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Abstract Uncertainties play a dominant role in the per-

formance analysis of the system. For managing it, fuzzy set

theory and its corresponding triangular fuzzy numbers have

been utilized by most of the researchers for quantifying the

data. However, in this manuscript, this hypothesis has been

calmed by defining the different types of numbers, namely

gamma, normal, Cauchy and triangular for uncertainties.

Based on it, behavior, performance and sensitivity analysis

of the system have been investigated at different levels of

confidence and the preferences as provided by the decision

makers towards the data. Based on it, various expressions

of the system such as failure rate, repair time, reliability,

availability etc., are obtained corresponding to these dif-

ferent types of the numbers. From the computed results, it

is concluded that these indices are reduced range of pre-

diction as compared to the existing approaches. A numer-

ical example has been taken for demonstrating the

approach.

Keywords Uncertainty analysis � Reliability � Fuzzy set

theory � Repairable system � Fuzzy numbers

1 Introduction

Today in the real-world decision, an uncertainty plays a

dominant role in the analysis and hence a billion of dollars

are being spent in maintaining the performance of the

system by designing a reliable system and/or products. The

primary objective of the system analyst is to increase the

reliability and/or availability of the system by choosing the

proper maintenance actions (Rani et al. 2016). But the

uncertainties, which are occurring in most of the systems

during data handling, are playing the dominant role. On the

other hand, if the system analyst has used the collected

data, without considering the uncertainties, during the

analysis then their corresponding results do not give the

exact information about the system behavior and conse-

quently, the performance of the system will lay down (Garg

2014; Garg et al. 2014c).

To deal with such uncertainties, fuzzy set (FS) theory

(Zadeh 1965) is one of the powerful tools to handle the

impreciseness and vagueness in the data. Since their exis-

tence, various researchers have used the FS theory into the

reliability analysis. For instance, Singer (1990) estimated

the reliability of the system by using L–R (left–right) type

fuzzy numbers. Later on, Cheng and Mon (1993) proposed

confidence interval method for analyzing the system reli-

ability under the fuzzy environment. Chen (1994) analyzed

the reliability of the system using fuzzy arithmetic opera-

tions instead of ordinary arithmetic operations while Chen

(1996) analyzed the system behavior by using a-cut arith-
metic operations of the fuzzy number. In continuation with

these, Mon and Cheng (1994) analyzed the reliability of the

system by using different types of membership functions

rather than triangular function. Utkin and Gurov (1998)

measuring the system performance in terms of steady-state
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availability and unavailability by considering the failure

and repair process of the system. Jiang and Chen (2003)

presented a method to solve some engineering problems

with random general stress. Huang et al. (2006) presented a

method based on the artificial neural network to estimate

the parameters of the reliability and hence analyzed the

performance of the system. Lei et al. (2005) presented the

network equivalent approach for reliability evaluation of

power distribution systems. Gupta and Bhattacharya (2007)

proposed a methodology, by using statistical analysis, for

estimating the failure probability of an industrial system.

From the above study, it is evident that most of the

researchers have considered only the reliability parameter

during the analysis. But, practically only the reliability

index will not give the correct information about the sys-

tem behavior, as there are other indices also with affect the

performance of the system directly. So, it is necessary to

modify these existing theories by considering all those

indices of the system which affects the performance

directly or indirectly. To overwhelmed this and to incor-

porate the preference of the decision makers into the

analysis, Knezevic and Odoom (2001) presented a theory,

called as fuzzy lambda-tau (FLT), by using Petri net (PN)

and FS theory for analyzing the behavior of the system in

terms of several parameters. Further, these theory has been

used by the researchers and apply them to investigate the

behavior of the different industrial systems (Garg and

Sharma 2012a; Sharma and Garg 2011). But from their

studies, it has been analyzed that it contains a wide range of

spread (or support) when applied it to the large structural

system. In order to resolve this issue, Garg and Sharma

(2012b) and Garg et al. (2014a) presented a nonlinear

optimization model for optimizing the spread correspond-

ing to each reliability index and then solved it by using soft

computing techniques. The major advantage of their

approach is to (1) formulate an optimization model by

using ordinary arithmetic operations instead of the fuzzy

operations, (2) reduce the overall spread, so as to save the

money and time. Also, Garg (2015b) presented a hybri-

dized technique named as GA-GSA algorithm to optimize

the parameter of the system so as to maximize the overall

performance of the system. Garg (2015a) formulated a

fuzzy Kolmogorov’s differential equations corresponding

to the system behavior of the system. Garg (2016) inves-

tigated the reliability of the series-parallel system using the

credibility theory. Apart from that, there are some other

types of the problems developed by the researchers using

the concept of the artificial intelligence in the fields which

are summarized in (Garg 2013, 2017; Garg and Sharma

2013; Garg et al. 2014b; Valipour 2016; Valipour et al.

2013).

Generally, the behavior of the system has been analyzed

through various qualitative and quantitative techniques

which require complete information. But due to various

uncertain conditions, it is difficult to the plant personnel to

collect all these information accurately. If somehow they

can be collected then it has a wide range of uncertainties.

On the other hand, to handle these uncertainties,

researchers have expressed the obtained data in terms of

fuzzy numbers which usually follows an exponential dis-

tribution along with the same type of the numbers. How-

ever, in real-life situations, these types of situation are

rarely occurring because failure is an unavoidable phe-

nomenon. Therefore, there is a need to investigate these

issues and to include some other types of membership

function into the analysis so that the plant personnel may

use the technique for the variable rate also.

The gap in the research motivates us to extend the

theory by taking some different kinds of the membership

functions instead of only the exponential membership

function. The main contributions of this work are sum-

marized below:

1. To define and analyze the behavior of the system by

using different types of linear or nonlinear membership

functions viz., Gamma, Cauchy, normal, triangular

etc., to measures the vagueness in the data.

2. To incorporate the preferences of the plant personnel

towards the data into the analysis in the form of the

spread (or support).

3. To measure the various reliability indices correspond-

ing to the different types of the membership functions.

4. The sensitivity, as well as the performance analysis for

each component of the system, has been investigated in

detail for showing the impact of it onto the behavior of

the system.

5. The most critical component of the system has been

found by investigating the impact of the rates of the

components on to the system availability.

6. In contrast to the existing approaches, the proposed

method will depicts not only the behavior of the

individual components but also depicts the effect of

individual component behavior and their correspond-

ing change in spreads. Further, a comparative study

with existing studies has been established to show its

advantages.

The rest of this paper is organized as follows. In Sect. 2, we

briefly reviews some basic concepts of fuzzy sets and their

corresponding membership functions. Section 3 presents a

methodology for conducting the behavior analysis by using

different types of fuzzy numbers. In Sect. 4, proposed

approach has been illustrated with a case study of repair-

able system. Section 5 summarizes the results, discussion

and the advantages of the proposed approach with respect

to the existing studies. A concrete conclusion is drawn in

Sect. 6.
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2 Preliminaries

In this section, some basic concepts about the fuzzy sets

and membership functions have been summarized.

Definition 1 (Zadeh 1965) A fuzzy set ‘A’over the uni-

versal set X is defined as

A ¼ fhx; lAðxÞijx 2 Xg ð1Þ

where lA : X ! ½0; 1� represent the degree of the mem-

bership of element x to A such that lAðxÞ 2 ½0; 1� for all
x 2 X.

Definition 2 (Klir and Yuan 2005) A fuzzy number is a

normal, convex membership function, i.e., its membership

function is piecewise continuous and there exist at least one

x0 2 R such that lAðx0Þ ¼ 1. The membership function

defined on a1; a2; a3; a4 2 R such that a1 � a2 � a3 � a4 is

given as

lAðxÞ ¼

f ðxÞ; x 2 ða1; a2Þ
1; x 2 ½a2; a3�

gðxÞ; x 2 ða3; a4Þ
0; otherwise

8
>>><

>>>:

ð2Þ

where f ; g : R ! ½0; 1� are the monotonic, continuous from

the right and left, nondecreasing and nonincreasing func-

tions respectively. We denote this fuzzy number as

A ¼ ða1; a2; a3; a4Þ.

Some of the popular distribution for handling the

uncertainties in the data are summarized as follows:

(a) fuzzy normal distribution:

lAðxÞ ¼ e�kðx�aÞ2 ; where k[ 0 and a 2 R

ð3Þ

(b) fuzzy sharp gamma distribution:

lAðxÞ ¼
ekðx�aÞ2 ; x� a

e�kðx�aÞ2 ; x[ a

(

ð4Þ

where k[ 0 and a 2 R.

(c) fuzzy Cauchy distribution:

lAðxÞ ¼
1

1þ aðx� aÞb
; where a[ 0;

b is a positive even

ð5Þ

(d) fuzzy triangular distribution:

lAðxÞ ¼

x� a1

a2 � a1
if a1 � x\a2

1 if x ¼ a2
a3 � x

a3 � a2
if a2 � x\a3

0 otherwise

8
>>>>><

>>>>>:

ð6Þ

Definition 3 (Klir and Yuan 2005) An a-cut of a fuzzy set
A, denoted by Aa is defined as

Aa ¼ x 2 X j lAðxÞ� af g; a 2 ½0; 1� ð7Þ

For instance, for a triangular fuzzy number A ¼ ða; b; cÞ,
their corresponding a-cut is defined below and shown

graphically in Fig. 1 whose interval of confidence are

defined are

Aa ¼ aðaÞ; cðaÞ
h i

¼ aþ aðb� aÞ; c� aðc� bÞ½ � ð8Þ

Definition 4 (Ebeling 2001) Reliability of a system is

expressed as a probability that that the system will perform

its required function under given conditions for a stated

time period. Mathematically, for a continuous random

variable T, the reliability function R(t) is defined as

RðtÞ ¼ PðT � tÞ ¼ 1�
Z t

0

f ðuÞdu ð9Þ

where RðtÞ� 0, Rð0Þ ¼ 1, and limt!1 RðtÞ ¼ 0 and f(t) is

the failure probability density function.

In addition, the conditional probability of a failure in the

time interval from t to t þ Dt, given that the system has

survived to time t is

P t� T � t þ DtjT � tð Þ ¼ RðtÞ � Rðt þ DtÞ
RðtÞ ð10Þ

Therefore, the hazard rate of the system is defined as

kðtÞ ¼ RðtÞ � Rðt þ DtÞ
RðtÞDt ¼ � dRðtÞ

dt
� 1

RðtÞ ð11Þ

and hence its corresponding reliability can be derived as

RðtÞ ¼ exp �
Z t

0

kðuÞdu

2

4

3

5 ð12Þ

1

0 b c a

Fig. 1 a-Cut of the fuzzy set A
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Definition 5 (Ebeling 2001) Availability of a system is

expressed as a probability that a system will be available to

function at the given time t. Mathematically, it is defined at

any given time t as

AðtÞ ¼ ns
ks þ ns

þ ks
ks þ ns

e�ðksþnsÞt ð13Þ

where ks and ns are respectively, represents the failure and
repair rates of the system.

3 Methodology

In this section, we have presented an approach to analyze

the system performance by using different types, linear and

nonlinear, of the membership functions. For it, the fol-

lowing assumptions have been taken as:

1. component parameters are independent;

2. component is assumed to be as new after repairs;

3. standby and active components are of same nature.

Based on these assumptions, the methodology for con-

ducting the behavior analysis are summarized in the fol-

lowing four steps as follows:

Step

1

Data related to each component are extracted in the

form of failure rates (ki’s) and repair times (si’s)
either from the sheets or from their personal

experiences.

Step

2

The obtained information from step 1 are generally

out of date or imprecise due to lack of proper

update or by human errors. So in order to quantify

the uncertainties in the data, it must be converted

into fuzzy numbers with the help of the system

analyst preferences. For instance, if the decision-

maker gives � 15% spread towards the data, then

their corresponding triangular fuzzy number

becomes ðki1; ki2; ki3Þ ¼ ð0:85ki2; ki2; 1:15ki2Þ
corresponding to ith component of the failure rate

ki. Similarly for the repair times and their

representations are shown graphically in Fig. 2.

Step

3

By using the operations of AND/OR expressions

given in Table 1 at different levels of a-cuts, the
indices of various reliability parameters, listed in

Table 2, are computed.

Step

4

The obtained fuzzified data need to be defuzzified

in order to implement their decision in real world.

For it, center of gravity method (Ross 2004) is

used in the interval ½x1; x2� and is given by

�x ¼
R x2
x1
x � lAðxÞdx

R x2
x1
lAðxÞdx

ð14Þ

where �x represent the defuzzified value.

The flowchart of the proposed approach has been sum-

marized in Fig. 3.

4 Case study

The above mentioned methodology is illustrated with a

case study of the the decomposition unit of a complex

repairable urea fertilizer plant (Sharma and Garg 2011).

4.1 System description

Decomposition unit comprised of the four major compo-

nents denoted by A, B, C and E which are connected in the

series configuration and the brief description of each

component associated with them is explained as follows

(Sharma and Garg 2011).

1. First component A consists of two absorbers, namely as

reboiler ðA1Þ and falling film heater ðA2Þ for absorbing

1 1

(a) (b)

Fig. 2 A triangular fuzzy

number for failure rate k and

repair time s. a Triangular

membership functions of ki2,
b triangular membership

functions of si2

Table 1 Basic expressions of Lambda Tau methodology

Gate kAND sAND kOR sOR

Expression Qn

j¼1

kj

"
Pn

i¼1

Qn

j¼1
i 6¼j

sj

#
Qn

i¼1

si

Pn

j¼1

"
Qn

i¼1
i 6¼j

si

#

Pn

i¼1

ki
Pn

i¼1

kisi

Pn

i¼1

ki
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the high and low-pressure respectively. Failure of

either of them will cause system failure.

2. Second component B consists of high-pressure B1 and

low-pressure B2 absorber connected in series.

3. Third component called as the gas separator C used for

separating the gases obtained from absorbers. Failure

of it will cause system failure.

4. Fourth component consist of two units namely low-

pressure E1 and high-pressure heat exchanger E2 with

standby unit for recovering the heat of the gases. The

entire system will fail if both the system fails to work.

The symmetric diagram and its equivalent PN model of the

system for describing the working of the major component

of the unit are shown in Fig. 4a, b. The data, in terms of its

failure rates and repair times, corresponding to these major

components are summarized in Table 3 (Sharma and Garg

2011) while the minimal cut sets are obtained as {A1},

{A2}, {B1}, {B2}, {C} and {E1E2}.

4.2 Analysis by proposed approach

In this section, an analysis has been conducted to compute

the system reliability parameters by considering the dif-

ferent level of uncertainties. For this, firstly the collective

data, given in Table 3, has been fuzzified into the different

types of fuzzy numbers namely triangular, normal, gamma

and cauchy. Based on the Fig. 4b, mathematical expression

of the system is represented as follows:

Table 2 Some reliability

parameters
Parameters Expressions

Failure rate
MTTFs ¼

1

ks
Repair time

MTTRs ¼
1

ns
¼ ss

Mean time between failures (MTBF) MTBFs ¼ MTTFs þMTTRs

Reliability Rs ¼ e�ks t

Availability
As ¼

ns
ks þ ns

þ ks
ks þ ns

e�ðksþnsÞt

Expected numbers of failures (ENOF)
Wsð0; tÞ ¼

ksnst
ks þ ns

þ k2s
ðks þ nsÞ2

1� e�ðksþnsÞt
h i

Information

extraction in

the form of

parameters

of failure

rate and

repair time

Historical records

system reliability analyst

reliability database

gnisuybreifizzuF

fuzzy numbers

Obtain minimal

cut set of the

system using

ledomNP

Construct fuzzy

reliability indices

membership

function

Defuzzifier by

COG method

R
E
L
I
A
B
I
L
I
T
Y

P
A
R
A
M
E
T
E
R
S

System
behavior
analysis

Fuzzy

Crisp

Defuzzified

fuzzy
output

crisp
input

fuzzy
data

Step 2

Step 3

Step 4

Step 1

Fig. 3 Flow chart of the proposed approach
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S ¼ A [ B [ C [ E

¼ ðA1 [ A2Þ [ ðB1 [ B2Þ [ C [ ðE1 \ E2Þ
ð15Þ

Based on Eq. (15), the systems failure rate and repair time

is computed by using Table 1 and get

ks ¼
X5

i¼1

ki þ k6k7ðs6 þ s7Þ and ss ¼
P5

i¼1 kisi þ k6k7s6s7
ks

ð16Þ

High pressure
decomposer

Low pressure
absorber

Heat
Exchanger

Re-boiler Falling film
Heater

Gas
Separatorvapor vapor

vapor

To crystallization
system

Mixture from
reactor

To recovery
section

Main Process

Secondary process

vapor

(a)

Top

A1 A2
B1 B2

C E

E1 E2

(b)

Fig. 4 Schematic diagram and

Petri net model of the

decomposition unit.

a Schematic diagram, b Petri

net model

Table 3 Input data for

decomposition system
Components! Reboiler Falling film pressure Absorber

ði ¼ 1Þ ði ¼ 2Þ High pressure Low pressure

ði ¼ 3Þ ði ¼ 4Þ

Failure rate ki (h�1) 4:154� 10�4 3:952� 10�4 1:592� 10�4 4:783� 10�4

Repair time si (h) 3.1746 2.6421 3.3323 4.7619

Heat exchanger

Gas seperator Low pressure High pressure

ði ¼ 5Þ ði ¼ 6Þ ði ¼ 7Þ
Failure rate ki (h�1) 2:612� 10�4 6:956� 10�4 6:264� 10�4

Repair time si (h) 4.899 4.6831 6.2310
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The following steps of the proposed approach have been

executed for the considered system as follows:

Step

1

The data related to main components A, B, C and E

of the system is summarized in Table 3.

Step

2

Data are fuzzified into different fuzzy numbers by

taking ± 15% spread, as suggested by the system

analyst, and hence their corresponding fuzzy

numbers becomes ð0:85ki; ki; 1:15kiÞ and
ð0:85si; si; 1:15siÞ for the failure rate and repair

time of each component.

Step

3

Based on these inputs the various reliability

parameters, as given in Table 2, are computed at

the different level of uncertainties ranging from 0

to 1 corresponding to t ¼ 10 (h) by using the

different types of fuzzy numbers namely

triangular, normal, gamma and Cauchy. The

results corresponding to these are depicted

graphically in Fig. 5 along with the existing

techniques. From this figure, it has been observed

that Cauchy distribution have the lesser range of

uncertainties for each reliability indices than the

other, which means that the decision-maker may

analyze the behavior of the system in which failure

rate and repair time follows a Cauchy distribution

rather than the other types of distribution.

Step

4

From the computed results, given in Fig. 5, it has

been seen that they are fuzzified in nature. But in

order to get it implement into the real-life

situation, it is necessary to convert this into the

crisp number so that decision maker or system

analyst may take their decision accordingly. In

order to do so, the centre of gravity method has

been used and the defuzzification value

corresponding to failure rate at ± 15% spread is

given as 1:714209� 10�4, 1:714465� 10�4,

1:714157� 10�4 and 1:714058� 10�4 for the

triangular, normal, gamma and Cauchy

distribution, respectively. On the other hand, the

crisp value for the failure rate is 1:714055� 10�4

and hence we conclude that the defuzzified value

corresponding to Cauchy distribution is very close

to the crisp value and hence system analyst may

take a decision more confidently as compared to

other distributions. Similar observations have been

seen from the other reliability indices.

4.3 Comparative study

To validate the proposed results, a comparative analysis

has been conducted with some of the existing approaches

(Chen 1994, 1996; Huang et al. 2004; Knezevic and

Odoom 2001; Kumar and Aggarwal 1993; Sharma and

Garg 2011) and their corresponding results along with the

proposed approach results are summarized in Table 4.

From this table, it is concluded that

(a) If we utilize the traditional method (Kumar and

Aggarwal 1993) which used the probability theory to

deal with the uncertainty involved in the collected

data then the failure rate and repair time of the overall

system have been computed by using Eq. (16) as ks ¼
0:001714055 and ss ¼ 3:770787. Therefore, based on

these system failure rates and repair time, the overall

expression of the system reliability, availability and

mean time between failures are 0.98301, 0.994023

and 587.1824 respectively. Thus, the reliability of the

considered unit is 98.301%. From their results, it has

been concluded that it did not consider the degree of

the uncertainties level and hence their results are

suitable only where data are precise in nature.

(b) If we apply the posbit fault tree model (Huang et al.

2004) to the considered system in order to compute the

system failure rate and repair time then the results

corresponding to its have been calculated as

ks ¼ 6:264� 10�4, ss ¼ 4:8990. Thus, it remains con-

stants at the different level of the uncertainties ranging

from 0 to 1 and therefore, their approach is limited.

(c) Chen (1994) presented an arithmetic operations based

method for computing the reliability of the system

under the fuzzy environment. If we utilize their

approach to the considered system then we get

triangular fuzzy numbers corresponding to system

failure rate as (0.00145582, 0.00171405, 0.00197292)

and repair time as (3.205887, 3.770787, 4.335277).The

variation of it for different values of the uncertainties

ranging from 0 to 1 are summarized in Table 4 and

conclude that they have a wide range of uncertainty.

(d) Chen (1996) presented the a-cut based approach for

computing the fuzzy probability of the top event. By

applying their approach to the considered system, we

get the ranges of the failure rate and repair time are

(0.00145582, 0.00171405, 0.00197292) and

(2.365628,3.770787, 5.875147) respectively. The

complete variation of their ranges with respect to

each level of uncertainties is given in Table 4.

(e) If we apply Knezevic and Odoom (2001) and

Sharma and Garg (2011) approaches corresponding

to the considered data, then the range corresponding

to the repair time is being summarized in Table 4 for

a different level of uncertainties.

From this comparison table, it has been observed that the

variation of their values at the different level of uncer-

tainties is less in the case of the Cauchy distribution as

compared to the other existing approaches.
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5 Results, discussion and advantages
of the approach

In this section, the results corresponding to the considered

system have been summarized in terms of their behavior,

sensitivity as well as the performance analysis.

5.1 Behavior analysis

The following observations have been computed from the

behavior analysis as.

1. From the Table 4, it is seen that the existing

approaches are restricted to their domain and are

unable to handle the uncertainties in a precise way.

Also, their theories are applicable in all those

circumstances where the data related to the system

components are precise in nature.

2. From Fig. 5, it is seen that the range of uncertainties

varies, in the form of support, with respect to the

distribution wise. For depicting the decrease in spread

(or support in %) by the Cauchy distribution over the

others, a support has been computed based on their

behavior plots and the results are summarized in

Table 5. From this table, for instance, in the case of

repair time, the level of uncertainties is reduced by

82.3771, 91.7359, and 73.9789% from triangular,

normal and gamma distribution respectively, when

compared with Cauchy distribution results. Also, from

this table, it is observed that the largest and smallest

spread reduced corresponding to repair time and failure

rate, respectively, when it is measured from cauchy

results to triangular and normal results while MTBF

Table 4 Comparative analysis with the existing approaches

a Kumar and Aggarwal (1993) Huang et al. (2004) Chen (1994) Chen (1996)

[L, R] [L, R] [L, R] [L, R]

0.0 [3.770787, 3.770787] [4.8990, 4.8890] [3.205887, 4.335277] [2.365628, 5.875147]

0.2 [3.770787, 3.770787] [4.8990, 4.8890] [3.318867, 4.222379] [2.604234, 5.381144]

0.4 [3.770787, 3.770787] [4.8990, 4.8890] [3.431847, 4.109481] [2.862298, 4.927328]

0.6 [3.770787, 3.770787] [4.8990, 4.8890] [3.544827, 3.996583] [3.141474, 4.509846]

0.8 [3.770787, 3.770787] [4.8990, 4.8890] [3.657807, 3.883685] [3.443613, 4.125323]

1.0 [3.770787, 3.770787] [4.8990, 4.8890] [3.770787, 3.770787] [3.770787, 3.770787]

a Sharma and Garg (2011) By proposed approach

Triangular Normal Gamma Cauchy

[L, R] [L, R] [L, R] [L, R]

0.0 [2.365628, 5.875147] [1.694014, 8.401902] [4.841168, 2.710806] [3.503791, 4.058135]

0.2 [2.603384, 5.384763] [1.952032, 7.288923] [4.518084, 3.027993] [3.518313, 4.041385]

0.4 [2.861527, 4.929605] [2.311771, 6.152826] [4.195775, 3.347160] [3.534860, 4.022466]

0.6 [3.140856, 4.511119] [2.625069, 5.417609] [4.007564, 3.534425] [3.547744, 4.007857]

0.8 [3.443242, 4.125855] [2.972304, 4.784175] [3.874170, 3.667483] [3.562417, 3.991348]

1.0 [3.770787, 3.770787] [3.770787, 3.770787] [3.770787, 3.770787] [3.770787, 3.770787]

L, Left membership; R, right membership values

Table 5 Data related to spread

of reliability indices
Failure rate Repair time ENOF MTBF Reliability Availability

Computed spread for reliability indices

I 0.000465 3.145579 0.004828 168.0353 0.004574 0.005890

II 0.001301 6.707887 0.013449 524.2541 0.012795 0.015094

III 0.001691 2.130361 0.017087 762.1275 0.016626 0.009551

IV 0.000121 0.554343 0.001248 42.03197 0.001196 0.001185

Decrease in spread (in %) from

I–IV 73.9784 82.3771 74.1507 74.9867 73.8522 79.8811

II–IV 90.6994 91.7359 90.7204 91.9825 90.6525 92.1492

III–IV 92.8444 73.9789 92.6962 94.4849 92.8064 87.5929

I, Triangular; II, normal; III, Gamma; IV, Cauchy
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and repair time, respectively, from gamma results and

hence prediction range of all the indices decreases.

This type of analysis will benefit the system analyst to

depict the effect of individual component behavior and

their corresponding change in spreads in lesser time.

3. In order to maintain the supremacy of the approach, the

reliability parameters, given in Table 2, are computed

by the proposed approach at different levels of the

uncertainties such as ± 25 and ± 50%. The defuzzi-

fied values at different spreads say ± 15, ± 25 and

± 50% are summarized in Table 6 with different types

of fuzzy numbers. From this table, it has been observed

that values obtained by taking Cauchy distribution are

closer to the crisp values as compared to the other

existing distributions. Also, it is evident that defuzzi-

fied values changes with the change of spread. For

Table 6 Defuzzified value of the reliability parameters of decomposition Unit

Spreads (%) Technique Failure rate (� 10�3) Repair time MTBF ENOF Reliability Availability

± 0 Crisp 1.714055 3.770787 587.1824 0.017068 0.983005 0.994023

± 15 Defuzzified values at different spreads

I 1.714209 3.938953 594.3054 0.017077 0.983005 0.993699

II 1.714465 3.773389 687.7066 0.017103 0.983019 0.993511

III 1.714157 4.459679 640.8231 0.017112 0.983015 0.992216

IV 1.714056 3.777679 587.7229 0.017069 0.983005 0.994004

± 25 I 1.714483 4.254475 606.9019 0.017093 0.983006 0.993067

II 1.715194 3.783575 694.2676 0.017164 0.983045 0.992593

III 1.714225 5.057561 687.3688 0.017153 0.983022 0.990554

IV 1.714056 3.777804 587.7327 0.017154 0.983005 0.994005

± 50 I 1.715767 6.090886 678.0131 0.017202 0.983006 0.988921

II 1.718614 3.780774 727.0733 0.017465 0.983164 0.988065

III 1.714396 7.525587 879.4595 0.017333 0.983039 0.983291

IV 1.714057 3.778223 587.7656 0.017069 0.983006 0.994004

I, triangular; II, normal; III, gamma; IV, Cauchy

Table 7 Change in MTBF for Various Combinations of Reliability Indices

S. no. Reliability, failure rate (� 10�3), availability Mean time between failures

I II III IV

1 [0.962, 1.475, 0.975] Min: 1350.3006 Min: 1025.4848 Min: 1101.6768 Min: 1489.3671

Max: 1800.1226 Max: 3071.5394 Max: 2538.3120 Max: 1603.3020

2 [0.962, 1.711, 0.975] Min: 1164.4911 Min: 884.4026 Min: 949.9660 Min: 1284.6200

Max: 1553.1527 Max: 2649.8220 Max: 2190.9777 Max: 1383.0078

3 [0.962, 2.032, 0.975] Min: 981.0363 Min: 745.1083 Min: 800.1777 Min: 1082.4675

Max: 1309.3124 Max: 2233.4488 Max: 1848.0449 Max: 1165.5052

4 [0.983, 1.475, 0.990] Min: 597.4890 Min: 453.7531 Min: 487.5115 Min: 658.9626

Max: 796.3011 Max: 1358.8212 Max: 1122.5644 Max: 709.3367

5 [0.983, 1.711, 0.990] Min: 515.2523 Min: 391.3121 Min: 420.3664 Min: 568.3443

Max: 686.9956 Max: 1172.1749 Max: 968.8390 Max: 611.8375

6 [0.983, 2.032, 0.990] Min: 434.0577 Min: 329.6623 Min: 354.0722 Min: 478.8744

Max: 579.0753 Max: 987.8938 Max: 817.0617 Max: 515.5739

7 [0.992, 1.475, 0.999] Min: 279.4266 Min: 212.1731 Min: 228.1149 Min: 307.9635

Max: 371.6163 Max: 634.4676 Max: 522.9008 Max: 331.3818

8 [0.992, 1.711, 0.999] Min: 240.9025 Min: 182.9224 Min: 196.6606 Min: 265.5131

Max: 320.4118 Max: 547.0326 Max: 450.8876 Max: 285.7080

9 [0.992, 2.032, 0.999] Min: 202.8667 Min: 154.0424 Min: 165.6048 Min: 223.6006

Max: 269.8561 Max: 460.7055 Max: 379.7871 Max: 240.6130

I, Triangular; II, normal; III, gamma; IV, Cauchy
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instance, the repair time of the system increases by

8.011, 0.269, 13.406 and 0.003% for triangular,

normal, gamma and Cauchy distribution, respectively,

when spread changes from ± 15 to ± 25%, and it

further increases by 43.164, 0.074, 48.798 and 0.011%

when changes from ± 25 to ± 50%.

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
x 10−4

0.9938
0.994

0.9942

Failure rate (λ in hrs−1)

A
va

ila
bi

lit
y

Reboiler

(a)

2.6 2.8 3 3.2 3.4 3.6 3.8
0.075

0.095

0.115

Repair time (τ in hrs)

A
va

ila
bi

lit
y

Reboiler

(b)

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
x 10−4

0.9938

0.9941

0.9943

Failure rate (λ in hrs−1)

A
va

ila
bi

lit
y

Falling film pressure

(c)

2.2 2.4 2.6 2.8 3 3.1
0.11

0.13

0.15

Repair time (τ in hrs)

A
va

ila
bi

lit
y

Falling film pressure

(d)

1.4 1.5 1.6 1.7 1.8
x 10−4

0.9939

0.994
0.9941

Failure rate (λ in hrs−1)

A
va

ila
bi

lit
y

High pressure absorber

(e)

2.8 3 3.2 3.4 3.6 3.8 4
0.07

0.085

0.1

Repair time (τ in hrs)

A
va

ila
bi

lit
y

High pressure absorber

(f)

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6
x 10−4

0.9937

0.9945

0.9941

Failure rate (λ in hrs−1)

A
va

ila
bi

lit
y

Low pressure absorber

(g)

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6
0.036

0.043

0.05

Repair time (τ in hrs)

A
va

ila
bi

lit
y

Low pressure absorber

(h)

2.2 2.4 2.6 2.8 3 3.1
x 10−4

0.9939
0.994

0.9942

Failure rate (λ in hrs−1)

A
va

ila
bi

lit
y

Gas seperator

(i)

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8
0.034

0.041

0.048

Repair time (τ in hrs)

A
va

ila
bi

lit
y

Gas seperator

(j)

5.6 6.1 6.6 7.1 7.6 8.1 8.5
x 10−4

0.994
0.994

Failure rate (λ in hrs−1)

A
va

ila
bi

lit
y

Low pressure heat exchanger

(k)

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4
0.91
0.92
0.93

Repair time (τ in hrs)

A
va

ila
bi

lit
y

Low pressure heat exchanger

(l)

5 5.5 6 6.5 7 7.5
x 10−4

0.994
0.994

Failure rate (λ in hrs−1)

A
va

ila
bi

lit
y

High pressure heat exchanger

(m)

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2
0.87

0.89

0.91

Repair time (τ in hrs)

A
va

ila
bi

lit
y

High pressure heat exchanger

(n)

Fig. 6 Effect of the individual component failure rate and repair time on system availability
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parameters on system

availability
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5.2 Sensitivity analysis

In this section, an analysis has been conducted on to the

system MTBF by varying the other reliability parameters.

For it, initially, ranges of the repair time and ENOF are

fixed and have taken from Fig. 5b, d at cut level a ¼ 0

respectively. Then, for the different combinations of the

other parameters have been taken and their impact on

MTBF have been summarized Table 7. These results will

be highly beneficial for the plant personnel to depict the

effect of each component and hence change their strat-

egy/target goals accordingly. For instance, in the first three

combinations, we have taken reliability as 0.962 and

availability as 0.975, while failure rate varies from 1:475�
10�3 to 1:711� 10�3 and further to 2:032� 10�3 then

ranges of MTBF is reduced almost by 74.671, 94.431 and

92.069% from triangular, gamma and normal distribution

when observed from Cauchy distribution results. Similarly,

for other pairs, we see their corresponding reductions.

5.3 Performance analysis

In order to decide the future strategy or to save the money

or time, it is necessary to investigate the most critical

component of the system on which more attentions should

be given. For it, the variation of the failure rate and repair

time of each component on to the system availability have

been investigated and their respective variations are sum-

marized in Fig. 6. For instance, in the case of reboiler

component, if we increase their failure rate from 0:35309�
10�3 to 0:47771� 10�3 h�1 then their availability varies

from 0.993834 to 0.994212. On the other hand, if we

change their repair time from 2.69841 to 3.65079 h, then

their component availability varies from 0.079396 to

0.104476. The variations of this component are plotted in

Fig. 6a, b respectively. Similarly, in the case of gas sepa-

rator component, if we change their failure rate from

0:2220� 10�3 to 0:30038� 10�3 h�1 then availability

changes from 0.99385 to 0.994191, and when we change

their repair time from 4.16415 to 5.63385 h then the

availability varies from 0.03495 to 0.04671. The variation

of the availability corresponding to this component is

shown in Fig. 6i, j.

However, in order to analyze their effect simultane-

ously, an analysis has been conducted and their impact on

the system availability is depicted graphically in Fig. 7. It

may be observed from Fig. 7a that the variation of the

failure rate (0:3531� 10�3 to 0:4777� 10�3) and repair

time (2.6984–3.6508) of the ‘‘reboiler’’ component have

less impact on system availability (up to 0.31%). On the

other hand, the component ‘‘high-pressure absorber’’ have

the large impact on the system availability up to 0.122%.

The complete variations of the ranges are summarized in

Table 8. Based on this analysis, we observe that the pref-

erential order of the given components in accordance to

high pressure absorber (B1), Falling film pressure (A2), Gas

separator (C), Reboiler ðA1Þ, low pressure absorber ðB1Þ,
low pressure heat exchanger ðE1Þ and high pressure heat

exchanger ðE2Þ (Table 4).

6 Conclusion

In the present manuscript, an investigation has been done

to analyze the system performance of an industrial system

by utilizing the vague and uncertain data. For it, the col-

lective information, from the various resources, has been

fuzzified into the different form of the fuzzy numbers,

Table 8 Ranges of the

component failure rate and

repair time on system

availability

Component Range of failure rate (10�3) Range of repair time Range of availability

Reboiler 0.3531–0.4777 2.6984–3.6508 Min: 0.99231

Max: 0.99537

Falling film pressure 0.3359–0.4545 2.2458–3.0384 Min: 0.99373

Max: 0.99628

High pressure absorber 0.1353–0.1831 2.8325–3.8321 Min: 0.99692

Max: 0.99814

Low pressure absorber 0.4066–0.5500 4.0476–5.4762 Min: 0.98812

Max: 0.99251

Gas seperator 0.2220–0.3004 4.1642–5.6338 Min: 0.99337

Max: 0.99581

Low pressure 0.5913–0.7999 3.9806–5.3856 Min: 0.98206

heat exchanger Max: 0.98927

High pressure 0.5324–0.7204 5.296–7.1656 Min: 0.98083

heat exchanger Max: 0.98813
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linear and nonlinear, instead of only linear triangular

numbers. The proposed method with four different mem-

bership functions has been applied to analyze the decom-

position unit of a fertilizer plant. From the computed

results, it is concluded that Cauchy fuzzy numbers are the

best fit for the system data than the other existing models as

it reduced the level of the uncertainties in the form of the

support spread at any level of confidence. Further, the

effects of the various reliability parameters on the system

MTBF have been investigated. Using availability index,

the critical component of the system has been ranked for

improving the performance of the system by proper

maintenance actions. Based on results, experts may change

their target goals and suggest some suitable actions for

improving the quality of the industrial systems. In the

future, the presented approach has been extended to solve

some other types of problems such as mathematical pro-

gramming, optimization theory, and uncertain data.
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