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Abstract In this paper, we have assumed an inventory

multi-objective optimization model under intuitionistic

fuzziness. In modelling, we have considered the situations

where triangular intuitionistic fuzzy numbers used to

express some of the input information which associated

with decision variables. Further, a ranking function

approach by considering linear and the nonlinear degree of

membership functions have been used to obtain the crisp

form of the fuzzy parameters. Finally, the fuzzy goal pro-

gramming approach has been used to solve the resultant

model to obtain the optimal ordering quantity. Also, a

comparative study of the formulated problem under intu-

itionistic fuzziness has been done with a deterministic

model of inventory. The concept of the paper is explained

through a numerical example.

Keywords Inventory problem � Multi-objective

programming � Linear fractional programming �
Intuitionistic fuzzy number � Fuzzy goal programming

1 Introduction

In industries, the top management personnel’s, who are

also the decision maker (DM), are not able to accurately

estimate the business-oriented input information’s. Since

due to complex situations in business nobody can judge the

actual parameters. These parameters are also known as the

independent factors. However, the DM has some rough

idea about these independent factors. The DM can roughly

express these types of uncertainties by using fuzzy numbers

either with non-negative trapezoidal or triangular IFN.

Zadeh (1965) gave the concept of well known fuzzy set

theory to tackle the uncertainty. Later on, with some

advancement the concept of intuitionistic fuzzy set (IFS)

theory was specified by Atanassov (1986, 1989), to tackle

the intricate ambiguity in decision-making problems. Some

important applicationsof IFS theory have been discussed by

the following authors: Nagoorgani and Ponnalagu (2012),

Mahapatra and Roy (2013), Garg and Rani (2013), Garg

et al. (2013, 2014a, b), Wu and liu (2013), Chakraborty

et al. (2014), De and Sana (2014), Garg (2014, 2015a, b,

2016a, b, 2017, 2018), Singh and Garg (2017), Garg and

Arora (2017), and many others.

Today multi-objective optimization model has been

recurrently formulated by the practitioners or researchers in

almost every field of the research study. The best part of the

multi-criterion decision making is to optimize all objective

functions simultaneously in a single frame. The decision

maker can also set up an aspiration level to each of the

objective function which is considered as their goal values.

In particular, most of the models formulated for supply

chains management includes transportation problem, pro-

duction planning problem and inventory problem based on a

deterministic view of the decision maker. In the same
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manner, a multi-criteria decision-making model with fuzzy

parameters is found to be more realistic than the determin-

istic model. However, while modelling the optimization

model, we have found that data are not often precisely known

to the decision maker due to incomplete and inadequate

information. Therefore in such situation first role of the DM

is to study the pattern of data after then make it convenient for

modelling. This paper deals with IFS concepts in inventory

management. Inventory management is the lifeblood of

every supply chain, and if it accurately managed then it plays

an essential role in reducing the total cost, brings produc-

tivity for companies; otherwise, it serves as legal responsi-

bility for the concerned authority. Moreover, as the

prerequisite of the business changes, the inventory man-

agement needs to be modified as accordingly. Inventory

management is concerned with the flow of materials from

vendors (suppliers) to production and the subsequent

movement of products through distribution centres to the

customers at the right time to maintain the demand and

supply ratio with the minimum cost of the product. The

primary objective of inventory management is specifying the

quantity of items when it should be ordered from the vendors

(suppliers) and how much it is? Interested readers can read

the research of Tersine (1994), Pentico and Drake (2011), for

getting a proper overview on the inventory models.

From the last decade or with the commencement of the

twentieth era, optimization technique has been recurrently

used by the researchers in the field of inventory manage-

ment. The researchers have developed many models related

to the inventory control, but the conventional economic

order quantity (EOQ) model proposed by Harris (1913) is

still considered the most popular inventory model. Due to its

ease of use and simplicity, many researchers tried to extend

it under different realistic assumptions. Hariri and Abou-El-

Ata (1997) formulated inventory model as a geometric

programming problem with the assumption of varying

deterministic ordering cost for a multi-item lot size problem.

Sabri and Beamon (2000) formulated the most significant

part of a supply chain management as a mathematical pro-

gramming problem and minimize the cost related to pro-

duction cost and delivery time of strategic and operational

planning respectively. Fung et al. (2003) formulated multi

production planning problem with ambiguous demands and

capacities with the purpose to obtain the optimal order

quantities. The fractional programming problem formula-

tion of inventory management first proposed by Sadjadi et al.

(2005). They considered a deterministic model with the

primary aim was to optimise the holding cost and entirely

ordered quantities simultaneously. Similarly, Chen (2005)

used LFPP approach under the stochastic environment in

inventory problem. Later on, two different types of inven-

tory model proposed by Khanra et al. (2010), Valliathal and

Uthayakumar (2010) with reliant demand rate. Yadav et al.

(2010) established a model with small storage volume with

deterioration rate under some reliability and flexibility

assumptions. Banerjee and Roy (2010) formulated

stochastic inventory model by considering fuzzy cost func-

tion and uniform, exponential, and normal lead time

demand. The developed model is solved by fuzzy intu-

itionistic optimization technique and Zimmermann

(1978) fuzzy optimization technique respectively. Kundu

and Chakrabarti (2011) discussed the circumstances of

ambiguous demand and deterioration rate under the tolera-

ble delay in disbursements for a lot-size model. Das and

Maiti (2012) formulated an inventory model for production

problem and used the simulated methodology to obtain the

optimal quantity under uncertainty. Rafiei et al. (2013)

constructed supply chain network design as a mixed integer

programming problem and minimizes the expected cost of

transhipment. Roy et al. (2013) considered a deterministic

situation in EOQ model with the assumption of tolerable

postponement in expenses. Chakrabortty et al. (2013) dis-

cussed an inventory model in which different inventory

costs and demand quantity considered as fuzzy numbers.

They used intuitionistic fuzzy programming technique with

different types of membership functions to obtain the Pareto

optimal solution. The same work has been extended by

Bhaya et al. (2014) by considering scrap and reworkable

types of deficient quality items. De et al. (2014) developed

an intuitionistic fuzzy optimization algorithm for solving

certain and uncertain inventory model where all the

parameters of an uncertain model considered as fuzzy tri-

angular numbers. Fattahi et al. (2015) determined the reor-

der level and ordering quantity by optimising total cost and

service level simultaneously using Metaheuristic approach.

Du et al. (2015) developed a multi-objective optimisation

technique based neural network model to optimise inventory

costs, and the non-dominated algorithm has been used to

solve it. The most notable work using multi-criterion deci-

sion making in inventory management was given by Dutta

and Kumar (2013, 2015). They considered multi-products

without shortages and formulated the problem as a multi-

objective inventory model with conflicting linear and frac-

tional objective function respectively and obtained the

optimal order quantity of products. Some other remarkable

works related to inventory control management are as fol-

lows: Xu and Zhao (2008, 2010), Wee et al. (2009), Shah and

Soni (2011), Pando et al. (2012, 2013), Min et al. (2012),

Bera et al. (2012), Taleizadeh et al. (2013), Tripathi (2013),

Mondal et al. (2013), Mahata and Goswami (2013), Yang

(2014), Srivastav and Agrawal (2016), Garai et al. (2018)

and the contribution has been summarized in Table 1.

De and Sana (2014) developed different optimization

models for inventory management, the general optimiza-

tion model for inventory and intuitionistic fuzzy opti-

mization model for inventory. The primary purpose of the
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study is to control the regular and overtime production

quantity lot under some capacitated restrictions by mini-

mizing inventory cost function. Garg (2015a, b) formulated

an inventory model to optimize the annual inventory cost

of the system under a fuzzy environment in which the

reorder level follows the different types of probability

distributions namely uniform, exponential and Laplace

distribution. Garai et al. (2015) introduced a non-linear

inventory model of geometric programming with the main

objective to optimize the total cost of the system with

budget restriction under fuzzy intuitionistic environment.

Rani et al. (2016) developed an algorithm for obtaining the

Pareto optimal solution for parabolic multi-objective non-

linear transportation and manufacturing problem. The main

contribution of this study was the development of opti-

mistic and pessimistic models in the intuitionistic fuzzy set

environment by considering membership as well as non-

membership function for these problems.

In this paper, we are formulating inventory management

problem as multi-objective linear fractional inventory

problem (MOLFIP) with conflicting objective functions,

where our aim to optimize the profit per-ordered quantity

and holding cost per-ordered quantity respectively. Also,

we consider a situation in which somehow the information

about some of the parameters, i.e., holding cost, purchasing

price, selling price, demand and ordering cost are not

precisely known but available with vagueness. After

studying the pattern of vagueness, IFN used to present all

these parameters in the formulated problem. The ranking

method is used for the conversion of intuitionistic fuzzy

parameters into an equivalent crisp form. Finally, the FGP

technique is used to solve the MOLFIP to obtain best

compromise order quantity. Whereas, the fuzzy goals of

MOLFIP determine the individual optimum solution.

These goals categorised by their accompanying member-

ship functions which renovated into fuzzy flexible mem-

bership goals using over and under deviational variable.

The main contribution of this paper can be summarized

below:

• Inventory management problem has been formulated as

a multi-criterion decision-making problem with con-

flicting fractional objective functions.

Table 1 Summary of related literature

Author(s) and year Item Objective Demand rate Holding cost Shortages Parameters

Xu and Zhao (2008) Multi Multi Constant Constant No Fuzzy-

rough

Wee et al. (2009) Multi Multi Stock-dependent (linear

function)

Constant Completely

backlogged

Crisp

Xu and Zhao (2010) Multi Multi Constant Constant No Fuzzy-

rough

Shah and Soni (2011) Single Multi Imprecise Constant Completely

backlogged

Fuzzy-

rough

Pando et al. (2012) Single Single Stock-dependent (power

function)

Nonlinear-stock

dependent

No Crisp

Min et al. (2012) Single Single Stock-dependent (power

function)

Constant No Crisp

Bera et al. (2012) Multi Multi Time-dependent Nonlinear-stock

dependent

Partially backlogged Crisp

Taleizadeh et al. (2013) Single Single Constant Constant Completely

backlogged

Crisp

Tripathi (2013) Single Single Time-dependent (power

function)

Linear-time dependent No Crisp

Pando et al. (2013) Multi Single Price-dependent (power

function)

Linear-time dependent No Crisp

Mondal et al. (2013) Multi Single Stock-dependent (linear

function)

Constant No Fuzzy-

rough

Mahata and Goswami

(2013)

Single Single Constant Constant Completely back

ordered

Fuzzy-

rough

Yang (2014) Single Single Stock-dependent (power

function)

Nonlinear-stock

dependent

Partially backlogged Crisp

Srivastav and Agrawal

(2016)

Single Multi Stochastic demand Nonlinear-time

dependent

Completely

backlogged

Crisp

Garai et al. (2018) Multi Multi Stock-dependent (power

function)

Nonlinear-stock

dependent

Partially backlogged Fuzzy-

rough
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• The problem has been formulated in the intuitionistic

fuzzy environment.

• Two separate models have been presented and dis-

cussed with linear and non-linear membership

functions.

• Different solution sets have been generated at different

discrete values of a and b.

The continuing part of the article includes the formulation

of MOLFIP with IFN in Sect. 2. The FGP methodology

with some advancement developed in Sect. 3. Section 3

presents a numerical case study which is given to demon-

strate the models. Finally, Sect. 5 is devoted to a

conclusion.

2 Multi-objective linear fractional inventory
problem

Inventories deal with maintaining sufficient stock of goods

that will ensure a smooth operation of a production system or

a business activity. Traditionally, inventory has been viewed

by business and industry as a necessary evil. Too little

inventory may cause a costly interruption in the operation of

the system, and too much of inventory can ruin the compet-

itive edge and profitability of the business. Dutta and Kumar

(2013) formulated multi-objective linear fractional inventory

model, wherein they considered a hypothetical system for the

inventory model with deterministic parameters. Here, we

have examined the modelling and optimisation of a multi-

objective linear fractional inventory model, as advanced with

some imprecise information considered on it, which is rep-

resented by an IFN.

The following notations and assumptions which have

used in the formulation of the problem taken from Dutta

and Kumar (2013):

Nomenclature

n Number of items i = 1, 2, 3,…, n

k Stable cost per demand

B Total offered budget for all items

F Total accessible space for all items

Qi Ordering quantity of item i

hi Holding cost per item per unit time for ith item

Pi Purchasing price of ith item

Si Selling Price of ith item

Di Demand quantity per unit time of ith item

fi Space required per unit for the ith item

OCi Ordering cost of ith item

The following assumptions which are essential for the

inventory problem have been considered as:

1. An inventory model with multi-items.

2. Infinite time horizon with one period of the cycle time.

3. Constant demand rate.

4. Lead time is zero.

5. Holding cost and purchase price is supposed to be

known and persistent.

6. No discount is offered.

7. Shortages are not permitted.

8. No deterioration is permissible.

Based on the above assumptions the mathematical model

for the multi-objective linear fractional inventory model for

one period of the cycle time is formulated as follows:

MODEL (1)

Maximize Z1 ¼
Pn

i¼1 ðSi � PiÞQiPn
i¼1 ðDi � QiÞ

Minimize Z2 ¼
Pn

i¼1
hiQi

2Pn
i¼1 Qi

Subject to the constraint

Xn

i¼1

PiQi �B

Xn

i¼1

fiQi �F

kDn � OCnð ÞQn � 0

Qn � 0 and OCn [ 0; 8i ¼ 1; 2; 3; . . .; n

where
Pn

i¼1 ðSi � PiÞQi denotes the profit related to ordering

quantity
Pn

i¼1
hiQi

2
denotes the holding cost

Pn
i¼1 ðDi � QiÞ denotes the back ordered quantity

Pn
i¼1 Qi denotes the total ordering quantity

Pn
i¼1

kDn

Qn

denotes the ordering cost

and

Constraint I denotes the upper limit of the total

investment.

Constraint II denotes restriction on the warehouse

spacing.

Constraint III denotes the budgetary constraint on

ordering cost. Ordering cost for the nth item can express

as:

1st Item kD1

Q1
�OC1 ¼ [ kD1 � OC1ð ÞQ1 � 0

2nd Item kD2

Q2
�OC2 ¼ [ kD2 � OC2ð ÞQ2 � 0

Similarly, for the nth item
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kDn

Qn

�OCn ¼ [ kDn � OCnð ÞQn � 0

The above-formulated model (1) extended by making some

more additional assumptions, which are as follows:

• Holding Cost cannot be fixed in advance, and it may

vary over time-period.

• Purchasing Price and Selling price cannot be uniform

respectively for the different zones and time periods. It

can vary from these two factors.

• The demand for the items cannot prefix in advanced. It

may always vary due to the behaviours of customers’

requirements.

• The ordering cost cannot also be prefixed. It is also an

independent factor of human behaviour. So it can also

vary from the predetermined fixed cost.

Therefore, all these parameters that are holding cost, pur-

chasing price, selling price, demand and ordering cost

which are not precisely known to the decision maker.

However, somehow the information about all these

parameters is available with vagueness. We have consid-

ered that IFN’s can present this vagueness in the parame-

ters. Hence model (1), can be rewritten after amendments

all these above assumptions as follows:

MODEL (2)

Maximize ~Z1 ¼
Pn

i¼1 ð~SIi � ~PI
i ÞQi

Pn
i¼1 ð ~DI

i � QiÞ

Minimize ~Z2 ¼
Pn

i¼1

~hIiQi

2Pn
i¼1 Qi

Subject to the constraints

Xn

i¼1

~PI
iQi �B;

Xn

i¼1

fiQi �F;

kDn � ðgOCnÞI � 0 for each nð Þ;
and all Qn � 0

We assume that ~SIi ; ~P
I
i ;
~hIi ; ~D

I
i and ðgOCnÞI are IFN for

each i ¼ 1; 2; . . .; n.

The preliminaries of IFN’s and their ranking function has

been studied from Atanassov (1986, 1989), Singh and Yadav

(2016). In Model (2), the following input information namely

selling price, purchasing price, holding cost, ordering cost and

demand of items have been assuming as IFN and follows the

following definitions, which are given below.

Definition 1 (IFN) An intuitionistic fuzzy set ~SIi ¼
f\x; l~SIi

ðxÞ; c~SIi ðxÞ[ : x 2 Xg called an IFN if the fol-

lowing situation holds:

1. If there exists m 2 R such that l~SIi
ðmÞ ¼ 1 and

c~SIi ðmÞ ¼ 0 (m is known as the mean value of ~SIi Þ.
2. If l~SIi

and c~SIi area continuous function from R to the

closed [0, 1] and 0� l~SIi
ðxÞ þ c~SIi ðxÞ� 1; 8x 2 R;

where

l~SIi
ðxÞ ¼

g1ðxÞ; m� aSi � x\m

1; x ¼ m

h1ðxÞ; m\x�mþ bSi
0; otherwise

8
>><

>>:

and

c~SIi ðxÞ ¼

g2ðxÞ; m� a0Si � x\m; 0� g1ðxÞ þ g2ðxÞ� 1

1; x ¼ m

h2ðxÞ; m\x�mþ b
0

Si
; 0� h1ðxÞ þ h2ðxÞ� 1

0; otherwise

8
>><

>>:

Here m is the average value of IFN ~SIi ; ðaSi ; bSiÞ and

ða0Si ; b
0
Si
Þ are the left and right spreads of the linear mem-

bership function (LMF) l~SIi
ðxÞ and non-linear membership

function NLMF c~SIi ðxÞ ; respectively. The symbols g1 and

h1 are piecewise continuous, strictly increasing, and strictly

decreasing functions in [m� aSi ;m) and (m;mþ bSi],

strictly decreasing, and strictly increasing functions in

[m� a0Si ;m] and [m;mþ b0Si], respectively. Therefore, the

IFN can define as ~SIi ¼ ðm; aSi ; bSi ; a0Si ; b
0
Si
Þ:

Definition 2 (Triangular IFN) Let us assume that
~SIi ¼ fðaSi ; bSi ; cSiÞ ; ðeSi ; bSi ; fSiÞg;8 eSi � aSi � bSi � cSi � fSi
be a triangular IFN with LMF l~SIi

and NLMF c~SIi which is

given as:

l~SIi
ðxÞ ¼

x� aSi
bSi � aSi

; aSi\x� bSi

1; x ¼ bSi
cSi � x

cSi � bSi
; bSi � x� cSi

0; otherwise

8
>>>><

>>>>:

ð1Þ

and

c~SIi ðxÞ ¼

bSi � x

bSi � eSi
; eSi\x� bSi

1; x ¼ bSi
x� bSi
fSi � bSi

; bSi � x\fSi

0; otherwise

8
>>>>><

>>>>>:

ð2Þ

The left and right bound of the triangular IFN at ða; bÞ set

with its LMF and NLMF can express as:
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LlSi ðxÞ ¼
x� aSi
bSi � aSi

; aSi � x� bSi and

RlSi
ðxÞ ¼ cSi � x

cSi � bSi
; bSi � x� cSi

LcSi ðxÞ ¼
bSi � x

bSi � eSi
; eSi � x� bSi

and RcSi
ðxÞ ¼ x� bSi

fSi � bSi
; bSi � x� fSi

The inverse function L�1 and R�1 can define analytically as

L�1
lSi
ðhÞ ¼ aSi þ ðbSi � aSiÞh; R�1

lSi
ðhÞ ¼ cSi � ðcSi � bSiÞh

L�1
cSi
ðhÞ ¼ bSi � ðbSi � eSiÞh; R�1

cSi
ðhÞ ¼ bSi þ ðfSi � bSiÞh

The magnitude of LMF for ~SIi at a level can express as:

PlSi
ð~SIi Þ ¼

R1

0

h a aSi þ ðbSi � aSiÞhð Þ þ ð1 � aÞ cSi � ðcSi � bSiÞhð Þ½ �dh

R1

0

h dh

¼
aSiah

2

2
þ aðbSi�aSi Þh

3

3
þ ð1�aÞcSi h

2

2
� ð1�aÞðcSi�bSi Þh

3

3

h i1

0

h2

2

� �1

0

¼ aðaSi � cSiÞ þ cSi þ 2bSi
3

ð3Þ

The magnitude of NLMF for ~SIi at b level can express as:

PcSi
ð~SIi Þ ¼

R1

0

h b bSi � ðbSi � eSiÞhð Þ þ ð1 � bÞ bSi þ ðfSi � bSiÞhð Þ½ �dh

R1

0

h dh

¼
bbSi h

2

2
� bðbSi�eSi Þh

3

3
þ ð1�bÞbSi h

2

2
þ ð1�bÞðfSi�bSi Þh

3

3

h i1

0

h2

2

� �1

0

¼ 2bðeSi � fSiÞ þ bSi þ 2fSi
3

ð4Þ

The magnitude of LMF and NLMF for ~SIi at ða; bÞ level

can express as:

Pð~SIÞ ¼ aðaSi � cSiÞ þ cSi þ 2bSi
3

;
2bðeSi � fSiÞ þ bSi þ 2fSi

3

� �

Similarly, the same assumption followed for the other

intuitionistic fuzzy parameters, i.e., (~PI
i ;
~hIi ; ~D

I
i , ðgOCnÞI)

respectively. Based on the above conversion procedures of

IFN; the model (2) has been rewritten as:

MODEL (2A)

Maximize ~Z1 ¼
Pn

i¼1

aðaSi�cSi ÞþcSiþ2bSi
3

� aðaPi�cPi ÞþcPiþ2bPi
3

� �
Qi

Pn
i¼1

aðaDi�cDi ÞþcDiþ2bDi
3

� Qi

� �

Minimize ~Z2 ¼
Pn

i¼1

aðahi�chi Þþchiþ2bhið ÞQi

6Pn
i¼1 Qi

Subject to the constraints

Xn

i¼1

aðaPi
� cPi

Þ þ cPi
þ 2bPi

3

� 	

Qi �B;

ð5Þ
Xn

i¼1

fiQi �F; ð6Þ

k Dn �
aðaOCn

� cOCn
Þ þ cOCn

þ 2bOCn

3

� 	

� 0

for each nð Þ;
ð7Þ

and all Qn � 0 ð8Þ

Similarly, an equivalent crisp form of MODEL (2) with

NLMF expressed as follows:

MODEL (2B)

Maximize ~Z1 ¼
Pn

i¼1

2bðeSi�fSi ÞþbSiþ2fSi
3

� 2bðePi�fPi ÞþbPiþ2fPi
3

� �
Qi

Pn
i¼1

2bðeDi�fDi ÞþbDiþ2fDi
3

� Qi

� �

Minimize ~Z2 ¼
Pn

i¼1

2bðehi�fhi Þþbhiþ2fhið ÞQi

6Pn
i¼1 Qi

Subject to the constraints

Xn

i¼1

2bðePi
� fPi

Þ þ bPi
þ 2fPi

3

� 	

Qi �B; ð9Þ

Xn

i¼1

fiQi �F; ð10Þ

k Dn �
2bðeOCn

� fOCn
Þ þ bOCn

þ 2fOCn

3
for each nð Þ;

ð11Þ
and all Qn � 0 ð12Þ

3 Fuzzy goal programming approach

FGP is a powerful and flexible technique that can apply to a

variety of decision-making problems involving multiple

objectives. Several contributions have been reported in the

literature on FGP approach. In all these literature efficient

methodologies has been developed for solving multi-ob-

jective programming problems employing the FGP

approach. After doing some manipulations in FGP
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approach, we have given a stepwise solution procedure for

solving the formulated MOLFIP.

3.1 Procedure for solving molfip

This stepwise solution procedure of FGP has been used to

obtain the optimal order quantity in an intuitionistic fuzzy

environment, which are as follows:

Step 1 Formulate the inventory problem as MOLFIP

with certain and uncertain parameters (holding cost,

purchasing price, selling price, demand and ordering

cost).

Step 2 As explained in Sect. 2, the first step is to convert

the intuitionistic fuzzy parameters of MOLFIP into the

equivalent crisp form using the ranking procedure. The

equivalent crisp form for MODEL (2A) of MOLFIP in

which IFN is in the shape of LMF has obtained by using

Eq. (3). Similarly, the case when the IFN is in the form

of the NLMF, the resultant equivalent crisp form for the

MODEL (2B) of MOLFIP has obtained by using Eq. (4).

Step 3 Here we have two resultant crisp form models of

MOLFIP, i.e., MODEL (2A) and MODEL (2B). Firstly

the MODEL (2A) is solved as a solitary objective

problem using only one objective at a time for different

values of a 2 0; 1½ � and ignoring the other objective

functions.

Similarly, MODEL (2B) is solved as a solitary objective

problem using only one objective at a time for the different

values of b 2 0; 1½ � and ignoring the other objective func-

tions. The solutions thus obtained of these models are

considered to be ideal solutions and these solutions help to

the decision maker for setting the aspiration level to each

of the objective function.

Step 4 The aspiration level to each of the objective

functions, ~ZjðxÞ; j ¼ 1; 2 of the models can define in

such a way.

Now MOLFIP (2A) is defined as follows:

~Z1ðXÞ � g1; ðfuzzy � max)

~Z2ðXÞ � g2; ðfuzzy � min)
ð13Þ

Subject to Constraint (5)–(8)

Where g1ð Þa¼ Max Z1ðxÞð Þa and ðg2Þa ¼ Min Z2ðxÞð Þa
8 a 2 ½0; 1�.

Solved the Eq. (13) by achieving all its defined fuzzy

goals and for the optimal values Qi	 ¼ ðQ1;Q2; . . .;QnÞ.
Similarly, MOLFIP (2B) is defined as follows:

~Z1ðXÞ � g1; ðfuzzy � max)

~Z2ðXÞ � g2; ðfuzzy � min)
ð14Þ

Subject to Constraint (9)–(12)

Where g1ð Þb¼ Max Z1ðxÞð Þb and ðg2Þb ¼ Min Z2ðxÞð Þb
8b 2 ½0; 1�.

Similarly, Solved the Eq. (14) by achieving all its

defined fuzzy goals and for the optimal values

Q	 ¼ ðQ1;Q2; . . .;QnÞ.
Step 5 Construct a fuzzy linear membership function for

the Model (2A) for both the defined objective functions.

Hence, the membership function of the fuzzy goal
~Z1ðXÞ � g1 (i.e., fuzzy-max) is defined as:

l1ð~Z1ðXÞÞ ¼

1; if ~Z1ðXÞ� g1

~Z1ðXÞ � L1

g1 � L1

; if L1 � ~Z1ðXÞ� g1

0; if ~Z1ðXÞ� L1

8
>><

>>:

where L1 is the lower tolerance limit of the fuzzy goal,
~Z1ðxÞ (Fig. 1).

Moreover, similarly, for the fuzzy goal ~Z2 � g2 (i.e.,

fuzzy-min), the membership function is defined as:

l2ð~Z2ðXÞÞ ¼

1; if ~Z2ðXÞ� g2

U2 � ~Z2ðXÞ
U2 � g2

; if g2 � ~Z2ðXÞ�U2

0; if ~Z2ðXÞ�U2

8
>><

>>:

where U2 is the upper tolerance limit of the fuzzy goal
~Z2ðxÞ (Fig. 2).

It has been known that the possible highest degree of

membership function can only be unity in fuzzy pro-

gramming. Therefore, the flexible membership goals with

the aspiration level can define as:

~Z1ðXÞ � L1

g1 � L1

þ d�1 � dþ1 ¼ 1;

U2 � ~Z2ðXÞ
U2 � g2

þ d�2 � dþ2 ¼ 1;

where d�j � 0; dþj � 0; j ¼ 1; 2 with dþj d
�
j ¼ 0; j ¼ 1; 2

are respectively under- and over-deviations from the tar-

geted goal. Similarly, the same procedure has been

Fig. 1 Linear membership function ð ~Z1ðXÞ � g1Þ
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followed for construction of membership function for

Model (2B).

Step 6 Calculate the weight which is attached to both the

objective function:

w1 ¼ 1

g1 � l1
for max � fuzzy goal

w2 ¼ 1

u2 � g2

for min � fuzzy goal

Similarly, the same weighted criterion has been used for

the Model (2B).

Step 7 By following all the above-given steps, FGP

model for MOLFIP is formulated as follows:

Min
X2

j¼1

wjd
�
j

subject to the constraints ð9Þ to ð12Þ of model 2(A)

and
~Z1ðXÞ � L1

g1 � L1

þ d�1 � dþ1 ¼ 1;

U2 � ~Z2ðXÞ
U2 � g2

þ d�2 � dþ2 ¼ 1;

d�j ; d
þ
j � 0; with d�j 
 dþj ¼ 0; j ¼ 1; 2

Qn � 0

ð15Þ

A similar model has been formulated for Model (2B)

with some others additional set of constraints (13)–(16) in

place of the set of constraints (9)–(12). Finally, the above-

formulated problem has been solving to obtain the optimal

compromise solution Q	 by using the optimising software

LINGO 16.0. If the decision maker is not satisfied with the

solution, then proceed to step 8.

Step 8 Construct the membership functions for the

decision vector Q	 ¼ ðQ1;Q2; . . .;QnÞ:
Let tL and tR are the maximum negative and maximum

positive tolerance values, which are not necessarily to be

the same. This tolerance value helps the DM to extend the

feasible region to search for the optimal solution. In the

case of no feasible region, this tolerance limits can increase

for searching the new feasible region in which the desired

optimal solution can found (Fig. 3).

The linear membership function of controlled decision

vector can be defined as follows:

lðQnÞ ¼

Qn � ðQ	
n
� tLÞ

tL
; if Q	

n � tL �Qn �Q	
n

ðQ	
n þ tRÞ � Qn

tR
; if Q	

n �Qn �Q	
n þ tR

0; if otherwise

8
>>><

>>>:

where Q	 is the most preferred solution. The satisfaction

level of Q	
n is linearly increasing in the interval

Q	
n � tL;Qn

� �
, and linearly decreasing in the interval

Qn;Q
	
n þ tL

� �
.

So, for the defined membership function of the decision

vector, the flexible membership goals with aspiration levels

are can be expressed as follows:

lðQnÞ þ d�n � dþn ¼ 1;

Alternatively, equivalently as

Qn � ðQ	
n � tLÞ

tL
þ dL�n � dLþn ¼ 1

ðQ	
n þ tRÞ � Qk

tR
þ dR�n � dRþn ¼ 1

where d�n ¼ ðdL�n ; dR�n Þ, dþn ¼ ðdLþn ; dRþn Þ and

dL�n ; dR�n ; dLþn ; dRþn � 0 with dL�n 
 dLþn ¼ 0 and

dR�n 
 dRþn ¼ 0, respectively, represents the under-devia-

tional and over-deviational from the targeted goals. Cal-

culation of weights wL
n and wR

n attached to the decision

variables is as follows:

wL
n ¼ 1

tL
and wR

n ¼ 1

tR

Similarly, the same procedure will follow for construc-

tion of membership function for Model (2B).

Step 9 By following all the above steps, final FGP model

for MOLFIP has been formulated as follows:

Fig. 2 Linear membership function ð ~Z2ðXÞ � g2Þ

Fig. 3 Membership function of decision vector
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Fig. 4 Flowchart of solution

methodology
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Table 3 Individual maximum solution ðZ1Þ

a ZMax
1

Q1 Q2 Q3

0 11.35605 1361.623 40.25665 42.35372

0.1 11.39663 1362.040 40.20540 42.28313

0.2 11.43748 1362.458 40.15411 42.21246

0.3 11.47862 1362.876 40.10278 42.14172

0.4 11.52002 1363.294 40.05141 42.07090

0.5 11.56171 1363.712 40.00 42.00

0.6 11.60369 1364.131 39.94855 41.92903

0.7 11.64595 1364.549 39.89706 41.85798

0.8 11.68849 1364.968 39.84554 41.78686

0.9 11.73134 1365.388 39.79397 41.71566

1.0 11.77447 1365.807 39.74237 41.64439

Table 4 Individual minimum solution ðZ1Þ

a ZMin
1

Q1 Q2 Q3

0 0.4012205 22.19335 40.25665 42.35372

0.1 0.4013598 22.12978 40.20540 42.28313

0.2 0.4014990 22.06617 40.15411 42.21246

0.3 0.4016382 22.00250 40.10278 42.14172

0.4 0.4017774 21.93878 40.05141 42.07090

0.5 0.4019165 21.87500 40.00 42.00

0.6 0.4020555 21.81117 39.94855 41.92903

0.7 0.4021945 21.74729 39.89706 41.85798

0.8 0.4023335 21.68335 39.84554 41.78686

0.9 0.4024724 21.61937 39.79397 41.71566

1.0 0.4026112 21.55532 39.74237 41.64439

Table 5 Individual minimum solution ðZ2Þ

a ZMin
2

Q1 Q2 Q3

0 6.750770 1361.623 40.25665 42.35372

0.1 6.681393 1362.040 40.20540 42.28313

0.2 6.612023 1362.458 40.15411 42.21246

0.3 6.542659 1362.872 40.10278 42.14172

0.4 6.473303 1363.294 40.05141 42.07090

0.5 6.403953 1363.712 40.00 42.00

0.6 6.334611 1364.131 39.94855 41.92903

0.7 6.265275 1364.549 39.89706 41.85798

0.8 6.195946 1364.968 39.84554 41.78686

0.9 6.126624 1365.388 39.79397 41.71566

1.0 6.057310 1365.807 39.74237 41.64439
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Min
X2

j¼1

wjd
�
j þ

X3

n¼1

½wL
nðdL�n þ dLþn Þ þ wR

n ðdR�n þ dRþn Þ�

subject to the constraint ð9Þ to ð12Þ of model 2(A)

and
~Z1ðXÞ � L1

g1 � L1

þ d�1 � dþ1 ¼ 1;

U2 � ~Z2ðXÞ
U2 � g2

þ d�2 � dþ2 ¼ 1;

Qn � ðQ	
n � tLÞ

tL
þ dL�n � dLþn ¼ 1

ðQ	
n þ tRÞ � Qk

tR
þ dR�n � dRþn ¼ 1

d�j ; d
þ
j � 0; with d�j 
 dþj ¼ 0; j ¼ 1; 2

dL�n ; dLþn � 0; with dL�n 
 dLþn ¼ 0

dR�n ; dRþn � 0; with dR�n 
 dRþn ¼ 0

Qn � 0

ð16Þ

A similar model has been formulated for Model (2B)

with some others additional set of constraints (13)–(16) in

place of the set of constraints (9)–(12). Finally, the above-

formulated problem has been solved to obtain the optimal

compromise solution Q	 by using the optimising software

LINGO 16.0 (Fig. 4).

4 Numerical example

The following numerical example has been used to illus-

trate the proposed approach. Dutta and Kumar (2013) have

presented their inventory model with fixed input informa-

tion data set. Here we are considering the case of inventory

optimisation problem in which the input information is

available in the form of IFN. This available information is

summarised in Table 2 and given below:

By using the above information of Table 2 in model 2,

the MOLFIP with intuitionistic fuzzy input data is

expressed as:

Max Z1 ¼
ðg650I � g625IÞQ1 þ g750I � g730I

� �
Q2 þ g450I � g440I

� �
Q3

g1000I � Q1

� �
þ g2000I � Q2

� �
þ g1500I � Q3

� �

Min Z2 ¼
e12 IQ1

2
þ e16 IQ1

2
þ e18 IQ1

2

Q1 þ Q2 þ Q3

Subject to the constraint

Table 6 Individual maximum solution ðZ2Þ

a ZMax
2

Q1 Q2 Q3

0 18.32294 22.19335 40.25665 1944.100

0.1 18.19245 22.12978 40.20540 1944.883

0.2 18.06194 22.06617 40.15411 1945.666

0.3 17.93143 22.00250 40.10278 1946.450

0.4 17.80091 21.93878 40.05141 1947.234

0.5 17.67038 21.87500 40.00 1948.018

0.6 17.53984 21.81117 39.94855 1948.804

0.7 17.40929 21.74729 39.89706 1949.590

0.8 17.27874 21.68335 39.84554 1950.376

0.9 17.14817 61.61937 39.79397 1951.163

1.0 17.01760 21.55532 39.74237 1951.950

Table 7 Relative weights

a w1 w2

0 0.091283940 0.086414216

0.1 0.090948197 0.086872995

0.2 0.090612697 0.087336878

0.3 0.090277299 0.087805787

0.4 0.089942272 0.088279899

0.5 0.089607393 0.088759285

0.6 0.089272686 0.089244048

0.7 0.088938256 0.089734265

0.8 0.088604123 0.090229955

0.9 0.088270076 0.090731373

1.0 0.087936371 0.091238462

Table 8 Optimal compromise objective values with order quantities

a Z1 Z2 Q1 Q2 Q3

0 7.498250 8.622942 22.19335 1187.256 42.41547

0.1 7.520145 8.578061 22.12978 1187.530 42.28313

0.2 7.544812 8.508621 22.06617 1187.855 42.21246

0.3 7.569633 8.439189 22.00250 1188.181 42.14172

0.4 7.594610 8.369765 21.93878 1188.507 42.0709

0.5 7.619745 8.300349 21.87500 1188.833 42.00

0.6 7.645038 8.230941 21.81117 1189.159 41.92903

0.7 7.660459 8.190292 21.74729 1189.639 41.81031

0.8 7.696106 8.092148 21.68335 1189.812 41.78686

0.9 7.721884 8.052039 21.61937 1190.139 41.71566

1.0 7.782631 8.005682 21.58310 1190.436 41.63432
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Table 9 Individual maximum solution ðZ1Þ

b ZMax
1

Q1 Q2 Q3

0 10.79465 1356.748 41.09848 43.51852

0.1 10.94024 1358.136 40.87979 43.21675

0.2 11.08959 1359.526 40.66059 42.91401

0.3 11.24285 1360.919 40.44090 42.61031

0.4 11.40017 1362.314 40.22070 42.30564

0.5 11.56171 1363.712 40.00 42.00

0.6 11.72766 1365.112 39.77879 41.69338

0.7 11.89818 1366.514 39.55708 41.38577

0.8 12.07348 1367.919 39.33486 41.07717

0.9 12.25376 1369.327 39.11213 40.76758

1.0 12.43922 1370.736 38.8889 40.45699

Table 10 Individual minimum solution ðZ1Þ

b ZMin
1

Q1 Q2 Q3

0 0.3999972 23.18841 41.09848 43.51852

0.1 0.4003840 22.92703 40.87979 43.21675

0.2 0.4007694 22.66501 40.66059 42.91401

0.3 0.4011533 22.40233 40.44090 42.610391

0.4 0.4015357 22.13899 40.22070 42.30564

0.5 0.4019165 21.87500 40.00 42.00

0.6 0.4022955 21.61035 39.77879 41.69338

0.7 0.4026728 21.34503 39.55708 41.38577

0.8 0.4030482 21.07905 39.33486 41.07717

0.9 0.4034216 20.81240 39.11213 40.76758

1.0 0.4037930 20.54507 38.88889 40.45699

Table 11 Individual minimum solution ðZ2Þ

b ZMin
2

Q1 Q2 Q3

0 7.449531 1356.748 41.09848 43.51852

0.1 7.240244 1358.136 40.87979 43.21675

0.2 7.031042 1359.526 40.66059 42.91401

0.3 6.821927 1360.919 40.44090 42.61031

0.4 6.612897 1362.314 40.22070 42.30564

0.5 6.403953 1363.712 40.00 42.00

0.6 6.195096 1365.112 39.77879 41.69338

0.7 5.986325 1366.514 39.55708 41.38577

0.8 5.777641 1367.919 39.33486 41.07717

0.9 5.569044 1369.327 39.11213 40.76758

1.0 5.360534 1370.736 39.88889 40.45699

Table 12 Individual maximum solution ðZ2Þ

b ZMax
2

Q1 Q2 Q3

0 19.62314 23.18841 41.09848 1935.242

0.1 19.23281 22.92703 40.87979 1937.786

0.2 18.84236 22.66501 40.66059 1940.336

0.3 18.45181 22.40233 40.44090 1942.891

0.4 18.06115 22.13899 40.22070 1945.452

0.5 17.67038 21.87500 40.00 1948.018

0.6 17.27950 21.61035 39.77879 1950.590

0.7 16.88852 21.34503 39.55708 1953.168

0.8 16.49742 21.07905 39.33486 1955.751

0.9 16.10622 20.81240 39.11213 1958.340

1.0 15.71491 20.54507 38.88889 1960.934

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.10

8.75

8.50

8.25

8.00

7.75

7.50
Z1

Z2

Fig. 5 Different values of the

objective function
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g625IQ1 þ g730IQ2 þ g440IQ3 � 900; 000

2Q1 þ 4Q2 þ 2Q3 � 13; 000

7 g1000I
� �

� g320IQ1 � 0

7 g2000I
� �

� g350IQ2 � 0

7 g1500I
� �

� g250IQ3 � 0

All Qi � 0; i ¼ 1; 2; 3

ð17Þ

The Eq. (16) is in the form of fuzzy numbers. We cannot

solve it directly by any given methods. Therefore first we

convert it to crisp form and then will be solved. As we have

discussed the two models are made for this, Model (2A)

and Model (2B). Here we are debating Model (2A) under

the case 1 and Model (2B) under the case 2.

Case 1 for Model (2A) This model has been solved by

followed the stepwise solution procedure as defined in

Sect. 3.1. The maximum and minimum individual values

of the objective function at the different value of a 2 ½0; 1�
has been given in Tables 3, 4, 5 and 6.

The relative weights attached to each objective func-

tions given in Table 7.

Table 8 has been obtained by using the table’s values of

3–7. Table 8 is the final solution table for the Model (2A).

From Table 8 and Fig. 5, we have seen that at a ¼ 0, the

optimal order quantities are as follows: Q1 = 22.19335

units, Q2 = 1187.256 units, Q3 = 42.41547 units with

optimal compromise value of objective functions are

Z1= 7.498250, Z2 = 8.62294. Similarly, at a ¼ 1:0, the

optimal order quantities are as Q1 = 21.58310 units,

Q2 = 1190.436 units, Q3 = 41.63432 units with optimal

compromise value of objective functions are

Z1 = 7.782631, Z2 = 8.005682. The obtained result shows

that proposed approach can generates more consistent

results with efficient solutions. Hence, the solutions

obtained at the different value of a helps the decision

Table 13 Relative weights

b w1 w2

0 0.096203309 0.082144909

0.1 0.094877957 0.083384990

0.2 0.093555691 0.084664556

0.3 0.092236485 0.085985388

0.4 0.090920379 0.087349572

0.5 0.089607393 0.088759285

0.6 0.088297379 0.090216849

0.7 0.086990507 0.091724648

0.8 0.085686632 0.093285505

0.9 0.084385776 0.094902088

1.0 0.086288037 0.096577524

Table 14 Optimal compromise objective values with order quantities

b Z1 Z2 Q1 Q2 Q3

0 7.685360 19.62314 23.18841 41.09848 1935.242

0.1 7.723917 19.03581 22.92703 40.87979 1938.154

0.2 7.83834 18.92735 22.66501 40.62648 1940.687

0.3 8.079115 18.45181 22.40233 40.44090 1942.891

0.4 8.219140 18.06115 22.13899 40.22070 1945.452

0.5 8.295876 17.68649 21.87500 39.98724 1948.071

0.6 8.513711 17.27950 21.61035 39.77879 1950.590

0.7 8.668768 16.88852 21.34503 39.55708 1953.168

0.8 8.829376 16.49742 21.07905 39.33486 1955.751

0.9 8.995837 16.10622 20.81240 39.11213 1958.340

1.0 9.168477 15.71491 20.54507 38.88889 1960.934

1.00.90.80.70.60.50.40.30.20.10

20

18

16

14

12
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8 Z1

Z2 

Fig. 6 Different values of

objective function
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maker to choose the best solution which increases or

decreases according to the preference as defined in terms of

weight. Specifically, a = 0 gives the widest lowest possi-

bility, indicating that the objective value will never fall

outside of this range while at the other extreme end of

a = 1, it provides the most optimistic value of the objec-

tive value. For this example, both the objective function is

fuzzy intuitionistic and conflicting in nature, the most

likely value of objective function are Z1 = 7.619745,

Z2 = 8.300349, while the pessimistic value are

Z1 = 7.498250, Z2 = 8.622942 and the optimistic value of

objective function are Z1 = 7.782631, Z2 = 8.005682.

Case 2 for Model (2B) In similar to Model (2A), this

model has also been solved by following the stepwise

solution procedure as defined in Sect. 3.1. The maximum

and minimum individual values of the objective function at

the different value of b 2 ½0; 1� has been given in Tables 9,

10, 11 and 12.

The relative weights attached to each objective func-

tions given in Table 13.

Table 14 has been obtained by using the Table’s values

of 9–13. Table 14 is the final solution Table for the Model

(2B).

From the Table 14 and Fig. 6, we have seen that at

b ¼ 0, the optimal order quantity quantities are as follows:

Q1 = 23.18841 units, Q2 = 41.09848 units, Q3 = 1935.242

units with optimal compromise value of objective functions

are Z1 = 7.685360, Z2 = 19.62314. Similarly, at b ¼ 1:0,

the optimal order quantities are as Q1 = 20.54507 units,

Q2 = 38.88889 units, Q3 = 1960.934 units with optimal

compromise value of objective functions are

Z1 = 9.168477, Z2 = 15.71491. The obtained result shows

that proposed approach can generates more consistent

results with efficient solutions. Hence, the solutions

obtained at a different value of b helps the decision maker

to choose the best solution which increases or decreases

according to the preference as defined in terms of weight.

Specifically, b ¼ 0 gives the widest lowest possibility,

indicating that the objective value will never fall outside of

this range while at the other extreme end of b ¼ 1:0, it

provides the most optimistic value of the objective value.

For this example, both the objective function is fuzzy

intuitionistic and conflicting in nature, the most likely

value of objective function are Z1 = 8.295876,

Z2 = 17.68649, while the pessimistic value are

Z1 = 7.685360, Z2 = 19.62314 and the optimistic value of

objective function are Z1 = 9.168477, Z2 = 15.71491. LMF

focuses more on Q2 ordered quantity while in case of

NLMF focus shifted more to Q3 ordered quantity.

The above example has been compared with Dutta and

Kumar (2013). They formulated the problem in determin-

istic environment and obtained the following results Q1 ¼
1363:712; Q2 ¼ 40; Q3 ¼ 42 with Z1 ¼ 11:5617; Z2 ¼
6:1424.

The relative effectiveness (R.E.) of an obtained com-

promise solution with respect to the Dutta and Kumar

(2013) approach is defined as:

R:E: ¼ TDutta and Kumarð2013Þ=TProposedApproach

where, TDutta and Kumarð2013Þ represents the trace value of a

compromise solution obtained by Dutta and Kumar (2013)

and TProposedApproach represents the trace value of the com-

promise solution obtained by using the proposed approach

(Table 15).

From these results, it has been found that, due to the

existence of conflicting objective function in the formu-

lated MOLFIP, they cannot optimized sufficiently. In the

same manner, the R.E. related to the first objective function

decreases for the different levels of a and b, while the R.E.

related to the second objective function increases for the

different levels of a and b.

Table 15 Relative efficiency of

solutions
a R.E. b R.E.

ðZ1;Z2Þ ðZ1;Z2Þ

0 (7.498250, 8.622942) (1.5419, 0.7123) (7.685360, 19.62314) (1.5044, 0.3130)

0.1 (7.520145, 8.578061) (1.5374, 0.7161) (7.723917, 19.03581) (1.4969, 0.3227)

0.2 (7.544812, 8.508621) (1.5324, 0.7219) (7.838340, 18.92735) (1.4750, 0.3245)

0.3 (7.569633, 8.439189) (1.5274, 0.7278) (8.079115, 18.45181) (1.4311, 0.3329)

0.4 (7.594610, 8.369765) (1.5224, 0.7339) (8.219140, 18.06115) (1.4067, 0.3401)

0.5 (7.619745, 8.300349) (1.5173, 0.7400) (8.295876, 17.68649) (1.3937, 0.3473)

0.6 (7.645038, 8.230941 (1.5122, 0.7463) (8.513711, 17.27950) (1.3580, 0.3555)

0.7 (7.660459, 8.190292) (1.5093, 0.7500) (8.668768, 16.88852) (1.3337, 0.3637)

0.8 (7.696106, 8.092148) (1.5023, 0.7591) (8.829376, 16.49742) (1.3095, 0.3723)

0.9 (7.721884, 8.052039) (1.4973, 0.7628) (8.995837, 16.10622 (1.2852, 0.3814)

1.0 (7.782631, 8.005682) (1.4849, 0.7673) (9.168477, 15.71491) (1.2610, 0.3909)
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5 Managerial perceptions, contributions
and limitations

5.1 Managerial perceptions

The following visions are drawn from the proposed work

which is supportive of any operational managers in the

manufacturing unit:

• The problem formulated in this paper is helpful to

demonstrate a simulation study based on the realistic

situation of inventory management, which is continu-

ously faced by the operational managers in manufac-

turing and production unit, where DM want to optimize

the different costs, which are directly related to the

inventory management.

• The model considered holding cost, purchasing price,

selling price, demand and ordering cost of the items

with some ambiguity which is a natural phenomenon

rather than an exact value, and hence, provides an

elastic view to the operational managers to optimize the

different inventory costs under ambiguity.

5.2 Contributions

The proposed work makes following contribution:

• A mathematical model for inventory management has

been formulated with the primary objective to maxi-

mize the profit and minimize the holding cost of pre-

ordered quantity.

• The proposed work gives the concept of intuitionistic

fuzzy set theory in inventory management.

• Developed an FGP model for inventory management,

where DM can control the quantity of ordered items.

• Different solution sets have been generated at some

discrete values of a and b.

5.3 Limitations

There are some limitations related to our model which is

given below:

• A hypothetical case study has been used to illustrate the

proposed work.

• The proposed model limited to vagueness only, but in

real-world problems decision maker has to face

randomness and multi-choices situations.

• The role of deterioration during different production

cycle is yet to be explored in this model.

• Fuzzy goal programming model is limited to linear

membership function only. Hence, the role of other

membership function in this model is yet to be

explored.

6 Conclusion

In this paper, we have considered inventory modelling

under IFS and maximize the profit and minimize the

holding cost related to per-ordered quantity with some

realistic set of constraints. The formulated problem cannot

be solved unless it converted into an equivalent determin-

istic form, which has been done by using the ranking

function approach by defining the membership and non-

membership function respectively, which gives decision

maker an optimistic and pessimistic view in multi-criterion

decision making. The formulated models have been solved

by using an FGP technique for attaining the most accept-

able solution of the models by controlling the decision

vectors at different levels of a and b. Tables 7 and 13 gives

an optimum compromise solution with an optimum ordered

quantity and in Table 14, the relative efficiency of the

obtained solution has been compared with the deterministic

model of inventory management. The procedure given in

this manuscript can also be used for solving all those

problems where the input information is in the form of an

intuitionistic parameter. Such problems may be related to

transportation problems, assignment problems, production

planning problems, problems related to workforce man-

agement and many more. In a future study, the model can

be further extended with different types of inventory and

production-related costs and can also be solve with dif-

ferent types of linear and non-linear membership functions

such exponential, hyperbolic, parabolic, piecewise linear,

gaussian, and singleton membership function respectively.
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