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Abstract An increase in the share of distributed generation

(DG) in the global generation system is a direct indication

of the development of available technologies. The extrac-

tion of natural energy resources and their use as DG has

several advantages, such as the reduction in line losses,

improved voltage profile and reliability, etc., but the

incorrect installation of these power plants can also have

some negative effects. The innovation in technology has

motivated to extract the maximum benefit of natural energy

resources. Due to this, the capacity and location of these

energy resources should be carefully identified. The opti-

mal placement of a distributed generation power plant, in

the existing network, is analyzed in this article. The pro-

posed methodology is inspired by the human immune

system. In this methodology clonal selection principle of

immune system is combined with particle swarm opti-

mization. For checking the validity of the proposed method

two test systems, IEEE 33-node radial distribution system

and IEEE 14-node loop distribution system, are considered.

Results show the validity of the proposed algorithm in

radial as well as in loop distribution system.

Keywords Distributed generation � Power system
optimization � Artificial immune system � Dispersed
generation � Clonal particle swarm optimization

1 Introduction

Although the power generation capacity has increased

worldwide, but its growth rate is not in the proportion of

the power demand. This creates unbalance in the genera-

tion and demand. This unbalance can be compensated by

installation of additional alternate power generators. These

generators will assist the conventional centralized gener-

ating units and can be installed near the load centers. Power

generating plants, which are smaller in size than central-

ized power plants and located near the load centers are

known as distributed generation power plants (DGPP).

DGPP can be connected at any point of the system. Con-

nection of DGPP in existing power system may have

positive and negative impacts on distribution system.

Technologies used for DGPP and impacts of the DGPP on

existing power system are discussed in details in Adefarati

and Bansal (2016), Bhadoria et al. (2016), Theo et al.

(2017).

Integration of DGPP in existing system will convert it

into an active power system. Due to this power flow will be

bidirectional. This may also cause overvoltage, reverse

power flow and failure of protective devices (Bhadoria

et al. 2013). Impacts of DGPP will depend on its pene-

tration level in existing distribution system. For extracting

maximum benefits of the DGPP, its optimal capacity
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should be installed. Another issue with integration of

DGPP is selection of its location in distribution system. In

general, a DGPP can be installed in the areas having less

reliability and poor voltage profile, but this installation may

not be the optimum and may results in adverse effects.

Therefore, a power system planner has to select the best

suitable location for DGPP within the available set of the

locations. Capacity of DGPP also affects the performance

of the distribution system. Consequently, a suitable ap-

proach must be adopted to choose the best suitable capacity

and location of DGPP.

Several techniques are discussed in literature to find the

optimal size and location. Objectives of these techniques

are diversified as, enhancement of voltage profile, mini-

mization of power and/or energy losses, maximization of

benefit, minimization of size, etc. According to Prakash

and Khatod (2016) these optimization methods can be

classified as:

a. Analytical Techniques

b. Classical Optimization Techniques

c. Artificial Intelligent (Meta-heuristic) Techniques

d. Miscellaneous Techniques

e. Other Techniques for Future Use

Hung et al. (2010) has used analytical expressions for

determination of optimal capacity and operating power

factor for different types of dispersed generators, with

objective of minimization of losses. An improved analyti-

cal method was suggested by Hung and Mithulananthan

(2013) for optimal size and location of multiple DGPP’s

for minimization of losses. Analytical method based on

branch power losses, branch current losses and total power

losses, with minimization of energy losses, was used by

Hung et al. (2013), for the selection of optimum location,

size and power factor of the DGPP in radial distribution

system. Optimum location of fixed size DGPP was selected

by analytical technique, for minimization of losses and

improvement of voltage profile (Bhadoria et al. 2014). A

multi-objective index was optimized by Hung et al. (2014)

using benefit–cost–analysis for the determination of opti-

mal capacity, place and number of DGPP’s. For opti-

mization, a multi-objective index was used. Index includes

components of both the active and reactive losses. The

optimization of the active loss component results in loss

reduction and that of the reactive loss component results in

improvement of voltage profile. An analytical technique for

size and location optimization, with single and multiple

DGPP, for minimization of branch current losses, is pro-

posed in Viral and Khatod (2015). Application of analytical

technique in determination of optimal size and location of

DGPP (Bhadoria et al. 2017) and optimal placement of

capacitor (Bhadoria et al. 2018), is also demonstrated.

Effect of optimal placement of DGPP and capacitor on

system reliability is also shown.

Mixed Integer Nonlinear Programming (MINLP) (Atwa

and El-Saadany 2011) was implemented for optimal

deployment of single wind power generator for, mini-

mization of total annual energy losses. Generation-load

model is used for determination of optimal place of wind

generator. A bi-objective function, to reduce network los-

ses and improve voltage stability, was optimized using

dynamic programming in Esmaili et al. (2014). Genetic

algorithm (GA) was used for multi-objective optimization

for optimal placement of different types of DGPPs con-

sidering different load models (Singh et al. 2016). A bi-

objective function was optimized using adaptive GA, with

the consideration of the uncertainties in generation and

load demands (Ganguly and Samajpati 2015). Muttaqi

et al. (2016), cost related indices have been maximized

using particle swarm optimization (PSO). These indices

vary as per the size and location of DGPP. GA in combi-

nation of PSO (Moradi and Abedini 2012) was used for

optimal sitting and sizing of DGPP in radial distribution

system. PSO has been found useful in multi-objective

optimization for size, place and generated power contract

prices of DGPP (Ameli et al. 2014). Economic analysis

was done from distribution companies and DGPP owner’s

view point. Hien et al. (2013) has also used PSO in optimal

placement of DGPP, for the improvement of voltage sta-

bility and minimization of reactive losses. PSO was also

used in optimal placement of UPFC in radial distribution

system (Jaiswal and Shrivastava 2018). Adaptive quantum

inspired evolutionary algorithm (AQiEA) is also found in

literature for optimal placement of DG (Manikanta et al.

2016) and simultaneous placement of DG and capacitor

both (Manikanta et al. 2018).

Several heuristic and hybrid optimization techniques,

such as cuckoo search (Nguyen et al. 2016), invasive weed

optimization (IWO) (Rama Prabha and Jayabarathi 2016),

kill herd algorithm (Sultana and Roy 2016), hybrid particle

artificial bee colony (PABC)-harmony search algorithm

(HSA) (Muthukumar and Jayalalitha 2016), multi-objec-

tive hybrid big bang-big crunch (MOHBB-BC) (Esmaeili

et al. 2016), ANT lion optimizer (ALO) (Hadidian-

Moghaddam et al. 2017) and Clonal Selection Algorithm

(CSA) (Lalitha et al. 2011) were also found in the

literature.

The objectives of the optimum placement of DGPP’s are

observed as the minimization of losses, improvement in the

voltage stability or profile, minimization of energy losses,

minimization of generation or overall cost. These objec-

tives can be used as a single or combined together to form a

multi-objective function. Most of the techniques discussed

in the literature consider either the minimization of real

losses or the improvement in the voltage profile for
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reduction of total losses but not both. Also, the reactive

losses must be considered for optimization as these play a

significant role in improvement of the overall system per-

formance. Hence, in this paper a multi-objective function is

formed. This multi-objective function considers not only

the active losses but the reactive losses and the voltage

profile also for optimization. The results obtained from the

proposed method are compared with various other methods

such as Improved Analytical (IA) (Hung and Mithulanan-

than 2013), Exhaustive Load Flow (ELF) (Hung and

Mithulananthan 2013), PSO (Hien et al. 2013), loss sen-

sitive factor (LSF) (Muthukumar and Jayalalitha 2016),

hybrid algorithm (Muthukumar and Jayalalitha 2016) and

CSA (Lalitha et al. 2011).

In this paper an artificial immune system based approach

is combined with PSO and this hybrid method is used for

the optimal placement of DGPP in radial distribution sys-

tem. CSA available in the literature (Lalitha et al. 2011)

selects all solutions for cloning and numerous clones are

produced for each solution. In the proposed technique, only

optimal solution is cloned for better and faster optimization

process. In previous CSA, Lalitha et al. (2011) objective

function is to minimize active losses only in radial distri-

bution system, but in this paper, objective function is to

minimize total losses and improve voltage profile of the

radial as well as loop distribution system. Test systems

considered are IEEE 33-node and IEEE 14-node distribu-

tion systems. Main objectives of article are:

1. To develop an efficient technique by combining

features of AIS with PSO

2. To formulate a multi-objective function for minimiza-

tion of total losses and voltage profile improvement

3. To optimize the capacity and location of DGPP by

means of proposed technique in radial as well as loop

distribution system

2 Problem formulation

In general, power is generated through centralized power

plants and location of these power plants is far away from

the point of use. This distance is main cause of the voltage

drop and power losses in the system. The effect of distance

will be more prominent in radial distribution systems. One

more reason for the poor voltage profile and increased

losses is the inductive nature of the load. This inductive

nature of load, worsen the power factor, which in turn

affects the losses and voltage profile of the system.

Line losses of the system are mainly dependent on the

current flow in the lines. For a two terminal system the line

current between terminal i and j is given by:

Iij ¼ � Vi � Vj

� �
� Yij ð1Þ

where Iij = phasor current from terminal i to j, Vi = the

voltage of terminal i, Vj = the voltage of terminal j, and Yij
is the element of the Y-bus matrix.

With the help of this injected current line power flow

and the total losses of any system can be calculated as

follows: Line power flow from terminal

i to j ¼ Sij ¼ ViI
�
ij ð2Þ

In the same way line power flow from terminal

j to i ¼ Sji ¼ VjI
�
ji ð3Þ

Thus, total line losses in N-node system

ST ¼
XN

i¼1

XN

j¼1

ðSij þ SjiÞ ð4Þ

The total power losses (PT) of a system can also be

given in terms of real and reactive injected powers at dif-

ferent nodes.

2.1 Active power loss index (APLI)

In any N-node system active power loss can be expressed

by the ‘exact loss’ formula (Elgerd 1982) as written in

Eq. (5).

PL ¼
XN

i¼1

XN

j¼1

aij PiPj þ QiQj

� �
þ bij QiPj � PiQj

� �� �
ð5Þ

where aij ¼ Rij

ViVj
cos di � dj

� �
, bij ¼

Rij

ViVj
sin di � dj

� �
,

N = total number of nodes, Pi and Qi are the real and

reactive power injected at node i, Vi and di are the mag-

nitude and the angle of the voltage at node i, and Zij ¼
Rij þ jXij is the ijth element of ZBUS½ � ¼ YBUS½ ��1

.

Active power losses are calculated with DGPP ðPwdg
L Þ

and without DGPP ðPwodg
L Þ and APLI can be given as

Eq. (6).

APLI ¼ P
wdg
L

P
wodg
L

ð6Þ

2.2 Reactive power loss index (RPLI)

In any N-node system total reactive power loss (QL) can be

expressed by the Eq. (7) (Elgerd 1982).

QL ¼
XN

i¼1

XN

j¼1

cij PiPj þ QiQj

� �
þ nij QiPj � PiQj

� �� �
ð7Þ

where,
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cij ¼
Xij

ViVj

cos di � dj
� �

;

nij ¼
Xij

ViVj

sin di � dj
� �

;

Reactive power losses are calculated with DGPP ðQwdg
L Þ

and without DGPP ðQwodg
L Þ and RPLI can be given as

Eq. (8).

RPLI ¼ Q
wdg
L

Q
wodg
L

ð8Þ

2.3 Voltage profile index (VPI)

A minimum voltage of ith node is considered to improve

the overall voltage profile of the system. Difference

between slack node voltage (V1) and minimum node volt-

age without DGPP (V
wodg
min ) is calculated. This difference

and minimum node voltage with DGPP (V
wdg
min Þ, are utilized

to form voltage profile index (VPI). Voltage profile index is

given as Eq. (9)

VPI ¼ V1 � V
wodg
min

V
wdg
min

�����

�����
ð9Þ

2.4 Objective function (OF)

A multi-objective function is formulated as in Eq. (10) by

combining APLI, RPLI and VPI.

OF ¼ r1ðAPLIÞ þ r2ðRPLIÞ þ r3ðVPIÞ ð10Þ

where

X3

x¼1

rx ¼ 1 ^ rx 2 ð0 1Þ

The value of the rx is determined as per the priority of

objective of the optimization problem. In this paper equal

priority is given to all performance indices.

The multi-objective function of (10) is minimized with

following constraints:

Node voltage should be within permissible limits as:

Vimin\Vi\Vimax ð11Þ

Capacity of active and reactive power generation should

be within limits as:

PDGmin �PDG\PDGmax ð12Þ
QDGmin �QDG\QDGmax ð13Þ

Active and reactive power generation should be able to

fulfill the total demand and losses of the system. Mathe-

matically, this can be written as Eqs. (14) and (15).

X
PG þ

X
PDG ¼

X
PD þ

X
PL ð14Þ

and
X

QG þ
X

QDG ¼
X

QD þ
X

QL ð15Þ

3 Particle swarm optimization (PSO)

Particle swarm optimization is a nature motivated opti-

mization procedure, which is motivated by the social

conduct of animals like flocking of birds in search of food.

In the process of sustenance search, a bird compares its

distance from of the food, to that of the group member

closest to the food. On the basis of this information, group

makes amendment in the search procedure of the food.

This group is known as ‘population’ and each bird is

known as ‘particle’.

Kennedy and Eberhart (1995) have proposed the con-

cept of PSO. In PSO, initially a random population of

particles is generated with random positions and random

velocities of particles. Random velocity is denoted by

v(t) and random position is denoted by x(t). Optimization

process progresses ahead with the movement of particles

towards the best position (Gbest) in the swarm. Individual’s

best location of particle is denoted by (Pbest). In each

iteration, all particles moves towards the particle, having

best position in the swarm. This process continues till the

achievement of the global optimum solution. Velocity and

position of the particles, in each iteration can be expressed

mathematically by the Eqs. (16) and (17).

Vn
i ¼ w� Vn�1

i þ c1 � R1 � Pn�1
besti � Xn�1

i

� �
þ c2 � R2

� Gn�1
besti � Xn�1

i

� �

ð16Þ

Xn
i ¼ Xn�1

i þ Vn
i ð17Þ

where: w: the inertia weight, c1and c2: the acceleration

coefficients, R1 and R2: uniformly distributed random

numbers between 0 and 1, Xi: Position of ith particle, Vi:

Velocity of ith particle, Pbesti: best position achieved by the

ith particle, Gbest: Best position achieved ever.

The first part of Eq. (16) is corresponding to the local

velocity of the particle, second part is the individual cog-

nitive part and the third part is the swarm cognitive part.

Velocity of particles depends on inertia weight w. Its value

is generally taken between 0.4 and 0.95.

In general, PSO is faster optimization technique com-

pared to other optimization techniques but, when PSO is

used to optimize complex problems then, sometimes it may

result in local optimum solution. Reason for this can be

explained as follows:
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1. The initial value of inertia weight also affects the

particle velocity in each iteration, hence it is generally

considered to be constant in each iteration. A too small

inertia weight results in a local optimum solution and

too high inertia weight results in such a fast movement

of the particle that it may miss the global optimum

solution. Some algorithms, both linear and non-linear,

are available for determining the inertia weight but

none have produced perfect estimation.

2. It is clear from the third part of the Eq. (16), that all

particles in the swarm receive the same information

and move towards Gbest. Due to this, all the particles

are quickly attracted by it and this reduces the variety

of the swarm.

In PSO, a single particle acts as a guide to the swarm

and all particles moves towards that particle. If there are

several local optimum solutions available then, during the

movement there is the possibility of trapping in the local

optimum solution. This possibility of trapping at local

optima can be avoided by incorporating the clonal selection

principle with the PSO. After incorporating the clonal

selection principle, new particles will be generated at the

location of Gbest. Thus probability of trapping in local

optima will decrease and optimization process will be

faster. Although PSO is having the capability of self

improving but sometimes it may be trapped in local opti-

mum solution but clonal selection principle avoids such a

problem. Hence, CPSO will provide better search ability.

4 Clonal particle swarm optimization (CPSO)

Principe of CPSO is derived from the Artificial Immune

System (AIS) hypothesis. AIS theory explains the reaction

of human or animal body against antigen. Human or animal

body have infinite numbers of ‘B’ and ‘T ’ cells and each

‘B’ or ‘T ’ cell has selective property and sensitive to a

particular type of antigen. Antigen receptor is available on

the surface of ‘B’ or ‘T ’ cells. Selective property of ‘B’ or

‘T ’ cells ensures that, only one cell is able to bind with the

antigen successfully. After activation of the ‘B’ and ‘T ’

cells, these cells are cloned rapidly and this complete

process is known as clonal selection. After clonal selection

process, cells undergo to a series of irreversible changes to

produce plasma cells and memory cells. de Castro and Von

Zuben (2002) explained the process of clonal selection.

Clonal PSO is a combination of clonal principle of

natural immune system and the PSO. In this algorithm,

clones of best particle are created and ‘M’ new particles, at

the position of Gbest, are generated. Due to this, second and

third term in the velocity update equation becomes zero

and the velocity and position update equations are modified

as follows:

Vn0

i ¼ w� Vn0�1
i ð18Þ

Xn0

i ¼ Xn0�1
i þ Vn0

i ð19Þ

By updating the velocity and position according to

above equations other steps remain similar to PSO. The

whole process is repeated until optimum position is found.

Flow chart of the proposed methodology is shown in

Fig. 1. Convergence of the optimization problem depends

on the inertia weight of the Eq. (18). In this paper, time

varying inertia weight is used during optimization.

5 Results and discussion

The versatility of the proposed algorithm is checked by

applying it in two different types of distribution systems

i.e. in radial as well as in loop distribution systems.

Accordingly two different cases are considered. In Case I,

IEEE 33- node radial distribution system is considered and

in case II, IEEE 14-node loop distribution system is

considered.

In this article following assumptions are made for sim-

plification purpose:

• In case-I DGPP is operating at unity power factor and

supplying active power support only.

• In case-II DGPP is able to provide active as well as

reactive power support.

• All nodes are selected as candidate location of DGPP

except slack node.

• DGPP connection node is considered as PV node.

Case I:

For testing the validity of the proposed methodology in

radial distribution system, IEEE 33-node radial distribution

system (Baran and Wu 1989) is considered as a test system

and the results of the proposed method are compared with

some other existing methods. The test system has 33 nodes

and 32 lines with total active power demand of 3.72 MW

and total VAr demand of 2.3 MVAR. During implemen-

tation, population size is taken as 25 and the maximum

number of iterations is 100. The objective function is for-

mulated according to Eq. (10) and is optimized as per the

proposed algorithm. Results are shown in Table 1.

Base case active losses are 211.2 kW, which are cal-

culated by the approximate load flow method. The results

of the proposed methodology are compared with the LSF

(Hung and Mithulananthan 2013), IA (Hung and Mithu-

lananthan 2013), ELF (Hung and Mithulananthan 2013),

PSO (Hien et al. 2013), LSF (Muthukumar and Jayalalitha

2016), Hybrid Algorithm (Muthukumar and Jayalalitha
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2016), and CSA (Lalitha et al. 2011). As evident from the

data presented in Table 1, the aforementioned algorithms

either minimize the real losses or the total power losses

only. The proposed algorithm not only minimizes the total

losses but improves the voltage profile as well. VPI term

improves the voltage profile of the system. Although CSA

used in (Lalitha et al. 2011) is having similar objective but

proposed algorithm is clearly distinctive from earlier one in

following manner:

a. In CSA (Lalitha et al. 2011), all solutions are selected

for the cloning, but in the proposed algorithm, only

best solution is selected for cloning and hence results in

faster optimization process.

b. Objective function of the CSA (Lalitha et al. 2011) is

single objective; to minimize real losses only by

placement of single DGPP but in proposed algorithm a

multi-objective function is formulated for the mini-

mization of total losses and improvement of voltage

profile.

Results show that, using proposed method optimum size

DGPP is 2.2 MW and its location is node number 7. This

size of DGPP is least among compared methods, which

results in minimum line losses with significant improve-

ment in the minimum bus voltage. There is considerable

saving in active and reactive line losses. Graphically this

saving is shown in Figs. 2 and 3 respectively. Higher

reactive power flow results in excessive heating and

START

Load the System Data

Run Load flow without DG

Initialize PSO parameters

for loop upto nbus 
except slack bus

Set iteration =1

Update the parameters 
with DG condition

Check 
constraints

Change ParametersOut of limit

Calculate OF with DG

Update Pbest and Gbest

Termination criterion 
satisfied?

Increase iteration count

NO

Is Bus 
no=nbus

Print Results

Go to next bus

Within limit

YES

YES

NO

Stop

Fig. 1 Flow chart of the

proposed clonal selection

algorithm
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Table 1 Results and comparative study of the proposed algorithm in IEEE 33-node distribution system

Technique Objective function Size

(MW)

Node

number

Losses

(kW)

Saving/

MW

Vmin

(node #)

Base case – – – 211.2 – 0.9037

(18)

Loss sensitivity factor (Hung and

Mithulananthan 2013)

Minimization of real losses only 0.743 18 146.82 86.65 –

IA (Hung and Mithulananthan 2013) Minimization of real losses only 2.601 6 111.11 38.48 –

ELF (Hung and Mithulananthan 2013) Minimization of real losses only 2.601 6 111.11 38.48 –

PSO (Hien et al. 2013) Minimization of real losses only 2.4939 12 116.268 38.06 –

LSF (Muthukumar and Jayalalitha

2016)

Minimization of total power losses 2.598 6 111.03 38.55 0.9425

(18)

Hybrid Algorithm (Muthukumar and

Jayalalitha 2016)

Minimization of total power losses 2.598 6 111.03 38.55 0.9425

(18)

CSA (Lalitha et al. 2011) Minimization of real losses only 2.577 6 105.0231 39.9 0.9314

(18)

CPSO Minimization of total losses and

improvement of voltage profile

2.2 7 102 49.63 0.9349

(18)

Fig. 2 Active line loss saving in IEEE-33 node system

Fig. 3 Reactive line loss saving in IEEE-33 node system
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voltage drop in the lines. Thus, reduction in the reactive

power flow is desired to avoid such problems in the

existing system.

Considering the size of DGPP, minimum size of DGPP

is proposed by LSF (Hung and Mithulananthan 2013)

method, but losses are not minimum. A comparative study

of the results for size of DGPP and real losses for different

methodologies with CPSO is shown in Fig. 4. Size pro-

posed by LSF (Hung and Mithulananthan 2013) method

results in only 30.5% loss reduction, comparatively size

and location proposed by CPSO results in 51.7% loss

reduction. Figure 4 clearly depicts that, for the minimum

real losses, size proposed by the CPSO is minimum.

Figure 5 shows the comparison of loss saving and sav-

ing/MW of capacity, for different optimization techniques

and CPSO. The saving per unit of MW capacity is more in

LSF (Hung and Mithulananthan 2013) method, but in that

case, loss saving is less than that of CPSO. Figure 5 sup-

ports that size and location proposed by CPSO will result in

maximum loss reduction for maximum loss saving/MW.

Figure 6 shows the voltage profile of the system with

and without DGPP, resulting in the improvement of the

voltage profile of the system with the installation of DGPP.

With this installation, minimum voltage is 0.9349 pu at

node number 18, which is also improved. Since the DGPP

is installed at node number 7 and hence, voltage profile of

Fig. 4 Size and loss comparison of CPSO

Fig. 5 Loss saving and saving/MW comparison of CPSO
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the nodes nearer to DGPP improves more and as the dis-

tance from the DGPP increases, the effect of DGPP

decreases.

Case-II:

In case-II, proposed algorithm is also implemented in IEEE

14-node loop distribution system. Data for the IEEE 14-

node system is taken from Pai (1994). In loop distribution

system, the proposed methodology is compared with other

existing technologies as analytical (Ghosh et al. 2010) and

modified differential evolution (MDE) (Kumar et al. 2013)

technique. Since, in both these techniques objective func-

tion considers minimization of cost of DGPP and active

losses and hence, for better comparison the objective

function is formulated as (20):

OF ¼ m1 � C þ m2 � APLI þ m3 � VPI ð20Þ

where C = a ? bPdg ? cPdg
2 , and

P3
x¼1 mx ¼ 1^

mx 2 ð0 1Þ
According to analytical method (Ghosh et al. 2010)

optimum location of the DGPP is node number 8 and

optimum size of the DGPP is 16 MW. In this case losses

are 11.72 MW. Kumar et al. (2013) has proposed modified

differential evolution (MDE) technique for optimum

placement of DGPP in same system. According to MDE

optimum size of DGPP is 34.12 MW and its location is

node number 3. In this case, losses are 11.54 MW.

Although using MDE, losses in the system are less but, the

size of DGPP is greater than analytical method. Proposed

CPSO is applied in the same system for the size and

location optimization of DGPP. For proper comparison

DGPP is assumed to provide reactive power support also.

Capacity of reactive power support is only 20% of the

active power capacity. Results and comparative study are

shown in Table 2. Results show the superiority of the

technique over the previous ones. Optimum size of the

DGPP is found 33.95 MW and its optimum location is

node number 6.

Overall losses of the system are also reduced compared

to existing methods. Total active losses in analytical

method are 16 MW and in MDE are 11.54 MW. Total

losses by installing 33.95 MW DGPP at node number 6

will result in active loss of 10.811 MW. Thus lesser

capacity of the DGPP results in minimum losses, for same

objective function. Active and reactive line losses with and

without DGPP are shown in Figs. 7 and 8 respectively. The

results demonstrate the efficacy of the proposed algorithm

for multi-objective optimization in loop distribution

system.

6 Conclusions

This paper combines clonal selection principle of artificial

immune system with PSO. A multi-objective function is

optimized using this CPSO, for optimal placement of

DGPP in IEEE 33-node radial as well as in IEEE 14-node

loop distribution system. The results of the proposed

methodology are compared to that obtained using other

existing methodologies and it is found that the proposed

optimization technique produces better results than the

others. In radial distribution system, objective function of

other compared methods is to minimize the real losses only

but the objective function of proposed method is to mini-

mize total losses and improve voltage profile. The results

show that the optimum size of DGPP given by the pro-

posed method is minimum and reduction in the losses is the

maximum among all the compared methods. For IEEE

14-node loop distribution system, the objective function is
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Fig. 6 Voltage profile of the IEEE 33 node system with and without

DGPP

Table 2 Results and comparative study of the proposed algorithm in IEEE-14 node distribution system

Technique Objective function Size of

DGPP

Location of

DGPP

Losses in

MW

DG power injection

MDE (Kumar et al.

2013)

Cost and active losses 34.12 3 11.54 Only active power

Ghosh et al. (2010) Cost and active losses 16 8 16 Active power and Reactive power is 20% of

active power

Clonal PSO Total losses, cost and

voltage profile

33.95 6 10.811 Active power and Reactive power is 20% of

active power
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reformulated for proper comparison. The objective func-

tion thus formulated, considers the cost of the DGPP, losses

and the voltage profile of the system. Results show the

effectiveness of the proposed algorithm over the compared

ones in radial as well as in loop distribution system. The

proposed algorithm can also be implemented for multiple

DGPPs and variable loads.
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