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Abstract This paper investigates a generalized lead time

distribution with a variable backordering rate in a two-

echelon supply chain system. The vendor produces a single

product and delivers to the buyer in equal sized batches.

The delivery lead time follows a generalized stochastic

variable. Shortages are allowed to occur and backordered

partially. The backorder rate depends on the demand on

stock-out period. Based on this notion, we formulate a

mixed integer non-linear cost function which needs to be

minimized with respect to reorder point, number of deliv-

eries and lot size from the vendor to the buyer, to operate

cooperatively in the integrated model. Analytically we

proved the convexity of the generalized lead time distri-

bution cost function with respect to the control parameters.

Further, the uniqueness of optimality has been proved. To

validate the proposed model, uniform, exponential and

normal distributed lead times are presented in numerical

example section. Sensitivity analysis also performed to the

values of the parameters.

Keywords Cost minimization � Integrated economic lot-

sizing � Inventory control � Stochastic delivery time �
Variable backorder rate

1 Introduction

This paper develops a two-echelon integrated inventory

control with the general distribution of the procurement

lead time of a lot size, and variable backorder rate. In this

section, we present some of previous works regarding this

work.

Today’s highly competitive market conditions, the

integrated strategy plays a vital role in the supply chain

network. Goyal (1977) firstly introduce the single vendor

single supplier integrated system. This paper observes that

the total cost of the integrated approach is less than the sum

of the total cost of the individuals. After this work, till now

many researchers incorporate this integrated strategy into

their literature (e.g., Ben-Daya and Raouf 1994; Cárdenas-

Barrón et al. 2012, 2011; Chung and Wee 2008; Huang

2004; Lee et al. 2007, 2017; Lin 2009; Ouyang et al. 2007;

Pan and Yang 2002; Sajadieh et al. 2010; Wangsa and Wee

2017; Wu et al. 2007; Yang 2010).

In all supply chain systems, the lead time is an important

factor and many inventory control model involves the

deterministic lead times. Controllable lead time is one of

the deterministic lead time strategies which is incorporated

by many authors (e.g., Ben-Daya and Raouf 1994; Lee

et al. 2007; Lin 2009; Ouyang et al. 2007; Pan and Yang

2002; Wu et al. 2007) and it is first introduced by Tersine

(1982). According to Tersine model, the lead time may be

consisting of many segments like, setup order time,

delivery time, distributor lead time etc. These segments can

be shortened by additional cost called crashing cost.

A common assumption of aforesaid literature is either

deterministic lead time or known variable lead time. In

practice, there might be plenty of environmental causes

which may influence the delivery lead time, for example,
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transportation time, late production and so forth, and this

outcome the lead time to be uncertain. Liberatore (1977) is

the first author addressed an inventory modeling involving

stochastic lead times. An inventory model developed by

Sphicas and Nasri (1984), deals with constant demand and

stochastic lead times. Yano (1987) determined the optimal

lead times for two-echelon system, with the aim of mini-

mizing the sum of inventory holding costs and tardiness

costs. Nasri et al. (1990) developed inventory control with

stochastic lead time and the authors incorporate the

investment strategy to minimize the set-up cost. Specifi-

cally, the set-up cost reduces as exponential function of

investment. Fujiwara and Sedarage (1997) developed an

Economic Order Quantity (EOQ) problem for single-item,

where the production of an item required number of parts

and the lead time is assumed to be a stochastic variable.

The problem determines when to order in each part and

finds the EOQ, hence the total cost per unit time of the

system is minimized. He et al. (2005) presented a proba-

bilistic, finite lead time inventory model with backordering.

A generalized EOQ model with backorder is developed and

uniformly distributed lead time was employed as a partic-

ular case. Paknejad et al. (2005) modified the stochastic

lead time inventory model which allows a defectiveness in

the system, for that the extra holding cost incurred for the

defective items until those items are returned to the vendor.

Also the paper deals with the investment to improve the

quality. Jokar and Sajadieh (2008) proposed a multi-sour-

cing inventory model with the stochastic lead time. The

authors incorporate more than one suppliers and splitting

orders between them to lessen the lead time risk in the

unstable environments. The aim of the study is to finding

optimal number of suppliers and comparing the results to

sole-sourcing model.

Sajadieh and Akbari Jokar (2009) presented a single-

vendor single-buyer integrated inventory system for a

stochastic lead time. The authors assumed that the lead

time follows a uniform distribution. Also, the authors

assumed to allow shortages with completely backorder.

Sajadieh et al. (2009) developed exponentially distributed

stochastic lead time inventory model with shortages and

completely backorder. Normally distributed lead time

inventory model is investigated by Hoque (2013), the

model allows shortages. If the batch Q arrives late at the

time t, then the vendor kept the Qt inventory in his ware-

house. This extra inventory induces the extra holding cost

at the vendor side. Hoque (2013) had taken this extra

holding cost into his model. Shu et al. (2015) extends

Sajadieh et al. (2009) model by incorporating the trans-

portation cost of lot size which is increasing function of

q. Lin (2016) also extends Sajadieh et al. (2009) by

allowing shortages and those shortages are partially back-

ordered. Also, Lin (2016) using investment function to

reduce the mean value of lead time. The paper by Hossain

et al. (2017) is the first literature which considers the

general distributions of stochastic lead times and the ven-

dor may have the penalty cost for the delayed delivery. To

illustrate the model, the authors used different distributions

such as uniform, normal and exponential distributions in

the numerical section.

A comparison of our model with these literatures is

given in Table 1. The remainder of the paper is arranged as

follows. In the next section we put forward Notations and

Assumptions. In Sect. 3 we deal the mathematical model

with general distribution of lead time, and algorithm of

obtaining the minimum cost. Numerical computations for

different distributions and parametric sensitivity analysis

are carried out in Sect. 4. Conclusions are made in the last

section.

2 Notations and assumptions

We adopt the following notations and assumptions to

develop the mathematical model.

2.1 Notations

D demand rate (units/unit time)

A buyer’s ordering cost per order

B vendor’s setup cost per setup

hb buyer’s holding cost per unit per unit time

hv vendor’s holding cost per unit per unit time

l length of the lead time (a random variable)

f(l) probability density function of l

p buyer’s shortage cost per unit per unit time

p0 marginal profit (i.e., cost of lost demand) per unit

per unit time

a upper limit of lead time (unit time)

b lower limit of lead time (unit time)

Q buyer’s order quantity (units per order) (a decision

variable)

r reorder level (units) (a decision variable)

b fraction of shortage will be backordered ð0� b� 1Þ
(a decision variable)

Eð�Þ mathematical expectation

2.2 Assumptions

1. A two-echelon integrated inventory model is devel-

oped with single-vendor and single-buyer for a single-

item.

2. Demand rate is constant and production rate is infinite.

3. The buyer follows a classical (Q, r) system, i.e., the

inventory is continuously reviewed and the order Q is
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placed when the inventory level reaches the reorder

point r.

4. The vendor’s rate of production is assumed to be

infinite.

5. The lead time of the buyer’s order is a random variable.

6. Shortages are allowed at the buyer side and a fraction

(b) of shortages is backordered. The backordering

parameter b is assumed to inversely proportional to the

amount of shortages.

3 Mathematical model

In this section the mathematical model of integrated

inventory system is developed. Based on an agreement

between the two entities, the buyer orders Q units to the

vendor and in order to reduce the setup cost, the vendor

produces nQ items and transfers Q items for n times. The

vendor produces the items with infinite production rate and

production time is assumed to be zero (e.g., Sajadieh et al.

2009; Lin 2016; Hossain et al. 2017). Since the delivery

lead time is probabilistic in nature which follows a known

randomness with the probability function f(l) within certain

range (a, b).

3.1 Buyer’s total cost

The buyer’s total cost consisting of ordering cost, holding

cost and shortage cost (if shortage occur) per unit time. The

order Q units are placed when the inventory level drops to

the reorder level r. Since the delivery lead time is a

probabilistic, the order may arrive early or late with respect

to the mean lead time EðlÞ ¼ r
D

. The time is a continuous

variable, for that, we develop this model by considering the

stochastic lead time follows a continuous random variable.

The upper bound and the lower bound of the lead time are

b and a respectively, i.e., �1� a� l� b� þ1 which is

the general range of the lead time considered in this paper.

Since ordering cost per order is A, the ordering cost per unit

time is DA
Q

. If the order arrives earlier with respect to the

mean lead time r
D

, i.e., l� r
D

, then the time-weighted

inventory (area bounded by red color in Fig. 1) is
1
2
Dl2 þ lðr � DlÞ ¼ lðr � Dl

2
Þ. Therefore the expected

holding cost per unit time is

hbðD=QÞE r � Dl
2

� �
lIða� l� minðb;r=DÞÞ

� �
, where IB is the

indicator function, i.e., IB :¼ IBðxÞ ¼
1; if x 2 B

0; if x 62 B:

�

Suppose the order arrives late with respect to the mean lead

time r
D

, i.e., l[ r
D

, then the time weighted inventory (area

bounded by red color in Fig. 2) is r2

2D
. Therefore the

expected holding cost per unit time is

D
Q
E r2

2D
Iminðb;r=DÞ\l� b

h i
. Similarly, the shortage area (area

bounded by black color in Fig. 2) is 1
2D

ðDl� rÞ2
. Thus the

expected number of backorder per cycle is

bE 1
2D

ðDl� rÞ2
Iminðb;r=DÞ\l� b

h i
and the expected shortage

cost per unit time is ðpþ p0ð1 � bÞÞ D
Q
E 1

2D
ðDl� rÞ2

h

Iminðb;r=DÞ\l� b� ¼ ðpþp0ð1�bÞÞ
2Q

E ðDl� rÞ2
Iminðb;r=DÞ\l� b

h i
.

Since the backordering ratio is assumed to inversely pro-

portional to the amount of shortage, we get

Table 1 Comparison with the

literature
References Lead time distribution Backlog Variable backorder

Hoque (2013) Normal Complete

Hossain et al. (2017) General Complete

Lin (2016) Exponential Partial

Sajadieh and Akbari Jokar (2009) Uniform Complete

Sajadieh et al. (2009) Normal Complete

Shu et al. (2015) Exponential Complete

Present study General Partial U

Q

r

r-Dl

Q-Dl

l Q−Dl
D

r

r
D

Stock

Time

Fig. 1 Buyer’s inventory level when b� r=D (color figure online)
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b ¼ 1

1 þ q
2D

Rb

r=D

ðDl� rÞ2
f ðlÞdl ð1Þ

where q[ 0. In both the cases, l� r
D

and l[ r
D

, the

maximum inventory level after the arrival is Qþ r � Dl.

Thus the time weighted inventory (area bounded by blue

color) after the arrival is
ðQ�DlÞ2

2D
þ rðQ�DlÞ

D
. The expected

total cost is D
Q
hb

1
2D

E ðQ� DlÞ2
Iða� l� bÞ

h i
þ D

Q
hb

r
D
E ðQ�½

DlÞIða� l� bÞ� ¼ hb
2Q

E ðQ� DlÞ2
Iða� l� bÞ

h i
þ hbr

Q
E ðQ� DlÞ½

Iða� l� bÞ�. Therefore the expected total cost of the buyer is

ETCbðQ; rÞ ¼
DA

Q
þ hbD

Q
E r � Dl

2

� �
lIða� l� minðb;r=DÞÞ

	 


þ hb

2Q
E ðQ� DlÞ2

Iða� l� bÞ

h i

þ r2hb

2Q
E Iðminðb;r=DÞ\l� bÞ
� �

þ rhb

Q
E ðQ� DlÞIða� l� bÞ
� �

þ hbð1 � bÞ
2Q

E ðDl� rÞ2
Iðminðb;r=DÞ\l� bÞ

h i

þ pþ p0ð1 � bÞ
2Q

E ðDl� rÞ2
Iðminðb;r=DÞ\l� bÞ

h i
:

ð2Þ

3.2 Vendor’s total cost

The vendor produces nQ items and delivers them for n

times of Q batches. The vendor’s inventory level is

depicted in Fig. 3. So the vendor’s average holding cost is
hvðn�1ÞQ

2
and the setup cost per unit time is B

nQ=D. Due to late

delivery, the extra inventory is kept in the vendor’s ware-

house as in Hoque (2013). The late delivery happens when

l[ r
D

, and the order Q arrives by the late time l� r
D

.

Therefore the vendor keeps those extra Q l� r
D

� �
inventory

per cycle and the extra inventory cost per unit time is

hv
D
Q
Q l� r

D

� �
¼ hvðDl� rÞ. Expected total cost of the

vendor is

ETCvðQ; nÞ ¼
DB

nQ
þ ðn� 1ÞQhv

2

þ hvE ðDl� rÞðr=D\l� bÞ

h i
:

ð3Þ

3.3 Integrated total cost

Suppose the vendor and the buyer decided to cooperate and

agree to follow the integrated approach then the expected

total cost of the system will be the sum of vendor total cost

and buyer total cost. i.e.,

r
D r+Q

D

r

l Q−Dl
D

Q

r

Q-Dl

r
D

Q

l-r/D
l-r/D

Dl-r

Dl-r

Stock Stock

Time

Time

Fig. 2 Buyer’s inventory level when b[ r=D (color figure online)
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ETC ¼ ETCb þ ETCv

¼ DA

Q
þ hbD

Q
E r � Dl

2

� �
lIða� l� minðb;r=DÞÞ

	 


þ hb

2Q
E ðQ� DlÞ2

Iða� l� bÞ

h i

þ r2hb

2Q
E Iðminðb;r=DÞ\l� bÞ
� �

þ rhb

Q
E ðQ� DlÞIða� l� bÞ
� �

þ hbð1 � bÞ
2Q

E ðDl� rÞ2
Iðminðb;r=DÞ\l� bÞ

h i

þ pþ p0ð1 � bÞ
2Q

E ðDl� rÞ2
Iðminðb;r=DÞ\l� bÞ

h i

þ DB

nQ
þ ðn� 1ÞQhv

2
þ hvE ðDl� rÞðr=D\l� bÞ

h i
:

ð4Þ

The above equation can be written as

ETC ¼ D

Q
Aþ B

n

� �
þ hbD

Q

Zminðb;r=DÞ

a

r � Dl

2

� �
lf ðlÞdl

þ hb

2Q

Zb

a

ðQ� DlÞ2
f ðlÞdl

þ r2hb

2Q

Zb

minðb;r=DÞ

f ðlÞdlþ rhb

Q

Zb

a

ðQ� DlÞf ðlÞdl

þ hbð1 � bÞ
2Q

Zb

minðb;r=DÞ

ðDl� rÞ2
f ðlÞdl

þ pþ p0ð1 � bÞ
2Q

Zb

minðb;r=DÞ

ðDl� rÞ2
f ðlÞdl

þ ðn� 1ÞQhv
2

þ hv

Zb

minðb;r=DÞ

ðDl� rÞf ðlÞdl;

ð5Þ

subject to, n integer, q[ 0, r[ 0, 0� b� 1.

Now the problem is to find the EOQ, reorder level r,

number of shipments n and backordering rate b that min-

imize the expected total cost in Eq. (5). Next we discuss

total cost of earlier delivery and late delivery in two cases.

Then we use the classical optimization techniques to

minimize Eq. (5) with respect to Q, r, n and b. With the

help of MATLAB, we iteratively solve simultaneous

equations which are obtained from differentiating Eq. (5)

with respect to Q and r. To prove the convexity of

ETCi; i ¼ 1; 2 over n we assumed that n is a continuous

variable.

Case 1 If b� r=D: Then Eq. (5) will becomes

ETC1 ¼ D

Q
Aþ B

n

� �
þ hbD

Q

Zb

a

r � Dl

2

� �
lf ðlÞdl

þ hb

2Q

Zb

a

ðQ� DlÞ2
f ðlÞdl

þ rhb

Q

Zb

a

ðQ� DlÞf ðlÞdlþ ðn� 1ÞQhv
2

;

¼ D

Q
Aþ B

n

� �
þ hb

2Q

Zb

a

2D r � Dl

2
lþ ðQ� DlÞ2 þ 2rðQ� DlÞ

� �
f ðlÞdl

þ ðn� 1ÞQhv
2

;

¼ D

Q
Aþ B

n

� �
þ hb

Zb

a

Q

2
þ r � Dl

� �
f ðlÞdl

þ ðn� 1ÞQhv
2

:

ð6Þ

Here o2

on2 ETC1 ¼ 2DB
Qn3 [ 0 8 n[ 0. This shows that ETC1

is convex in n for given Q and

r. o2

oQ2 ETC1 ¼ 2D
Q3 Aþ B

n

� �
[ 0, o2

or2 ETC1 ¼ 0. This shows

Time

Inventory level

nQ

Q

One Replenishment cycle of the vendor

Fig. 3 Vendor’s inventory level
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that ETC1 is convex in Q and r for given n. On setting
oETC1

oQ
¼ 0 and solving this with respect to Q, we get

Q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D Aþ B

n

� �

ðn� 1Þhv þ hb
Rb

a

f ðlÞdl

vuuuut
: ð7Þ

Again oETC1

or
¼ hb

Rb

a

f ðlÞdl which is a constant function;

leads the fact that the optimal solution of r is the expected

value of the reorder point. i.e., r� ¼ DEðlÞ.

Case 2 If b[ r=D: Then Eq. (5) will become

ETC2 ¼ D

Q
Aþ B

n

� �
þ hbD

Q

Zr=D

a

r � Dl

2

� �
lf ðlÞdl

þ hb

2Q

Zb

a

ðQ� DlÞ2
f ðlÞdlþ r2hb

2Q

Zb

r=D

f ðlÞdl

þ rhb

Q

Zb

a

ðQ� DlÞf ðlÞdlþ hbð1 � bÞ
2Q

Zb

r=D

ðDl� rÞ2
f ðlÞdl

þ pþ p0ð1 � bÞ
2Q

Zb

r=D

ðDl� rÞ2
f ðlÞdl

þ ðn� 1ÞQhv
2

þ hv

Zb

r=D

ðDl� rÞf ðlÞdl:

ð8Þ

As in the previous case o2

on2 ETC2 ¼ 2DB
Qn3 [ 0 8 n[ 0.

This shows that ETC2 is convex in n for given Q and

r. Putting o
oQ

ETC2 ¼ 0.

o

oQ
ETC2 ¼ � D

Q2
Aþ B

n

� �
� hbD

Q2

Zr=D

a

r � Dl

2

� �
lf ðlÞdl

þ hb

Zb

a

1

2
� D2l2

2Q2
þ rDl

Q2

� �
f ðlÞdl� hbr

2

2Q2

Zb

r=D

f ðlÞdl� hbð1 � bÞ
2Q2

Zb

r=D

ðDl� rÞ2
f ðlÞdl

� pþ p0ð1 � bÞ
2Q2

Zb

r=D

ðDl� rÞ2
f ðlÞdl

þ ðn� 1Þhv
2

¼ 0;

ð9Þ

1

Q2
D Aþ B

n

� �
þ hb þ pþ p0ð1 � bÞ

2

	

Zb

r=D

ðDl� rÞ2
f ðlÞdlþ hbð1 � bÞ

2

Zb

r=D

ðDl� rÞ2
f ðlÞdl

3

75

¼ hb

2

Zb

a

f ðlÞdlþ ðn� 1Þhv
2

;

ð10Þ

and solving with respect to Q we get

Q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D Aþ B
n

� �
þ ðp0 þ hbÞ 1 � bð Þ þ ðpþ hbÞ½ �

Rb

r=D

ðDl� rÞ2
f ðlÞdl

ðn� 1Þhv þ hb
Rb

a

f ðlÞdl

vuuuuuut
:

ð11Þ

Now differentiating Eq. (8) over r using the Leibniz rule,

we get

o

or
ETC2 ¼ hb

Zb

a

f ðlÞdl� hv

Zb

r=D

f ðlÞdl

� 1

Q
ðhb þ pÞ þ ðhb þ p0Þ 1 � bð Þ½ �

Zb

r=D

ðDl� rÞf ðlÞdl

� ðp0 þ hbÞqb2

2QD

Zb

r=D

ðDl� rÞf ðlÞdl
Zb

r=D

ðDl� rÞ2
f ðlÞdl:

ð12Þ

Putting o
or
ETC2 ¼ 0, we get

hv

Zb

r=D

f ðlÞdlþ 1

Q
ðhb þ pÞ þ ðhb þ p0Þ 1 � bð Þ½ �

Zb

r=D

ðDl� rÞf ðlÞdlþ ðp0 þ hbÞqb2

2QD

Zb

r=D

ðDl� rÞf ðlÞdl
Zb

r=D

ðDl� rÞ2
f ðlÞdl

¼ hb

Zb

a

f ðlÞdl:

ð13Þ

Now taking second derivative of Eq. (8) over Q we get
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o2

oQ2
ETC2 ¼ 2D

Q3
Aþ B

n

� �
þ 1

Q3
ðpþ hbÞ½

þðp0 þ hbÞ 1 � bð Þ�
Zb

r=D

ðDl� rÞ2
f ðlÞdl:

ð14Þ

Since 1 � b� 0 and Dl� r[ 0, the above expression is

positive for all Q[ 0. This shows that ETC2 is convex in

Q. Now taking second derivative of Eq. (8) over r we get

o2

or2
ETC2 ¼ hv

D
f ðr=DÞ

þ 1

Q
ðhb þ pÞ þ ðhb þ p0Þ 1 � bð Þ½ �

Zb

r=D

f ðlÞdlþ ðhb þ p0Þqb2

2DQ

�
Zb

r=D

ðDl� rÞ2
f ðlÞdl

Zb

r=D

f ðlÞdl

2

64

þ 2

Zb

r=D

ðDl� rÞf ðlÞdl

0

B@

1

CA

2

1 � qb
Zb

r=D

ðDl� rÞ2
f ðlÞdlþ D

b4

0

B@

1

CA

3

75[ 0;

ð15Þ

provided �qb
Rb

r=D

ðDl� rÞ2
f ðlÞdlþ D

b4 [ 0. This shows that

ETC2 is convex provided D
b4 [ qb

Rb

r=D

ðDl� rÞ2
f ðlÞdl. The

cost function in Eq. (8) is non-linear and it is difficult to

find the closed form to get the optimality. So we follow an

iterative algorithm. Since the number of deliveries is a

positive integer and we already proved that the convex

nature of the cost function in n for both the cases. At first,

the solution process can be started by setting n ¼ 1. Then

we need to find which case will be suitable for the problem.

So first we start with Case 2. To find the extreme points

Q and r from Eqs. (11) and (13) respectively, but Q and

r are interlinked with each other. So we start the algorithm

with n ¼ 1 and Q ¼
ffiffiffiffiffiffiffiffiffi
2DA
hvþhb

q
(simple EOQ formula) and

finding r from Eq. (13). Then substitute r value obtained

from the previous step into Eq. (11). Repeat this process

until no change occur in the values of Q and r. Now we can

say which case is suitable for the problem using the value

of r. i.e., if r=D� b then this problem is suitable for Case 1

otherwise the problem is suitable for Case 2.

In our proposed model, if l follows a uniform distribu-

tion and the late delivery holding cost is not incorporated

then, our model becomes the model proposed by Sajadieh

and Akbari Jokar (2009). If l follows an exponential

distribution then this model will be same as Sajadieh et al.

(2009) model. We cannot compare our proposed model

numerically to Hossain et al. (2017) model, because in

Hossain model the late delivery cost is assumed in terms of

time (cp per unit time), whereas here we consider the extra

holding cost at the vendor side due to the late delivery.

Anyhow, our proposed model is general one when compare

to Hossain in the sense of variable backorder, since

Hossain assumed that, the shortages are completely

backorder. If b ¼ 1 then our proposed model will become

Hossain model. In our proposed model, if b is any constant

lies between 0 and 1, then it will become model of Lin

(2016) for without investment case.

The algorithmic solution procedure can therefore be

stated as follows.

3.4 Algorithm

1. Set n ¼ 1.

2. Find r by solving Eq. (13) with respect to r using

Q ¼
ffiffiffiffiffiffiffiffiffi
2DA
hvþhb

q
.

3. Put Q in Eq. (13) and solve for r.

4. Using this r, find Q from Eq. (11). Repeat this process

until no change occur in the values of Q and r. This

ðQ�; r�Þ is the optimal solution for given n. Find ETC2

using ðQ�; r�; nÞ.
5. Put n ¼ nþ 1 and go to step 1.

6. Find n� such that it satisfy ETC2ðQ�; r�; n��
1Þ[ETC2ðQ�; r�; n�Þ�ETC2ðQ�; r�; n� þ 1Þ.

7. This ðQ�; r�; n�Þ is the optimal solution of the system.

Substitute r� value in Eq. (1) and find b�.

ETC2ðQ�; r�; n�; b�Þ is the minimum total cost of the

proposed model.

4 Numerical example

To illustrate the aforementioned searching procedure, we

study a numerical example. All the numerical parameters

are taken from Hossain et al. (2017), and we add p0, q as

additional parameters.

Example 4.1 First assume that the lead time is uniformly

distributed with the limits 0 to 35 days, i.e., l	Uð0; 35Þ
days with other parameters D ¼ 1000 units per unit time,

B ¼ 400 per setup, hv ¼ 4 per unit per unit time, A ¼ 25
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per order, hb ¼ 5 per unit per unit time, p ¼ 30 per unit,

p0 ¼ 50 per unit and q ¼ 0:4. According to algorithmic

procedure, fix n ¼ 1, and find Q ¼
ffiffiffiffiffiffiffiffiffi
2DA
hvþhb

q
¼ 74:54. Now

substitute Q in Eq. (13) and getting r ¼ 59:83. Evaluate

Q from Eq. (11) using r ¼ 59:83. By using this Q, deter-

mine the value of r from Eq. (13). Repeat this process until

no change occur in the values of Q and r, we get Q ¼
421:01 and r ¼ 33:51. From this value of r we can find the

backorder ratio b ¼ 0:8556. This ðQ�; r�; b�Þ ¼
ð421:01; 33:51; 0:8556Þ is the optimal solution for given

n ¼ 1 and the total cost ETC2ðQ�; r�; b�Þ ¼
ETC2ð421:01; 33:51; 0:8556Þ ¼ 2114:03. Now put n ¼ 2

repeat the same aforesaid procedure we get the optimal

solutions ðQ�; r�; b�Þ ¼ ð228:57; 43:36; 0:9084Þ, and the

corresponding total cost ETC2ðQ�; r�; b�Þ ¼ ETC2ð228:57;

43:36; 0:9084; 2091:72Þ ¼ 2091:72. Note that ETC2 for

n ¼ 1 is greater than ETC2 for n ¼ 2. This assures n ¼ 1

cannot be optimal, and now to check whether n ¼ 2 is

optimum or not, thus we need ETC2 for n ¼ 3. Now fix

n ¼ 3 and we get the optimal solutions ðQ�; r�; b�Þ ¼
ð159:47; 48:92; 0:9328Þ and the corresponding total cost

ETC2 ¼ 2194:04. Therefore the optimal solutions are

ðQ�; r�; b�; n�Þ ¼ ð228:57; 43:36; 0:9084; 2Þ and the mini-

mum total cost is 2091.72. Also note that r�=D ¼
43:36=1000 ¼ 0:0434 years = 15.83 days, which is less

than b ¼ 35 days. Hence, this problem is suit for Case 2.

For different values of q, the optimal values are given

below in Table 2. From Table 2, we observe that for any

amount of shortages, for q ¼ 0 and q ¼ 1 we get b ¼ 1

(completely backordered) and b ¼ 0 (completely lost)

respectively as per Eq. (1). The graphical representation of

the total cost with respect to r is depicted in Fig. 4 for

n ¼ 1. This shows that the total cost is convex in r.

Example 4.2 Now assume that, if the lead time follows an

exponential distribution with mean 18.25 days, which

remains the limits 0 to 1 days, i.e., l	Expð1=18:25Þ, and

other parameters are D ¼ 1000, B ¼ 50, hv ¼ 1, A ¼ 40,

hb ¼ 4, p ¼ 6, p0 ¼ 10 and q ¼ 0:4. Here b ¼ 1, and for

all value of r�, r�=D\b. So, this example fit for Case 2.

Using the algorithmic procedure, for n ¼ 1 we get

ETC2ðQ�; r�; b�Þ ¼ ETC2ð247:61; 10:93; 0:5544Þ ¼874:35,

for n ¼ 2, we get ETC2ðQ�; r�; b�Þ ¼ ETC2ð190:96; 20:02;

0:5988Þ ¼ 868:36 and for n ¼ 3 we get ETC2ðQ�; r�; b�Þ ¼
ETC2ð162:74; 25:71; 0:6258Þ ¼ 909:15. Therefore the

optimal solution of the system is ðQ�; r�; b�; n�Þ ¼
ð190:96; 20:02; 0:5988; 2Þ and the minimum total cost is

Table 2 Optimal solutions of uniformly distributed lead time

q n Q r b ETC

0 2 229.22 38.63 1.0000 2084.73

0.4 2 228.57 43.36 0.9084 2091.72

1 2 228.22 46.41 0.8260 2097.40

10 2 227.85 53.73 0.4342 2116.62

100 2 228.39 55.62 0.0809 2127.64

1 2 228.61 55.67 0.0000 2129.85

0 20 40 60 80 100
2100

2150

2200

2250

2300

2350

r

E
T
C

Fig. 4 Total cost with respect to r of Example 4.1 when n ¼ 1

Table 3 Optimal solutions of exponentially distributed lead time

q n Q r b ETC

0 2 189.74 0 1.0000 798.68

0.4 2 190.96 20.2 0.5988 868.36

1 2 192.53 25.44 0.3995 894.45

10 1 255.84 17.56 0.0538 928.78

100 1 255.84 17.56 0.0538 928.78

1 1 257.11 17.42 0.0056 933.40
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Fig. 5 Total cost with respect to r of Example 4.2 when n ¼ 1
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868.36. Sensitivity analysis on q is employed in Table 3.

The graphical representation of the total cost with respect

to r is depicted in Fig. 5 when n ¼ 1.

Example 4.3 Finally, assume that if the lead time is

normally distributed. Hoque (2013) states that, ‘‘probability

of arrival of a batch earlier or late appears to be smaller

than the probability of arrival of a batch in the mean lead

time. Thus normal distribution of lead time seems to be a

better fit to the problem’’. Also he states that, in the

exponential distribution, the probability of earlier arrival is

higher than the probability of late arrival. Now, assume that

the mean of the lead time is 35 days and the standard

deviation is 4 days, which remains the limits 0 to 1 days,

i.e., l	Nð35; 42Þ. Other parameters are D ¼ 120;000,

B ¼ 1000, hv ¼ 1, A ¼ 400, hb ¼ 1:25, p ¼ 1:5, p0 ¼ 3

and q ¼ 0:4. Like previous example, b ¼ 1, here also

r=D\b for all r[ 0. Therefore the problem fits for Case 2.

By algorithm we get the optimal solutions as

ðQ�; r�; b�; n�Þ ¼ ð16;767:17; 10;513:42; 0:1937; 1Þ and the

minimum total cost is 20,881.49. Sensitivity analysis on q
is employed in Table 4.

In Table 5, we tabulate optimal solutions for different

distribution and for different parameters. From Tables 2, 3,

4 and 5, it can be observed that, increasing the value of q
will result in a decrease in the order quantity and reorder

level. This will happen because if q increases will make the

backorder ratio decreases to zero, thus the system will

become completely lost case. So that to avoid the short-

ages, the reorder will increase. Also, increasing shortage

and q will lead to the increasing the total cost. Most of all

cases the increasing the shortage and q will not affect the

number of shipments.

Table 4 Optimal solutions of normally distributed lead time

q n Q r b ETC

0 1 16,751.69 9586.74 1.0000 20,501.78

0.4 1 16,767.17 10,513.42 0.1937 20,881.49

1 1 16,788.31 10,528.23 0.0888 20,914.97

10 1 16,806.82 10,531.39 0.0096 20,939.62

100 1 16,809.00 10,531.33 0.0009 20,942.32

1 1 16,809.25 10,531.32 0.0000 20,942.62

Table 5 Some arbitrary examples for three different distributions of lead time

Vendor’s parameter Buyer’s parameter q Optimal solutions ETC�

B hv l (days) A hb p D p0 n� Q� r� b�

0 2 1996.36 4.7 1 6581.48

855 0.5 Exp(1/60) 175 4.5 4.9 5200 9 100 2 2067.53 679.74 0.0001 9742.90

1 2 2068.20 679.04 0 9743.24

0 1 4181.31 491.81 1 4758.70

650 0.75 Exp(1/70) 150 1.25 1.4 8000 3 100 1 4563.03 1378.58 0.00003 5977.62

1 1 4562.9 1378.61 0 5977.69

0 2 2184.93 0 1 7478.42

780 1.15 Exp(1/12) 120 2.6 2.75 15,000 5 100 2 2277.21 205.94 0.0009 8166.30

1 2 2276.9 206.83 0 8166.8

0 3 41,984.32 30,844.54 1 135,688.86

570 0.65 U(0, 3.5) 35 2.15 2.85 8,250,000 5 100 2 51,970.66 43,643.51 0.0008 159,476.1

1 2 51,976.32 43,641.74 0 159,487.44

0.4 4 13,776.36 12,186.51 0.1416 70,183.74

2000 0.75 U(0, 15) 150 2.55 2.9 550,000 4.8 10 4 13,894.23 12,201.06 0.0065 70,781.55

1 4 13,901.37 12,198.61 0 70,810.44

0.4 3 4459.36 3746.91 0.3225 23,319.78

800 1.15 Nð14; 32Þ 150 3.2 2.45 115,000 5 10 3 4499.26 3795.2 0.0199 23,652.06

1 3 4503.25 3794.59 0 23,672.60

0.4 1 26,025.57 6532.53 0.1970 57,911.85

4500 1.75 Nð20; 2:52Þ 650 2.25 2.45 145,000 4.75 10 1 26,052.47 6553.93 0.0099 57,986.07

1 1 26,054.2 6553.92 0 57,989.93

0.4 2 35,186.12 10,829.65 0.1488 49,406.08

1290 0.35 Nð7; 12Þ 450 1.15 1.25 785,000 3.25 10 2 35,293.25 10,876.45 0.0070 49,604.64

1 2 35,300.08 10,875.8 0 49,614.36
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5 Conclusion

This article presents an integrated single buyer single

vendor inventory control problem for generalized lead time

distribution. The demand rate was assumed to be deter-

ministic (constant), and the lead time was probabilistic

variable with a known probability distribution. Unlike the

existing vendor-buyer integrated models, the presented

model assumed that the lead time to be a generalized

stochastic variable. Furthermore the shortages are allowed

and it will be backordered, and it depends on the amount of

shortages. Previous works on the stochastic lead time, are

focused only on completely backorder case, whereas this

proposed model dealt with the partial backorder case. Also

in this model, the extra holding cost due to late delivery

was incorporated in the vendor side which is one of the

practical aspect, where the vendor takes the full responsi-

bility of goods in a good manner until they are delivered to

the customer. We formulated the cost function as a non-

linear mixed integer problem to determine the EOQ,

reorder level, backorder rate and the number of shipments.

The convexity of total cost with respect to the Q, n and r

are also provided and this revealed that the solution is a

global minimum. This convexity holds for any probability

distribution of lead time. We presented a step by step

algorithmic procedure to find the optimal solutions.

Numerical examples were also given, for different distri-

butions such as uniform, normal, exponential and different

parameters. Sensitivity analysis also provided for different

value of q.

The model can be further extended to multi-item

inventory problems. Another extension that the authors are

working on is to consider the stochastic demand together

the stochastic lead time. It will be more relevant to the real

market.
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