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Abstract This paper considers the use of combination of

neural networks and fuzzy system i.e. adaptive neuro-fuzzy

inference system (ANFIS) applied to the n job, m machine

real flexible manufacturing system assembly shop problem

with the objective of prediction of makespan. Assembly

shop makespan is calculated by Nawaz, Enscor, and Ham

(NEH) algorithm. On the basis of this algorithm, adaptive

neuro-fuzzy inference system model is made to predict the

makespan of the jobs. The purpose of this study is to find

the makespan estimation in advance if processing time of

machines is known. The purpose of this research is to gain

the advantage of the capabilities of both Fuzzy systems,

which is a rule-based approach and neural network which

focus on the network training. This model has been verified

by testing and actual data set with the average percentage

accuracy achieved is 95.97%. Coefficient of determina-

tion and Correlation coefficient is 0.9310 and 0.9649

respectively. The derived values of ANFIS model output

are found within the range after being verified practically.

Therefore, it can be concluded that makespan calculation

of the production system, by the proposed adaptive neuro-

fuzzy inference system, can be used as a reliable approach

in estimating the makespan of flexible manufacturing sys-

tem assembly shop.

Keywords FMS assembly shop � NEH heuristic �
Makespan estimation � ANFIS

1 Introduction

Many large industries have tried to introduce flexible

manufacturing systems in today’s manufacturing environ-

ment as their strategy. It enables them to adapt to the ever-

changing competitive market requirements based on qual-

ity of machining products, and to reduce the machining

costs and to enhance the productivity (Cus and Balic 2003).

Flexible manufacturing systems (FMSs) have been devel-

oped with the hope that they will be able to tackle new

challenges like reduced cost, improved quality, improve

delivery speed to satisfy different market segments (Jain

and Raj 2016a). A flexible manufacturing system assembly

shop schedule is one in which all jobs must visit all

machines in the same sequence. Processing of the job

should not be started on a succeeding machine before

completing processing of a job on a current machine.

Although all jobs are available in the beginning but only

one job can be performed at any particular time by a

machine (Onwubolu 1996). The other machines are left

idle queued by other jobs because the first machine has to

visit first by each job. Although queuing of jobs is pro-

hibited in just-in-time manufacturing environments, pro-

duction flow-shop manufacturing continues to find

applications in manufacturing (Wittrock 1985), and has

attracted much research work (Campbell et al. 1970; Gupta

1972; Nawaz et al. 1983).

An important aspect of scheduling is sequencing. The

sequencing is the process in which order jobs visit a

machine. Johnson (1954) Johnson’s algorithm is apt for a
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two-machine problems and can be applied on three-ma-

chines. A generalization of Johnson’s algorithm is that

proposed by Campbell et al. (1970) for solving general n-

jobs m-machine problems in which m - 1 two-machine

problems are solved and the sequence having the least

makespan is selected. Nawaz et al. (1983) proposed a

Nawaz, Enscor, and Ham (NEH) algorithm to construct a

jobs sequence in an iterative manner. The production flow

shop scheduling of assembly problem is the problem of

defining order over a set of jobs as they proceed from one

machine (processor) to another in minimum time i.e.

makespan of the jobs or assembly.

Scheduling outputs are generally graphically displayed

by Gantt charts. Machine processing times for each job is

used to draw them. It is also ensured that delay times are

taken into consideration.

A minimum makespan, which represents the minimum

time required to complete all the jobs, if not found, this

process is repeated for different sequences. The obtained

sequence is considered to be optimal. The manual method

for scheduling is tedious and prone to error. So, soft

computing technique is used to find the makespan of the

production flow shop. The makespan of the jobs can be

calculated by neuro and fuzzy system.

An adaptive neuro-fuzzy inference system (ANFIS) for

makespan estimation of flexible manufacturing system

assembly shop for five to ten jobs and five machines is

presented by this research work. The manufacturing

sequences of parts are flexible. Alternative sets of resources

may be selected for a manufacturing operation. The char-

acteristics such as resource sharing, concurrency, routing

flexibility, mutual exclusion, lot sizes, and synchronization

which are difficult to study (Der Jeng et al. 1999).

The main objectives of this research work are as follows:

• To find the makespan of the FMS assembly shop.

• To make a model with the help of neural network and

fuzzy rules i.e. ANFIS model.

• To discuss the ANFIS model verification.

In the remainder of this paper, literature review is pre-

sented in Sect. 2 for makespan estimation, NEH heuristic,

and ANFIS methodology. In Sect. 3, problem description.

The Sect. 4 gives the NEH heuristic. Makespan calculation

by NEH Algorithm is discussed in Sect. 5. The Sect. 6

gives the ANFIS methodology. Model verification and

Conclusion are followed in Sects. 7 and 8 respectively.

2 Literature review

The literature has been reviewed from the perspectives of

makespan estimation with neural network and fuzzy rules,

NEH heuristic and ANFIS modeling. Cheng and Gupta

(1989) used neural networks approaches for estimating the

makespan. Yih et al. (1991) proposed a hybrid model to

solve a crane scheduling problem. Philipoom et al. (1994)

compared a non-linear regression analysis with neural

networks of job scheduling problem. Fransoo et al. (1995)

compare a makespan estimation based on the analysis of a

stochastic queueing network model of the FMS and a

makespan minimizing algorithm based on a combinatorial

algorithm. Sabuncuoglu and Gurgun (1996) combined

neural network and algorithmic approaches to solve the

job-shop scheduling problem with minimum makespan.

Chen and Muraki (1997) used back-propagation neural

network for online rescheduling.Sabuncuoglu (1998) pre-

sented a review of the literature and future directions of

scheduling approaches using neural network mainly

scheduling problems involving artificial neural network

(ANN) applications. Ivanescu et al. (2002) used regression

analysis to estimate makespan in a batch process shop.

Raaymakers et al. (2001) also estimated models based on

regression. Raaymakers and Weijters (2003) found that in

batch process industries, estimation of makespan is difficult

because jobs interact at the shop floor. So, used two dif-

ferent techniques for estimating the makespan of job i.e.

regression models and neural networks. Wilson et al.

(2004) estimated the minimum makespan for scheduling

non similar groups of jobs on a two-stage flow line. Akyol

(2004) used ANN models for the prediction of the com-

pletion times for each job processed on each machine. Li

et al. (2007) proposed a back-propagation network model

combined with genetic algorithms for estimation of

makespan. Ahmadizar et al. (2010) found a job schedule

which minimizes the expected makespan based on ant

colony optimization algorithm and a heuristic algorithm.

Shokrollahpour et al. (2011) discussed two-stage assembly

flowshop scheduling problem with minimisation of

weighted sum of makespan and mean completion time by

imperialist competitive algorithm. Verma et al. (2012)

designed a job schedule that minimizes the makespan.

González et al. (2013) tackled the job shop scheduling

problem with sequence dependent setup times and maxi-

mum lateness minimization by means of a tabu search

algorithm. Moradinasab et al. (2013) discussed no-wait

two-stage flexible flow shop scheduling problem with setup

times aiming to minimize the total completion time by

adaptive imperialist competitive algorithm and genetic

algorithm. NEH heuristics review as Taillard (1990)

Compare the NEH heuristic with taboo search algorithm.

Zheng and Wang (2003) used NEH algorithm for flow shop

scheduling. Kalczynski and Kamburowski (2007) used

NEH algorithm for minimizing the makespan in permuta-

tion flow shops. Kalczynski and Kamburowski (2008) used

improved NEH algorithm to minimize makespan in per-

mutation flow shops. Dong et al. (2008) also used improved
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NEH algorithm to minimize makespan in the permutation

flow shops. Yagmahan and Yenisey (2008) used NEH

algorithm to compare ant colony optimization for multi-

objective flow shop scheduling problem. Shafaei et al.

(2011) used NEH algorithm with an adaptive neuro fuzzy

inference system for estimating the makespan.

In this section, the study of ANFIS work are summarize

as the used by other researchers. Some of review as Mar

and Lin (2001) defined an ANFIS controller for the car-

following collision prevention system. Ho et al. (2009)

used an ANFIS to predict the work piece Ra for the end

milling process with the hybrid Taguchi-genetic learning

algorithm. Samanta (2009) used adaptive neuro-fuzzy

inference system for a surface roughness model in end

milling with genetic algorithms. Talei et al. (2010) evalu-

ated rainfall by ANFIS in rainfall–runoff modeling. Güneri

et al. (2011) used ANFIS model for supplier selection.

Mellit and Kalogirou (2011) used ANFIS model for pho-

tovoltaic power supply system. Shafaei et al. (2011) used

an adaptive neuro fuzzy inference system to solve a no-

wait two stage flexible flow shop for minimizing make-

span. Heddam et al. (2012) studied an adaptive neuro fuzzy

inference system based modelling for coagulant dosage in

drinking water treatment plant. Pousinho et al. (2012)

proposed an adaptive neuro fuzzy inference system

approach for electricity prices forecasting in a competitive

market. Chen (2013) developed a hybrid ANFIS model for

business failure prediction by utilizing particle swarm

optimization and subtractive clustering. Heddam (2014)

made a ANFIS model for hourly dissolved oxygen con-

centration by using two different adaptive neuro-fuzzy

inference systems. Chen et al. (2014) proposed ANFIS for

an active magnetic bearing system with unbalance mass.

Ay and Kisi (2014) used modelling of chemical oxygen

demand by using ANNs, ANFIS and k-means clustering

techniques. Özkan and İnal (2014) determined that ANFIS

algorithm can be used in multi-criteria decision making

problems for supplier evaluation and selection with more

precise and reliable results. Maher et al. (2014) Investi-

gated the effect of machining parameters on the surface

quality of machined brass (60/40) in CNC end milling by

ANFIS modeling. Çevik and Çunkaş (2015) presented a

short-term load forecasting models, which was developed

by using fuzzy logic and ANFIS. Vasileva-Stojanovska

et al. (2015) presented a Quality of Experience prediction

model in a student-centered blended learning environment,

equipped with appropriate technologically enriched class-

room.Framinan and Perez-Gonzalez (2015) used heuristic

solutions for the stochastic flowshop scheduling problem.

Maher et al. (2015) made a ANFIS model based on cutting

force for accurate surface roughness prediction in end

milling operation for intelligent machining.Azadeh et al.

(2015) used a hybrid computer simulation-adaptive neuro-

fuzzy inference system algorithm for optimization of dis-

patching rule selection in job shop scheduling problems

under uncertainty. Abdulshahed et al. (2015) applied

ANFIS as a prediction models for thermal error compen-

sation on CNC machine tools. Jung and Choi (2015)

ANFIS method was used to predict the composite suit-

ability index for the physical habitat simulation of a 2.5 km

long reach of the Dal river in Korea. Jain and Raj (2016b)

used ANFIS for tool life management for unmanned pro-

duction system.

From the literature we have found that researchers

focused on optimization or minimizing the makespan and

have not discussed estimation of makespan which is nec-

essary for good scheduling, product delivery. So, a model

for prediction of makespan is developed which is helpful to

any manufacturing system to maintain good scheduling

system internally to get reliable product delivery.

3 Problem description

The production shop of flexible manufacturing system

assembly shop problem formulated as given below. Each of

n jobs from the jobs set i = [1,2….,n], for n[ 1, has to

processed on m machine j = [1,2,….m] in the order given

by the indexing of the machine being ti,j to find the mini-

mum makespan and make a model to predict or estimate

the makespan of the assembly jobs.

The following assumptions are considered in this

problem:

1. All jobs are independent and available at zero time.

2. Machines are also available at zero time.

3. Processing time of jobs is formerly specified.

4. No job has priority over any other job.

5. The transportation time between machines and set up

time are included in the processing time.

6. Assembly of parts is also included in the processing

time.

7. One job can only be processed on one machine at a

time.

8. One machine can only process one job at a time.

9. No preemption is allowed, i.e. the processing of a job i

on a machine j cannot be interrupted.

In this study, the operations set-up times are assumed to

be independent of the job sequences, and hence is added to

the operation times. The performance of the proposed

heuristic algorithm is studied in terms of minimum

makespan.

Here, taking a case study of flexible manufacturing

system assembly shop. This is the case of a large multi

nation organization X engaged in the manufacture of a

wide variety of automobile components in India, with an
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estimated turnover of Rs. 350 crores per year. That is one

of the largest automobile component supplier in the

country. The product range includes different car manu-

facturing company like Maruti Suzuki, Hyundia, Honda,

Toyota etc. with different models. The organization has to

increase the good quality and supply the product with

variations of models with minimum time frame.

So, a model is prepared to predict the makespan of the

components with different variants (i.e. five to ten jobs) on

five machines or workstations including machining and

assembly processes. A sample assembly shop line is shown

in Fig. 1. The final assembly is completed to pass five

machines or workstations including machining and

assembly process.

In this research work, the framework of the proposed

ANFIS-based soft computing intelligent system is descri-

bed in the ANFIS methodology section for consisting of

five machines which are capable of handling a five to ten

numbers of jobs.

4 NEH algorithm

An overview of the NEH algorithm can be stated as

follows.

Step l Calculate total process times for each job i

Ti ¼
Xj¼m

j¼1

ti;j ð1Þ

where ti,j is the process time of job i on machine j.

Step 2 The jobs are arranged according to descending

order of total processing time Ti.

Step 3 The two jobs are picked from the first and second

position of the list of Step 2, and the best

sequence is found for these two jobs by

calculating makespan for the two possible

sequences. The relative positions of these two

jobs should remain same with respect to each

other in the remaining steps of the algorithm. Set

i = 3.

Step 4 Next the job is picked in the ith position of the list

generated in Step 2 and the best sequence is found

by placing it at all possible i positions in the

partial sequence found in the previous step

without changing the relative positions to each

other of the already assigned jobs. The number of

enumerations at this step equals i.

Step 5 If n = i, then STOP, otherwise set i = i ? 1 and

go to Step 4.

5 Makespan calculation by NEH algorithm

Considering 5 machine and 5 jobs for calculation of

makespan by NEH algorithm (see Table 1).

Step 1 Calculate total process times for each job i (see

Table 2)

Step 2 Sort in the decreasing order of processing times

(see Table 3)

Step 3 Take J4 & J3
Iteration 1

Possible combinations: J4–J3 & J3–J4.

For J4–J3 (see Table 4):

where c is makespan

For J3–J4 (see Table 5):

Cmax for J4–J3\ J3–J4, therefore we choose J4–J3.

Loading 
station 

Unloading 
station 

Machine 5 
Stage 5 

Machine 2 
Stage 2 

Machine 4 
Stage 4 

Machine 3 
Stage 3 

Final 
Assembly 

Machine1 
Stage1 

n 
Jobs 

Computer System 

Part/assembly flow 

Fig. 1 Five machine FMS assembly shops
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Step 4 Then we take the next job in the sequence i.e., J2
Now J2 can be squeezed in three ways i.e., J2–J4–

J3, J4–J2–J3, J4–J3–J2
Iteration 2

For J2–J4–J3 (see Table 6):

For J4–J2–J3 (see Table 7):

For J4–J3–J2 (see Table 8):

Cmax for J4–J3–J2\ J4–J2–J3, J2–J4–J3 J3–J4,
therefore we choose J4–J3–J2.

Step 5 Then we take the next job in the sequence i.e., J1
Now J1 can be squeezed in 4 ways i.e., J1–J4–J3–

J2, J4–J1–J3–J2, J4–J3–J1–J2, J4–J3–J2–J1.

Iteration 3

For J1–J4–J3–J2 (see Table 9):

For J4–J1–J3–J2 (see Table 10):

For J4–J3–J1–J2 (see Table 11):

For J4–J3–J2–J1 (see Table 12):

Cmax for J4–J3–J2–J1\ J1–J4–J3–J2, J4–J1–J3–J2,

J4–J3–J1–J2, therefore we choose J4–J3–J2–J1.

Table 1 Processing time of

Jobs
J1 J2 J3 J4 J5

M1 66 52 98 65 81

M2 46 44 83 9 14

M3 18 40 84 81 7

M4 40 53 42 66 63

M5 30 44 2 99 17

Table 2 Total processing time of individual Jobs

J1 J2 J3 J4 J5

M1 66 52 98 65 81

M2 46 44 83 9 14

M3 18 40 84 81 7

M4 40 53 42 66 63

M5 30 44 2 99 17

Processing time 200 233 309 320 182

Table 3 Descending order of

Jobs based on total processing

time

J4 J3 J2 J1 J5

320 309 233 200 182

Table 4 Makespan for partial sequence of 4-3 Jobs

J4 J3 C4 C3 Cmax

M1 65 98 65 163

M2 9 83 74 246

M3 81 84 155 330

M4 66 42 221 372

M5 99 2 320 374 374

Table 5 Makespan for partial sequence of 3-4 Jobs

J3 J4 C3 C4 Cmax

M1 98 65 98 163

M2 83 9 181 172

M3 84 81 265 253

M4 42 66 307 319

M5 2 99 309 418 418

Table 6 Makespan for partial sequence of 2-4-3 Jobs

J2 J4 J3 C2 C4 C3 Cmax

M1 52 65 98 52 117 215

M2 44 9 83 96 126 298

M3 40 81 84 84 207 382

M4 53 66 42 93 273 424

M5 44 99 2 97 372 426 426

Table 7 Makespan for partial sequence of 4-2-3 Jobs

J4 J2 J3 C4 C2 C3 Cmax

M1 65 52 98 65 117 215

M2 9 44 83 74 161 298

M3 81 40 84 90 201 382

M4 66 53 42 147 254 424

M5 99 44 2 165 298 426 426

Table 8 Makespan for partial sequence of 4-3-2 Jobs

J4 J3 J2 C4 C3 C2 Cmax

M1 65 98 52 65 163 215

M2 9 83 44 74 246 259

M3 81 84 40 90 330 299

M4 66 42 53 147 372 352

M5 99 2 44 165 374 396 396

Table 9 Makespan for partial sequence of 1-4-3-2 Jobs

J1 J4 J3 J2 C1 C4 C3 C2 Cmax

M1 66 65 98 52 66 131 229 281

M2 46 9 83 44 112 140 312 325

M3 18 81 84 40 130 221 396 365

M4 40 66 42 53 170 287 438 418

M5 30 99 2 44 200 386 440 462 462
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Step 6 Then we take the next job in the sequence i.e., J5
Now J5 can be squeezed in 5 ways i.e., J5–J4–J3–

J2–J1, J4–J5–J3–J2–J1, J4–J3–J5–J2–J1, J4–J3–J2–

J5–J1, J4–J3–J2–J1–J5.
Iteration 4

For J5–J4–J3–J2–J1 (see Table 13):

For J4–J5–J3–J2–J1 (see Table 14):

For J4–J3–J5–J2–J1 (see Table 15):

For J4–J3–J2–J5–J1 (see Table 16):

For J4–J3–J2–J1–J5 (see Table 17):

Cmax for J4–J3–J2–J1–J5\ J5–J4–J3–J2–J1, J4–J5–

J3–J2–J1, J4–J3–J5–J2–J1, J4–J3–J2–J5–J1, therefore

we choose J4–J3–J2–J1–J5 and final makespan is

463.

Hence the makespan can be calculated for 5–10 jobs on

5 machines through NEH algorithm. We have taken five

machine and jobs from five to ten according to the

requirement of production schedule and makespan is

shown in Table 18. In this table N stand for no. of jobs,

M1–M5 are processing time on each machine.

Table 10 Makespan for partial sequence of 4-1-3-2 Jobs

J4 J1 J3 J2 C4 C1 C3 C2 Cmax

M1 65 66 98 52 65 131 229 281

M2 9 46 83 44 74 177 312 325

M3 81 18 84 40 155 195 396 365

M4 66 40 42 53 221 235 438 418

M5 99 30 2 44 320 265 440 462 462

Table 11 Makespan for partial sequence of 4-3-1-2 Jobs

J4 J3 J1 J2 C4 C3 C1 C2 Cmax

M1 65 98 66 52 65 163 229 281

M2 9 83 46 44 74 246 275 325

M3 81 84 18 40 155 330 293 365

M4 66 42 40 53 221 372 333 418

M5 99 2 30 44 320 374 363 462 462

Table 12 Makespan for partial sequence of 4-3-2-1 Jobs

J4 J3 J2 J1 C4 C3 C2 C1 Cmax

M1 65 98 52 66 65 163 215 281

M2 9 83 44 46 74 246 259 327

M3 81 84 40 18 155 330 299 345

M4 66 42 53 40 221 372 352 385

M5 99 2 44 30 320 374 396 415 415

Table 13 Makespan for partial sequence of 5-4-3-2-1 Jobs

J5 J4 J3 J2 J1 C5 C4 C3 C2 C1 Cmax

M1 81 65 98 52 66 81 146 244 296 362

M2 14 9 83 44 46 95 155 327 340 408

M3 7 81 84 40 18 102 236 411 380 426

M4 63 66 42 53 40 165 302 453 433 466

M5 17 99 2 44 30 182 401 455 477 496 496

Table 14 Makespan for partial sequence of 4-5-3-2-1 Jobs

J4 J5 J3 J2 J1 C4 C5 C3 C2 C1 Cmax

M1 65 81 98 52 66 65 146 244 296 362

M2 9 14 83 44 46 74 160 327 340 408

M3 81 7 84 40 18 155 167 411 380 426

M4 66 63 42 53 40 221 230 453 433 466

M5 99 17 2 44 30 320 247 455 477 496 496

Table 15 Makespan for partial sequence of 4-3-5-2-1 Jobs

J4 J3 J5 J2 J1 C4 C3 C5 C2 C1 Cmax

M1 65 98 81 52 66 65 163 244 296 362

M2 9 83 14 44 46 74 246 258 340 408

M3 81 84 7 40 18 155 330 265 380 426

M4 66 42 63 53 40 221 372 328 433 466

M5 99 2 17 44 30 320 374 345 477 496 496

Table 16 Makespan for partial sequence of 4-3-2-5-1 Jobs

J4 J3 J2 J5 J1 C4 C3 C2 C5 C1 Cmax

M1 65 98 52 81 66 65 163 215 296 362

M2 9 83 44 14 46 74 246 259 310 408

M3 81 84 40 7 18 155 330 299 317 426

M4 66 42 53 63 40 221 372 352 380 466

M5 99 2 44 17 30 320 374 396 397 496 496

Table 17 Makespan for partial sequence of 4-3-2-1-5 Jobs

J4 J3 J2 J1 J5 C4 C3 C2 C1 C5 Cmax

M1 65 98 52 66 81 65 163 215 281 362

M2 9 83 44 46 14 74 246 259 327 376

M3 81 84 40 18 7 155 330 299 345 383

M4 66 42 53 40 63 221 372 352 385 446

M5 99 2 44 30 17 320 374 396 415 463 463
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Table 18 Makespan for five machine and jobs from five to ten

N M1 M2 M3 M4 M5 Actual Makespan

10 478 704 454 440 458 946

10 529 541 432 402 389 901

10 518 410 594 488 618 941

10 576 417 520 508 420 834

10 491 494 394 429 562 905

10 445 396 420 380 590 820

10 503 524 461 632 520 924

10 493 596 654 570 536 932

10 624 432 523 511 388 888

10 606 388 494 561 434 925

10 543 581 431 541 533 907

10 421 532 509 500 463 835

10 612 456 751 536 405 932

10 359 475 609 524 445 926

10 524 586 673 423 493 948

10 673 466 460 605 554 998

10 468 509 478 574 517 852

10 471 517 601 369 613 887

10 419 319 539 418 487 814

10 486 472 678 619 611 985

9 447 596 342 399 593 916

9 492 302 491 454 429 816

9 547 453 348 363 471 813

9 518 504 630 442 557 904

9 517 482 510 410 361 767

9 407 476 548 609 350 858

9 515 445 348 432 517 907

9 380 343 465 560 437 844

9 528 530 522 500 425 821

9 350 560 481 548 401 799

9 535 409 406 585 526 894

9 467 581 282 298 308 769

9 454 437 395 441 362 779

9 381 663 414 576 540 990

9 414 430 499 478 461 935

9 399 531 485 280 361 798

9 507 551 499 455 465 792

9 301 404 491 411 455 839

9 433 366 296 580 493 850

9 362 551 412 514 521 817

8 525 455 422 388 249 748

8 343 278 294 503 417 741

8 444 424 470 315 266 740

8 345 367 461 415 345 698

8 444 366 499 426 326 741

8 347 399 453 478 399 739

8 416 419 190 273 436 672

8 303 339 337 339 415 635

Table 18 continued

N M1 M2 M3 M4 M5 Actual Makespan

8 349 254 577 493 303 738

8 275 314 421 390 273 652

8 442 266 423 211 305 659

8 540 295 315 443 495 747

8 295 418 547 446 481 767

8 468 614 241 484 455 828

8 438 354 502 384 322 699

8 569 223 413 377 445 822

8 447 341 370 501 461 822

8 334 455 331 365 401 718

8 381 510 506 459 373 870

8 614 320 404 407 311 905

7 371 375 381 261 358 692

7 324 252 393 452 351 664

7 444 277 329 261 298 637

7 400 330 402 328 406 787

7 394 459 175 229 494 688

7 420 150 413 293 331 669

7 430 446 374 438 381 806

7 226 341 304 480 387 658

7 375 356 443 453 291 678

7 200 326 431 311 256 646

7 324 321 349 432 434 765

7 595 309 310 244 305 791

7 408 199 412 382 333 653

7 327 300 325 486 316 696

7 469 299 357 361 343 734

7 341 414 334 368 406 736

7 410 251 434 352 286 666

7 393 305 371 255 440 718

7 307 389 377 303 324 658

7 402 227 352 357 391 689

6 187 324 420 235 157 551

6 350 184 296 314 406 753

6 239 383 260 341 272 643

6 337 342 246 298 310 600

6 202 344 254 371 370 649

6 309 180 386 382 346 601

6 333 180 319 198 261 548

6 405 413 327 220 389 676

6 243 189 311 293 340 549

6 312 411 406 331 351 737

6 355 288 463 297 355 703

6 271 345 197 390 412 632

6 251 347 224 363 186 597

6 229 145 368 252 321 536

6 358 406 204 351 297 712

6 341 362 262 334 339 630
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6 ANFIS method

Jang (1993) proposed Adaptive neuro-fuzzy inference

system (ANFIS) to construct an input–output mapping

based on both i.e. human knowledge (in the form of fuzzy

if–then rules) and stipulated input–output data pairs. It is

known as an adaptive network, a network of nodes and

directional links. This network is connected with a learning

rule—for example back propagation or hybrid algorithm.

ANFIS can predict data using Sugeno FIS (Fuzzy Inference

System) to relate membership and tune it using either back

propagation or hybrid method. ANFIS model will simulate

the inputs to the outputs correctly. In this research, the

various input variables are trained and tested by ANFIS

method. They are evaluated on the base of testing

performances.

ANFIS schematic diagram is shown in Fig. 2. There are

five network layers which are used by ANFIS to perform

the following fuzzy inference steps: (a) input fuzzification,

(b) fuzzy set database construction, (c) fuzzy rule base

construction, (d) decision making, and (e) output defuzzi-

fication (Maher et al. 2014).

To explain this model simply, consists of five layers of

adaptive network with two inputs (x and y) with two lin-

guistic values and output f. Basically, inference system is

constructed by five layers (Fig. 2) and each ANFIS layer

consists of several nodes described by the node function.

The present layers’ inputs are derived from the nodes in the

previous layers. The rule base of ANFIS contains fuzzy IF–

THEN rules of the Sugeno type. For a first-order Sugeno

fuzzy inference system, the two rules may be stated as:

Rule 1 : IF x is A1 AND y is B1; THEN f is f1 x,yð Þ
Rule 2 : IF x is A2 AND y is B2; THEN f is f2 x,yð Þ;

where x and y are the inputs of ANFIS, Ai and Bi are the

fuzzy sets, and fi (x,y) is a first order polynomial and

represents the outputs of the first order Sugeno fuzzy

inference system. The structure of ANFIS is shown in

Fig. 2, and the node function in each layer is described

below. Represent the parameter sets that are adjustable in

these nodes are presented by adaptive nodes, denoted by

squares, whereas fixed nodes, denoted by circles, represent

the parameter sets that are fixed in the system (Svalina

et al. 2013).

Layer 1 this layer contains adaptive nodes with node

functions like i explained as below:

Q1;i ¼ lAi xð Þ for i ¼ 1; 2 ð2Þ

Q2;i ¼ lBi�2 yð Þ for i ¼ 3; 4 ð3Þ

where x and y are the input to node i, Ai and Bi are the

linguistic labels such as small or large, l (x) and l (y) are

the membership functions. Many sorts of the membership

functions which are there can be used. However, a Gaus-

sian membership function has been chosen to represent the

linguistic terms because the relationship between the pro-

cessing time and makespan is not linear, so this function

Table 18 continued

N M1 M2 M3 M4 M5 Actual Makespan

6 191 370 306 372 413 721

6 258 323 263 279 234 547

6 255 390 388 234 194 612

6 350 293 283 289 212 578

5 362 196 230 264 192 594

5 272 162 290 313 214 502

5 234 392 290 255 222 634

5 305 252 194 348 198 545

5 144 338 306 180 297 581

5 292 304 181 328 265 608

5 202 329 339 251 209 519

5 290 270 319 232 328 618

5 336 260 197 190 190 519

5 217 218 206 238 255 491

5 292 249 341 200 234 573

5 137 327 263 392 230 627

5 262 206 293 266 231 533

5 297 216 282 229 321 587

5 263 263 265 304 308 618

5 237 165 149 247 183 411

5 172 311 244 298 279 573

5 247 238 310 282 176 629

5 327 222 255 192 274 615

5 187 252 217 238 307 512

Fig. 2 Schematic diagram of ANFIS (Shafaei et al. 2011)
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assured a smooth transition between 0 and 1. It can be

written as follows:

First parameter membership functions

lAi xð Þ ¼ exp �0:5
x� ai1ð Þ
bi1

� �2
" #

ð4Þ

Second parameter membership functions

lBi yð Þ ¼ exp �0:5
y� ai2ð Þ
bi2

� �2
" #

ð5Þ

where ai,1, ai,2, bi,1, and bi,2 are the parameter set. The bell-

shaped functions vary while the values of this parameter

are changing.

Layer 2 In this layer every node is a fixed node, which is

marked by a circle and the node function has to be multi-

plied by input signals so that it can serve as output for

every node. The nodes of this layer are called rule nodes.

Each node computes the firing strength of the associated

rule i.e.w1.

Q2;i ¼ w1 ¼ lAi xð Þ � lBi yð Þ ð6Þ

Layer 3 Every node in this layer is also a fixed node,

marked by a circle and labeled N to show the normalization

of the firing levels.

Q3;i ¼ wi ¼
wiP
wi

for i ¼ 1; 2 ð7Þ

Layer 4 Every node i in this layer is an adaptive node

with a node function and marked by a square:

Q4;i ¼ wi � fi for i ¼ 1; 2 ð8Þ

Here f1 and f2 are the fuzzy IF–THEN rules as follows:

Rule 1 : IF x is A1 AND y is B1;THEN f1 is ¼ p1xþ q1yþ r1

Rule 2 : IF x is A2 AND y is B2;THEN f2 is ¼ p2xþ q2yþ r2;

where wi is normalised firing strength from layer 3 and

[pi,qi,ri] is the parameter set of this node and marked as the

consequent parameters.

Layer 5 One fixed node of this layer is marked by a

circle. The node has to compute the overall output as the

summation of all incoming signals:

Q5;i ¼ fout ¼
X

wi � fi ¼ overall output: ð9Þ

The first layer and the fourth layer are the two adaptive

layers with square nodes in this ANFIS architecture. In the

first layer, there are two modifiable parameters known as

premise parameters [ai,bi] which relates to the input

membership functions. In the fourth layer, there are also

three modifiable parameters known as consequent param-

eters [pi,qi,ri] pertaining to the first-order polynomial.

MATLAB is used for ANFIS model development.

ANFIS command window is used for training and testing.

Gaussian bell membership function was used in input and

output. In ANFIS a hybrid learning method is applied for

updating the FIS parameters. The training process contin-

ues till the desired number of training steps (epochs) or the

desired root mean squared error (RMSE) between the

desired and the generated output is achieved.

Steps of ANFIS model for makespan estimation of

FMSAS are explained as follows:

Step 1 Normalize the training and test data

Because the range of data is different, so

normalized the data as

x
0

i ¼
xi � xi;min

xi;max � xi;min

ð10Þ

where xi,min and xi,max are the minimum and

maximum values of ith input data.

Step 2 Load Input training data and test data into the

ANFIS model

Input data are a number of jobs, summation of

processing times for one to five machines,

whereas the output data is the makespan or the

completion time of jobs.

Step 3 Set the input and output parameters and

membership function

The output and input parameters for ANFIS are

defined. Membership function i.e. Gaussian bell

shape is defined and used evalfis command for

this.

Step 4 Define the optimal parameter values for

optimization

The parameters are optimized in which radii

parameter is most important.

Step 5 Define the epochs of the FIS for training

The epochs are set for the training of the model.

Step 6 Trained the ANFIS model

The training of the model is started.

Step 7 Testing the ANFIS model

The model is tested after the training.

Step 8 Find the test output of the ANFIS model

Table 19 shows the parameter values used in

testing with the output of the model. Finally, the

obtained test output results with ANFIS model are

compared with the measured values.
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Step 9 Plot correlation coefficient between measured and

predicted makespan

Correlation coefficient is a statistical process for

estimating the relationships among variables, i.e.

prediction of ANFIS model and the measured data

used for the testing. Correlation coefficient is

widely used for prediction. After obtaining the

output of ANFIS model, a plot is drawn between

the predicted data of ANFIS model and measured

data set. Correlation coefficient of ANFIS model

is shown in Fig. 3.

7 Model verification

Twenty-four random readings were used as the testing data

set (Table 19). The plot of 24 measured makespan values

versus predicted makespan using the ANFIS model is

shown in Fig. 4. This figure presents a comparison of the

measured makespan and predicted makespan of the testing

data set of 24 following training using ANFIS. Appropriate

assent is evident between the measured and ANFIS-

predicted makespan values. This close assent obviously

displays that the ANFIS model can be used to predict the

makespan under consideration. Thus, the proposed ANFIS

model offers a promising solution to predicting makespan

values in the specific range of parameters.

To assess the ANFIS model, the percentage error Ei and

average percentage error Eav defined in Eqs. (11) and (12),

respectively, were used.

Ei ¼
measured makespanj � predicted makespanj

measured makespan
� 100

ð11Þ

Eav ¼
1

m

Xm

i¼1

Ei ð12Þ

where Ei is the percentage error of sample number i; and

Eav is the average percentage error of m sample data.

From Table 19 and Fig. 5 show that the average per-

centage error for predicting makespan is 4.03%. Figure 5

Table 19 Comparison of measured and predicted makespan

Sr.

no.

Actual

makespan

Calculated

makespan

Error in

%

Accuracy in

%

1 901 894 - 0.78 99.22

2 941 923 - 1.91 98.09

3 834 904 8.39 91.61

4 905 884 - 2.32 97.68

5 916 912 - 0.44 99.56

6 816 879 7.72 92.28

7 813 857 5.41 94.59

8 904 956 5.75 94.25

9 767 824 7.43 92.57

10 698 751 7.59 92.41

11 741 742 0.13 99.87

12 672 691 2.83 97.17

13 696 665 - 4.45 95.55

14 734 679 - 7.49 92.51

15 736 729 - 0.95 99.05

16 666 657 - 1.35 98.65

17 718 724 0.84 99.16

18 548 552 0.73 99.27

19 676 633 - 6.36 93.64

20 549 558 1.64 98.36

21 703 652 - 7.25 92.75

22 502 506 0.80 99.20

23 545 521 - 4.40 95.60

24 608 549 - 9.70 90.30

Fig. 3 Correlation Coefficient of ANFIS data
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Fig. 4 Measured makespan versus predicted makespan
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presents the percentage error between the predicted and

measured makespan. The highest percentage of error for

ANFIS model prediction is 9.7%. The low error level

signifies that the makespan results predicted by ANFIS are

very close to the actual results. The error and accuracy

values mean that the proposed model can predict makespan

satisfactorily.

8 Conclusion

In this study, ANFIS was used to develop an empirical

model for predicting the makespan of flexible manufac-

turing system assembly shop in a manufacturing plant. An

ANFIS model was developed based on NEH heuristics for

makespan calculation as a scheduling problem. The ANFIS

model was developed into two phases, namely training

phase and test phase. In the training phase, about 90 values,

i.e. 79% of the problems were used and 24 values, i.e. 21%

of the problems used for the testing phase. This model was

verified by test data, and the 95.97 average percentage of

accuracy was achieved. Therefore, it can be concluded that

makespan calculation of the production system, by the

proposed ANFIS with NEH heuristic rules can be used as a

reliable approach in estimating the job completion time of

the problem studied. ANFIS shows a good performance

with a coefficient of determination is 0.9310 and root-

mean-square error (RMSE) of 0.0731. The RMSE is a

frequently used measure of the differences between values

predicted by a model or an estimator and the values actu-

ally observed, and coefficient of determination, describes

how much of the variance between the two variables is

described by the linear fit. Coefficient of determination of

0.9310 means that 93.10% of the variance is predictable.

Correlation coefficient between measured and predicted

makespan is also shown in a graphical way (Fig. 3). The

value of Correlation coefficient is 0.9649. The results

mutually differ less than ± 10%. The correlation coeffi-

cient is close to 1 i.e. 0.9649, it would indicate that the

variables are positively linearly related and the scatter plot

falls almost along a straight line with positive slope. The

derived values of ANFIS model output are found within the

range after being verified practically. Therefore, it can be

concluded that makespan calculation of the production

system, by the proposed adaptive neuro-fuzzy inference

system, can be used as a reliable approach in estimating the

makespan of flexible manufacturing system assembly shop.
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