

i¼1 100 xiþ1 � x2i
� �2þ xi � 1ð Þ2

h i
½�30; 30�n 0

6. Step F6ðxÞ ¼
Pn

i¼1 xi þ 0:5b cð Þ2 ½�100; 100�n 0

7. Noise F7ðxÞ ¼
Pn

i¼1 ix
4
i þ random ½0; 1Þ ½�1:28; 1:28�n 0

In this paper dimension = 30 is considered
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5 Results and discussion

The performance of LXWOA is tested on a set of 23

classical benchmark functions (Mirjalili and Lewis 2016)

which consists of three types of problems (1) Scalable

unimodal function (F1 to F7) are described in Table 1 (2)

Scalable multimodal function (F8 to F13) are in Table 2 (3)

low dimensional multimodal function with fixed dimension

(F14 to F23) are in Table 3. The experiments are performed

on the processor: Intel (R) Core (TM) i3-2350 M CPU @

2.30 GHz, RAM: 4.00 GB, Operating System: Window 10,

Integrated Development Environment: MATLAB 2013.

The parameter of Laplace crossover p is set to zero and the

value of q is finely tuned by conducting several experi-

ments. In these experiments, q varies from 0.05 to 0.30 and

LXWOA algorithm is run 30 times with population size

Np = 30 and the termination criteria is set at 500 iterations.

For q ¼ 0:05; 0:10; 0:15; 0:20; 0:25 and 0.30, iteration

wise average best so far is plotted for the function F1, F8,

F14 and F16 and shown in the Fig. 3. From these figures, it

is observed that the performance of LXWOA on F1 is best

and approximately same when q ¼ 0:05 and q ¼ 0:10 and

it is worst when q ¼ 0:30. The performance of LXWOA

on F8 is best when q ¼ 0:10 and it is worst when q ¼ 0:15.

The performance of LXWOA on F14 is best when q ¼ 0:10

and it is worst when q ¼ 0:05. The performance of

LXWOA on F16 is worst when q ¼ 0:25 and it is best

approximately same when q ¼ 0:05 and q ¼ 0:10. From

these figures, it is concluded that the performance of

LXWOA is best when q ¼ 0:10.

LXWOA, WOA, GSA and LXGSA are run 30 times

each with population size Np = 30, q ¼ 0:10 and the ter-

mination criteria is set at 500 iterations for all the func-

tions. For a fair comparison among WOA and LXWOA the

first randomly generated population is used for the first run

of WOA and LXWOA, second randomly generated popu-

lation is used for the second run of WOA and LXWOA,

and so on. Best, Average, Median and Standard deviation

(SD) of the objective function values obtained from

LXWOA, WOA GSA and LXGSA are calculated over 30

runs and shown in Table 4 for scalable unimodal functions

with dimension 30, Table 5 for scalable multimodal func-

tions with dimension 30 and Table 6 for low dimensional

multimodal functions. The results of Particle Swarm

Optimization (PSO), and Differential Evolution (DE) are

taken from (Mirjalili and Lewis 2016) to compare with

LXWOA and WOA. In (Mirjalili and Lewis 2016), results

are given in terms of Average and SD.

From the Table 4, it is observed that out of 7 problems,

there are 3 problems, namely F1, F2 and F7 in which the

performance of LXWOA is better than WOA, PSO, DE,

GSA and LXGSA and there are 4 problems, namely F3, F4,

T
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F5 and F6 DE has better Average and SD. If LXWOA and

WOA are compared together, then LXWOA has better

performance on all 7 problems. Hence, from the Table 4, it

is concluded that the performance of LXWOA is better

than WOA on scalable unimodal functions when dimension

is 30.

From the Table 5, it is observed that out of 6 problems,

there are 3 problems, namely F9, F10, and F11 in which the

performance of LXWOA is better than PSO, DE, GSA and

LXGSA. On the problem F8 and F12, LXWOA has better

Best and Median in comparison to WOA, GSA and

LXGSA. On F13, LXGSA has better Best and LXWOA has

better Median. DE has better Average and SD on F8, F12
and F13. When only LXWOA and WOA are considered

then the performance of LXWOA is better on 3 problems,

namely F8, F11 and F12. On F9 and F10, LXWOA and WOA

have the same solution. On F13, WOA has better perfor-

mance in comparison to LXWOA. Hence, from the

Table 5, it is concluded that the performance of LXWOA is

Table 3 Low dimensional multimodal test functions with fixed dimension

No. Name Definition Dim. Domain Known

optimum

14. De Jong
F14ðxÞ ¼ 0:002þ

P25
j¼1 jþ x1 � a1j

� �6þ x2 � a2j
� �6

h i�1

 ��1 2 ½�65:53; 65:53�2 1

15. Kowalik
F15ðxÞ ¼

P11
i¼1 ai �

x1 b2i þbix2ð Þ
b2
i
þbix3þx4

� 
2 4 ½�5; 5�4 0:0003075

16. Camel Back-6

Hump
F16ðxÞ ¼ 4x21 � 2:1x41 þ 1

3
x61 þ x1x2 � 4x22 þ 4x42 2 ½�5; 5�2 �1:0316285

17. Branin F17ðxÞ ¼ x2 � 5:1
4p2 x

2
1 þ 5

p x1 � 6
� �2þ10 1� 1

8p

� �

cos x1 þ 10 2 ½�5; 10� � ½0; 15� 5
4p

18. Goldstein-price F18ðxÞ ¼ 1þ x1 þ x2 þ 1ð Þ2 19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22
� �h i

30þ 2x1 � 3x2ð Þ2 18� 32x1 þ 12x21 þ 48x2 � 36x1x2 þ 27x22
� �h i

2 ½�5; 5�2 3

19. Hartman 3 F19ðxÞ ¼ �
P4

i¼1 ci exp �
P3

j¼1 aij xj � pij
� �2

h i
3 ½0; 1�3 �3:862747

20. Hartman 6 F20ðxÞ ¼ �
P4

i¼1 ci exp �
P6

j¼1 aij xj � pij
� �2

h i
6 ½0; 1�6 �3:322368

21. Shekel 1 F21ðxÞ ¼ �
P5

i¼1 x� aið Þ x� aið ÞTþci
� 	�1 4 ½0; 10�4 �10:1532

22. Shekel 2 F22ðxÞ ¼ �
P7

i¼1 x� aið Þ x� aið ÞTþci
� 	�1 4 ½0; 10�4 �10:4028

23. Shekel 3 F23ðxÞ ¼ �
P10

i¼1 x� aið Þ x� aið ÞTþci
� 	�1 4 ½0; 10�4 �10:5363
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Fig. 3 Convergence plot of LXWOA at different values of q
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better than WOA on scalable multimodal function when

dimension is 30.

From the Table 6, it is observed that out of 10 problems,

there are 2 problems, namely F19 and F20 in which LXGSA

has better performance in comparison to others. On F16 and

F17 (up to 4 decimal), all algorithms have approximately

same solution. On F18, LXGSA, PSO, DE found optimal

solution and the solution found by LXWOA and WOA are

very close to optimal solution. On F14, F15, F21, F22 and

F23, DE has least Average and SD in comparison to other

algorithms consider in this study which means that DE

performs better on these problems. Hence, it is concluded

Table 4 Best, average, median

and standard deviation (SD) of

objective function value

obtained from LXWOA, WOA,

GSA and LXGSA for scalable

unimodal functions with

dimension = 30

Function Algorithm Best Average Median SD

F1 LXWOA 4.22E288 6.54E277 1.21E283 2.83E276

WOA 5.53E-85 4.72E-73 5.53E-78 2.50E-72

PSO N/A 0.000136 N/A 0.000202

DE N/A 8.20E-14 N/A 5.90E-14

GSA 1.089E-16 3.432E-16 2.503E-16 2.163E-16

LXGSA 9.442E-17 4.678E-16 4.213E-16 3.158E-16

F2 LXWOA 4.49E257 6.09E253 7.21E255 2.18E252

WOA 1.12E257 8.09E-51 1.09E-53 4.03E-50

PSO N/A 0.042144 N/A 0.045421

DE N/A 1.50E-09 N/A 9.90E-10

GSA 8.419E-08 1.131E?00 3.015E-01 1.601E?00

LXGSA 5.073E-08 2.028E-03 1.075E-07 1.053E-02

F3 LXWOA 7197.08909 17,117.043 16,659.0959 6207.8913

WOA 16,818.8775 41,342.7506 42,770.1954 12,947.7679

PSO N/A 70.12562 N/A 22.11924

DE N/A 6.80E211 N/A 7.40E211

GSA 367.93177 851.94434 860.50975 291.56749

LXGSA 278.80713 659.92181 643.82142 222.06728

F4 LXWOA 0.00989078 18.999404 17.2163919 14.6545992

WOA 0.84749337 48.3902289 45.238951 30.4122189

PSO N/A 1.086481 N/A 0.317039

DE N/A 0 N/A 0

GSA 3.2110645 7.0670614 7.1700443 2.5648859

LXGSA 1.2997698 5.4481264 5.0522147 2.2729241

F5 LXWOA 26.6614903 27.4849083 27.138808 0.70597056

WOA 27.3642746 28.1622818 27.9251976 0.44873917

PSO N/A 96.71832 N/A 60.11559

DE N/A 0 N/A 0

GSA 25.895515 99.315747 64.999447 105.010271

LXGSA 20.522718 37.352214 27.183192 31.030327

F6 LXWOA 0.0033804 0.30085325 0.26085737 0.22717279

WOA 0.04787168 0.43382843 0.41799493 0.25929252

PSO N/A 0.000102 N/A 8.28E-05

DE N/A 0 N/A 0

GSA 0 21.5 6.5 44.67179161

LXGSA 0 9.433333333 4 18.81430735

F7 LXWOA 3.72E205 0.00228876 0.00164173 0.00219575

WOA 8.35E-05 0.00435107 0.00183437 0.00640528

PSO N/A 1.23E-01 N/A 4.50E-02

DE N/A 0.00463 N/A 0.0012

GSA 0.08620274 1.58261390 0.37907712 2.87342855

LXGSA 0.02591328 0.07831479 0.07434209 0.03488764

Best values are shown by boldface
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that the performance of DE is better than others on low

dimensional multimodal problems. When only LXWOA

and WOA are considered then it is found that the perfor-

mance of LXWOA is better than WOA.

In order to observe the behaviour of the objective

function value with a passage of iterations the convergence

plots of the WOA and LXWOA are plotted and shown in

Figs. 4 and 5. On the horizontal axis the iterations are

shown, whereas on the vertical axis the average best-so-far

is shown. Average best-so-far is the average value of

objective function in each iteration over 30 runs. From the

plots it is concluded that LXWOA is converging fast

towards optima in comparison to WOA algorithm.

t test the performance of LXWOA has been compared

with WOA, GSA and LXGSA using a pairwise one tailed t-

test with 29� of freedom at 0.05 level of significance over

the objective function value of all the problems considered.

The null hypothesis is assumed that ‘‘there is no difference

between algorithms’’ and alternative hypothesis is ‘‘there is

difference’’. The p-value and conclusions are shown in

Table 7. The following criterion is used to conclude the

results: A? shows that p-value \ 0.01 and LXWOA is

highly significant than algorithm 1, A shows that p-value

Table 5 Best, average, median

and standard deviation (SD) of

objective function value

obtained from LXWOA, WOA,

GSA and LXGSA for scalable

multimodal functions with

dimension = 30

Function Algorithm Best Average Median SD

F8 LXWOA 2 12569.247 - 10,482.949 2 10,894.579 1734.3735

WOA 2 12,569.459 - 9959.5446 - 9010.1823 1872.8263

PSO N/A - 4.84E?03 N/A 1.15E?03

DE N/A 2 11,080.1 N/A 574.7

GSA - 3685.888241 - 2586.921938 - 2454.983462 458.2062508

LXGSA - 6991.255853 - 4848.031367 - 4733.80066 710.4445225

F9 LXWOA 0 0 0 0

WOA 0 0 0 0

PSO N/A 4.67E?01 N/A 1.16E?01

DE N/A 69.2 N/A 38.8

GSA 20.8941352 40.0636143 38.8033680 10.9427193

LXGSA 22.8840482 40.3952822 38.8033528 11.3700881

F10 LXWOA 8.88E216 4.44E215 4.44E215 2.47E215

WOA 8.88E216 4.32E215 4.44E215 2.38E215

PSO N/A 0.276015 N/A 0.50901

DE N/A 9.70E-08 N/A 4.20E-08

GSA 8.3007E-09 1.0059E-01 1.3897E-08 3.0881E-01

LXGSA 6.1245E-09 1.5157E-08 1.3959E-08 5.3883E-09

F11 LXWOA 0 0 0 0

WOA 0 0.00613605 0 0.03360851

PSO N/A 0.009215 N/A 0.007724

DE N/A 0 N/A 0

GSA 17.547450 27.744648 28.462734 5.551119

LXGSA 4.696050 16.194750 14.287670 8.629175

F12 LXWOA 0.00048444 0.0170252 0.01903697 0.00926204

WOA 0.00611412 0.02893606 0.02315188 0.01955525

PSO N/A 0.006917 N/A 0.026301

DE N/A 7.90E215 N/A 8.00E215

GSA 0.4637620 2.1842792 2.2820715 1.0693484

LXGSA 0.1194997 1.3342209 0.9579515 0.9352277

F13 LXWOA 0.35753337 0.86269746 0.86454 0.32827913

WOA 0.19079886 0.5617074 0.53102885 0.31825744

PSO N/A 6.68E-03 N/A 8.91E-03

DE N/A 5.10E214 N/A 4.80E214

GSA 0.6010870 11.6421777 11.3545666 6.4108955

LXGSA 0.0000000 2.9707697 1.0381519 4.9797020

Best values are shown by boldface
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Table 6 Best, average, median

and standard deviation (SD) of

objective function value

obtained from LXWOA, WOA,

GSA and LXGSA for low

dimensional multimodal

functions

Function Algorithm Best Average Median SD

F14 LXWOA 0.99800384 3.58484502 2.98210516 3.36422006

WOA 0.99800384 3.97013194 2.48706803 3.96689046

PSO N/A 3.627168 N/A 2.560828

DE N/A 0.998004 N/A 3.30E216

GSA 0.99800384 5.46887718 5.22136507 2.82023499

LXGSA 0.99800384 3.23197220 1.99203091 2.62260919

F15 LXWOA 0.00030847 0.00085229 0.00061099 0.00058168

WOA 0.00030787 0.00117425 0.00059669 0.00260336

PSO N/A 0.000577 N/A 0.000222

DE N/A 3.30E204 N/A 4.50E214

GSA 0.00199107 0.00851930 0.00708096 0.00521632

LXGSA 0.00058737 0.00272881 0.00140278 0.00487748

F16 LXWOA 2 1.0316285 2 1.0316285 2 1.0316285 2.61E211

WOA 2 1.0316285 2 1.0316285 2 1.0316285 6.18E209

PSO N/A - 1.03163 N/A 6.25E-16

DE N/A - 1.03E?00 N/A 3.10E-13

GSA 2 1.03162845 2 1.03162845 2 1.03162845 4.610E216

LXGSA 2 1.03162845 2 1.03162845 2 1.03162845 4.879E216

F17 LXWOA 0.397887358 0.397887358 0.397887358 1.78E208

WOA 0.397887358 0.39789209 0.39788887 6.36E-06

PSO N/A 0.397887 N/A 0.00E?00

DE N/A 0.397887 N/A 9.90E-09

GSA 0.397887358 0.397887358 0.397887358 0

LXGSA 0.397887358 0.397887358 0.397887358 0

F18 LXWOA 3 3.00008507 3.00001885 0.00015186

WOA 3.00000008 3.00009761 3.00001321 0.00023369

PSO N/A 3.00E100 N/A 1.33E-15

DE N/A 3.00E100 N/A 2.00E-15

GSA 3 3.035995876 3 0.197157535

LXGSA 3 3 3 4.37999E-15

F19 LXWOA 2 3.8627819 - 3.8621387 - 3.8623976 0.00066689

WOA 2 3.8627818 - 3.8546655 - 3.8609132 0.01384994

PSO N/A - 3.86E?00 N/A 2.58E-15

GSA 2 3.86277979 - 3.85542699 - 3.8549018 0.001998711

LXGSA 2 3.86277979 2 3.86277979 2 3.86277979 3.16177E-15

F20 LXWOA - 3.3219951 - 3.2637595 - 3.3219571 0.08503449

WOA - 3.3219195 - 3.2307532 - 3.3133816 0.10565286

PSO N/A - 3.27E?00 N/A 6.05E202

GSA - 2.6501605 - 1.6328745 - 1.5338478 0.4589163

LXGSA 2 3.3223680 2 3.2764764 2 3.3223680 0.0624305

F21 LXWOA 2 10.1532 - 7.6041983 2 7.6041974 2.59257641

WOA - 10.150525 - 7.0942847 - 5.0551419 2.7691968

PSO N/A - 6.8651 N/A 3.019644

DE N/A 2 10.1532 N/A 0.0000025

GSA 2 10.153200 - 4.970431 - 5.055198 1.451668

LXGSA 2 10.153200 - 5.191435 - 5.055198 1.965018
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\ 0.05 and LXWOA is significantly better than algorithm

1, B shows that p-value = 0.05 and LXWOA is alike

algorithm 1, C shows that p-value\ 0.1 and LXWOA is

marginally significant than algorithm 1, D shows that p-

value[ 0.1 and LXWOA is not significant.

On observing the results shown in Table 7, it can be

concluded that if WOA versus LXWOA is considered then

8 out of the 20 problems show that LXWOA is highly

significant than WOA. If GSA versus LXWOA is consid-

ered then 15 out of the 23 problems show that LXWOA is

highly significant than GSA. If LXGSA versus LXWOA is

considered then 12 out of the 22 problems show that

LXWOA is highly significant than LXGSA. There are two

problems, namely F1 and F16 in which p-value cannot be

computed because the standard error of the difference is 0.

In the above experiment I, the maximum number of

iterations (i.e. 500) are fixed. In one iteration, WOA

requires 30 number of function evaluations and LXWOA

requires 32 number of function evaluations for a population

of size 30. Therefore, WOA and LXWOA evaluates 15,000

and 16,000 number of functions respectively in a run of

500 iteration. This shows that the cost of LXWOA is higher

than the cost of WOA. Keeping in this mind, experiment II

is conducted in which termination criteria is set to be

‘‘maximum number of function evaluation less than 5000’’.

The available results of PSO and DE are taken for 500

iteration, hence, experiment I has been conducted by fixing

the termination criteria to be ‘‘maximum iteration = 500’’.

But in experiment II, author wants to utilize maximum

exploration and exploitation capability of the algorithm to

find the best quality of solution. So, the maximum number

of function evaluation is set to 5000 for both the algo-

rithms. The Best, Worst, Average, Median and Standard

deviation (SD) of the objective function values obtained

from LXWOA and WOA reported in Table 8 for all

problems listed in Tables 1, 2 and 3.

The results in Table 8 shows that the solutions obtained

from LXWOA are better than WOA on scalable unimodal

functions (F1 to F7). Out of 6 problems of scalable multi-

modal functions (F8 to F13), there are 2 problems, namely

F9 and F10 in which LXWOA and WOA have the same set

of solutions. There is one problem, namely F13 in which

WOA turns to have better solution and there is one prob-

lem, namely F11 in which LXWOA has better solution. On

F8 and F12, LXWOA has better Best but WOA has better

Worst, Average and Median. Out of 10 problems of low

dimensional multimodal functions (F14 to F23), there are 7

problems, namely F19, F20, F21, F22 and F23 in which the

performance of LXWOA is better than WOA. There are 4

problems, namely F14, F16, F17 and F18 in which LXWOA

and WOA showed approximately the same solutions. On

F15, LXWOA has better Worst and Median but better Best

and Average has been found by WOA.

From the above analysis, it can be concluded that the

performance of LXWOA has improved in comparison to

WOA on Scalable unimodal function, Scalable multimodal

function and low dimensional multimodal functions for a

fixed dimensions.

6 The problem of extraction of compounds
from Gardenia

Three bioactive compounds, namely, crocin (Y1), geni-

poside (Y2) and total phenolic (Y3) compounds are obtained

from gardenia fruits, which are affected by three inde-

pendent variables, concentrations of ethanol (X1), extrac-

tion temperature (X2) and extraction time (X3). Young et al.

(Yang et al. 2009) have presented a nonlinear multi-ob-

jective optimization problem using the method of least

square fitting and has solved it using Response Surface

Method. Shashi et al. (2010) used DDX-LLM algorithm

and Garg and Deep (2016) used Laplacian biogeography

Table 6 continued
Function Algorithm Best Average Median SD

F22 LXWOA 2 10.402941 - 7.267452 - 7.7453047 3.27955326

WOA - 10.401231 - 6.5671551 - 5.0875108 3.28048397

PSO N/A - 8.45653 N/A 3.087094

DE N/A 2 10.4029 N/A 3.90E207

GSA 2 10.4029406 - 7.77108567 - 8.13199829 2.680440355

LXGSA 2 10.4029406 - 8.59176558 2 10.4029406 2.922939069

F23 LXWOA 2 10.53641 - 7.2052629 - 5.1284808 3.04449842

WOA - 10.534427 - 6.822795 - 5.1283876 3.16109578

PSO N/A - 9.95291 N/A 1.782786

DE N/A 2 10.5364 N/A 1.90E207

GSA 2 10.5364098 - 8.9471948 2 10.5364098 2.727929868

LXGSA 2 10.5364098 - 9.81535261 2 10.5364098 1.869769309

Best values are shown by boldface
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Fig. 4 Iteration wise convergence plot of WOA and LXWOA
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Fig. 5 Iteration wise convergence plot of WOA and LXWOA
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based optimization (LX-BBO) algorithm to solve it. In this

paper, the above problem has been resolved with WOA and

LXWOA. The mathematical model of the above problem,

which is mentioned in Yang et al. (2009) and Shashi and

Katiyar 2010), is as follows.

In formulation, each yield is in the form of a function of

three independent variables. These functions are the second

order polynomial equation which is as follows:

Yk ¼ b0 þ
X3

i¼1

biXi þ
X3

i¼1

biiX
2
i þ

X3

i 6¼j¼1

bijXiXj ð10Þ

where, Yk represents yield, b0 represents a constant, bi; bii
and bij linear, quadratic and interactive coefficients

respectively of the model. Xi and Xj are independent

variables. The resulting equation of yield Y1, Y2 and Y3 are

as follows:

Y1 ¼ 3:8384907903þ 0:0679672610X1

þ 0:0217802311X2 þ :0376755412X3

� 0:0012103181X2
1 þ 0:0000953785X2

2

� 0:0002819634X2
3 þ 0:0005496524X1X2

� 0:0009032316X2X3 þ 0:0008033811X1X3 ð11Þ

Y2 ¼ 46:6564201287þ 0:6726057655X1

þ 0:4208752507X2 þ 0:9999909858X3

� 0:0161053654X2
1 � 0:0034210643X2

2

� 0:0116458859X2
3 þ 0:0122000907X1X2

� 0:0095644212X2X3 þ 0:0089464814X1X3 ð12Þ

Y3 ¼ �6:3629169281þ 0:4060552042X1

þ 0:3277005337X2 þ 0:3411029105X3

� 0:0053585731X2
1 � 0:0020487593X2

2

� 0:0042291040X2
3 þ 0:0017226318X1X2

� 0:0011990977X2X3 þ 0:0007814998X1X3 ð13Þ

This problem demonstrates a multi-objective optimization

problem in which all three yield is needed to be

maximized.

Multi-objective optimization problem is a problem in

which more than one objective function are optimized

together. The weighted method approach is a simple and

effective technique to handle multi-objective optimization

problems. In this technique, the user converts these prob-

lems into the single objective problem by defining different

or equal weight for each objective function. In this research

paper, it has been solved with WOA and LXWOA by

converting the problem into one objective problem by

giving equal weight to all the yields.

Table 7 A pairwise t-test

results of objective function

values with 95% confidence

interval at 0.05 level of

significance

Function WOA versus LXWOA GSA versus LXWOA LXGSA versus LXWOA

p-value Conclusion p-value Conclusion p-value Conclusion

F2 – – 0.000 A? 0.150 D

F3 0.000 A? 0.000 A? 0.000 A?

F4 0.000 A? 0.000 A? 0.000 A?

F5 0.000 A? 0.000 A? 0.046 A

F6 0.022 A 0.007 A? 0.006 A?

F7 0.053 C 0.002 A? 0.000 A?

F8 0.095 C 0.000 A? 0.000 A?

F9 – – 0.000 A? 0.000 A?

F10 – – 0.042 A – –

F11 0.163 D 0.000 A? 0.000 A?

F12 0.002 A? 0.000 A? 0.000 A?

F13 0.000 A? 0.000 A? 0.014 A

F14 0.334 D 0.014 A 0.319 D

F15 0.260 D 0.000 A? 0.025 A

F17 0.000 A? 0.056 C 0.056 C

F18 0.355 D 0.163 D 0.002 A?

F19 0.003 A? 0.000 A? 0.000 A?

F20 0.002 A? 0.000 A? 0.254 D

F21 0.234 D 0.000 A? 0.000 A?

F22 0.145 D 0.242 D 0.042 A

F23 0.280 D 0.016 A 0.000 A?
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Table 8 Best, worst, average, median and standard deviation (SD) of objective function value obtained from LXWOA and WOA, when number

of function evaluation less than 5000

Best Worst Average Median SD

F1 LXWOA 1.69E2223 6.00E2201 2.25E2202 2.73E2209 0.00E100

WOA 1.96E-209 2.73E-174 1.12E-175 6.60E-191 0.00E?00

F2 LXWOA 1.27E2148 5.93E2136 2.00E2137 9.53E2143 1.08E2136

WOA 1.13E-136 4.13E-120 2.24E-121 5.16E-127 8.57E-121

F3 LXWOA 886.9526 6829.8305 3448.6196 3524.5140 1469.5980

WOA 1842.3174 25077.8463 10,955.8780 8914.8447 6550.8715

F4 LXWOA 0.003433 39.671743 10.627369 6.640341 11.763112

WOA 0.260888 84.753947 43.333357 41.448827 27.696969

F5 LXWOA 24.441370 26.447747 25.032597 24.964978 0.448631

WOA 25.282108 27.575309 26.225782 26.074569 0.557266

F6 LXWOA 1.00E206 2.00E-02 2.66E203 1.57E204 5.26E-03

WOA 0.000062 0.001971 0.000388 0.000227 0.000398

F7 LXWOA 1.85E-05 3.92E203 1.09E203 5.97E204 1.16E-03

WOA 1.72E205 9.57E-03 1.37E-03 6.74E-04 1.99E-03

F8 LXWOA 2 12569.4825 - 7239.2648 - 11,618.4949 - 12,280.5711 1451.3722

WOA - 12,569.4410 2 9310.8193 2 12,023.5839 2 12,346.6143 825.2364

F9 LXWOA 0 0 0 0 0

WOA 0 0 0 0 0

F10 LXWOA 8.88E216 7.99E215 4.09E-15 4.44E215 2.70E-15

WOA 8.88E216 7.99E215 3.85E215 4.44E215 2.48E-15

F11 LXWOA 0 0 0 0 0

WOA 0 0.02027139 0.00067571 0 0.00370103

F12 LXWOA 4.8792E207 0.00581755 0.00066326 8.8584E-05 0.00121686

WOA 5.2999E-06 0.00058855 8.1236E205 5.0201E205 0.00010877

F13 LXWOA 0.00154796 0.46860958 0.13555144 0.10809413 0.11967755

WOA 0.00024321 0.11739748 0.01600827 0.01126839 0.02322964

F14 LXWOA 0.99800384 5.92884513 1.69093506 0.99800384 1.30186458

WOA 0.99800384 5.92884513 1.22850192 0.99800384 0.95873431

F15 LXWOA 0.00030770 0.00122881 0.00058382 0.00035067 0.0003783

WOA 0.00030763 0.00126439 0.00056520 0.00040233 0.00033303

F16 LXWOA 2 1.03162845 2 1.0316285 2 1.03162845 2 1.03162845 5.5626E216

WOA 2 1.03162845 2 1.0316285 2 1.03162845 2 1.03162845 8.9826E215

F17 LXWOA 0.39788736 0.39788736 0.39788736 0.39788736 1.9336E213

WOA 0.39788736 0.39788736 0.39788736 0.39788736 5.9743E210

F18 LXWOA 3 3 3 3 3.5748E210

WOA 3 3 3 3 1.0797E211

F19 LXWOA 2 3.86278215 2 3.8627703 2 3.86278109 2 3.86278201 2.3901E206

WOA - 3.86278214 - 3.8549006 - 3.86182228 - 3.8627739 0.0024764

F20 LXWOA 2 3.32199517 2 3.1376166 2 3.2641707 2 3.32199516 0.06394486

WOA - 3.32199514 - 3.081284 - 3.23832994 - 3.20210265 0.08651612

F21 LXWOA 2 10.1531997 2 10.153196 2 10.1531992 2 10.1531997 1.1109E206

WOA 2 10.1531997 - 10.093571 - 10.1510262 - 10.1531992 0.01086304

F22 LXWOA 2 10.4029406 2 10.367541 2 10.4017598 2 10.4029406 0.00646298

WOA 2 10.4029406 - 3.7243003 - 9.77997585 - 10.4029395 1.91145172

F23 LXWOA 2 10.5364098 2 10.536398 2 10.5364092 2 10.5364098 2.322E-06

WOA 2 10.5364098 - 2.421734 - 10.0425505 - 10.5364087 1.88857021

Best values are shown by boldface

Int J Syst Assur Eng Manag (August 2019) 10(4):713–730 727

123



Mathematically, for the given yield function Y1, Y2 and

Y3, the objective is to solve the following function:

Maximum g ¼ w1Y1 þ w2Y2 þ w3Y3 ð14Þ

where w1; w2 and w3 are the weights given by the user. In

this paper, w1 ¼ 0:33; w2 ¼ 0:33 and w3 ¼ 0:34 are kept.

Results In this section, the results of the problem of the

extraction of compounds from gardenia by WOA and

LXWOA have been presented and these results have been

compared with the results available in the literature. The

algorithms have been run to maximum 100 iterations by

keeping the number of candidates in the population as 30.

The results obtained on the basis of 30 independent

experiments have been shown using boldface in Table 9.

The range of X1;X2 and X3 are taken in 0–100.

When WOA and LXWOA are used to solve the above

problem, it is concluded that when the concentration of

ethanol is X1 ¼ 63:482211%, extraction temperature is

X2 ¼ 100 �C and extraction time X3 ¼ 27:290530 min,

then crocin ðY1 ¼ 9:6418Þ, geniposide ðY2 ¼ 117:7906Þ
and phenolic ðY3 ¼ 25:2781Þ are obtained in maximum

amount.

7 Conclusions

In this paper, a novel Laplacian whale optimization algo-

rithm (LXWOA) has been proposed and results are com-

pared with Whale Optimization Algorithm, Particle Swarm

Optimization, Differential Evolution, Gravitational Search

Algorithm and Laplacian Gravitational Search Algorithm.

From the above study, it is concluded that Laplacian whale

optimization algorithm gives most promising results as

compared to whale optimization algorithm, particle swarm

optimization, differential evolution, gravitational search

algorithm and Laplacian gravitational search algorithm on

scalable unimodal and scalable multimodal functions when

dimension is set 30. The performance of LXWOA has been

improved as compared to WOA on Scalable unimodal

function, Scalable multimodal function and low dimen-

sional multimodal functions with fixed dimensions. The

results obtained from LXWOA and WOA for the problem

of extraction of compounds from gardenia are better as

compared to the results available in the literature.
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