
ORIGINAL ARTICLE

An approach for dynamic web application testing using MBT

Vikas Panthi1 • Durga Prasad Mohapatra1

Received: 30 January 2016 / Revised: 30 March 2017 / Published online: 15 June 2017

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2017

Abstract Nowadays, web applications play a significant

role in the success of the business. Web applications have

grown very fast in the current market. They bring new

challenges for the researchers in the area of testing, such as

heterogeneous representation, dynamic behavior, data flow

mechanism, control flow mechanism and some more issues

relevant to web applications. This paper presents an

approach for model-based dynamic web application test-

ing. This approach considers server side scripting language

to test the functional requirements of the web applications.

In this approach, first the implicit class object tags are

extracted from JSP pages, and the JSP Flow Graph (JFG) is

constructed for tracing the requirements using the proposed

algorithm JTSG. Then, the test scenarios and concrete test

cases are generated for the given web application.

Keywords Test scenarios � Dynamic web application �
Model based testing (MBT) � Dynamic web application

testing � Implicit class object

1 Introduction

The web has a significant impact on all aspects of our

society, from business, education, government, entertain-

ment, industry, to our personal lives. In the software

industry, there is a strong trend towards replacing desktop

applications with web applications (Booch and Jacobson

2005; Hall and Brown 2008; Conallen 2002). Nowadays,

most of the technologies are new for developing web

applications. A web application typically consists of Java

Server Page (JSP), Servlets, Javascript, Hyper Text Markup

Language (HTML), and Cascading Style Sheet (CSS) for

Graphical User Interface (GUI) design (Hall and Brown

2008; Conallen 2002). In a web application, a number of

components are integrated (Ricca and Tonella 2000, 2001;

Liu 2004; Fujiwara et al. 2011; Kung et al. 2000). These

components are (i) web browser (client) (ii) web applica-

tion server and (iii) database server.

Web applications are popular because they are easy to

use and maintain (Booch and Jacobson 2005; Hall and

Brown 2008; Conallen 2002). The main advantages of

adapting the web for developing software products include.

(1) No installation costs, (2) Universal access from any

machine connected to the Internet, (3) Platform indepen-

dent and (4) Automatic upgrade with new features for all

users, (5) Independent of the type of the browser in the

client machine. Normally, the cost of the web application is

relatively less as compared to desktop applications.

Testing these web applications technology is very much

important. Web-based testing is categorized into two types

(Ricca and Tonella 2000, 2001): (a) Static web application

testing. (b) Dynamic web applications testing.

There are many difficulties in testing web applications.

First, web applications are distributed through a client/

server architecture, with (asynchronous) HTTP request/re-

sponse calls to synchronize the application state. Second,

they are heterogeneous i.e. web applications possess their

unique features, such as dynamic behavior, heterogeneous

representation, and novel data handling mechanism. These

& Vikas Panthi

vpanthi@gmail.com

Durga Prasad Mohapatra

durga@nitrkl.ac.in

1 Department of Computer Science and Engineering, National

Institute of Technology, Rourkela, India

123

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716

DOI 10.1007/s13198-017-0646-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-017-0646-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-017-0646-0&domain=pdf

characteristics support to the successful deployment of a

web application. There are many techniques to test web

applications to ensure better quality in application devel-

opment. Model-based testing is one of them.

This paper presents a model based testing (MBT)

approach for web application testing. Our approach per-

forms functional testing. The proposed approach considers

Java Server Pages (JSP) for dynamic web application

testing. This technique first extracts th e implicit class

objects in JSP. Then it constructs the JSP Flow Graph

(JFG). After that, JTSG algorithm is applied to generate

test scenarios. Finally, executable test cases are developed

using the generated test scenarios.

The rest of the paper is structured as follows: Sect. 2

presents how we can apply MBT approaches for dynamic

web application testing and advantages of MBT. Section 3

provides the preliminary concepts on web applications and

testing. Section 4 presents the proposed approach for

generating test scenarios for dynamic web applications.

Section 5 describes working of the proposed approach by

taking five case studies. Section 6 provides the Comparison

with related works. Section 7 conclude the proposed

approach.

2 Model based testing of dynamic web pages

There are many approaches available for dynamic web

applications testing such as: Non functional search-based

testing (Afzal et al. 2008), SOA based Testing (Neto et al.

2011), Requirement specification Based Testing (Barmi

et al. 2011), Product lines testing (Neto et al. 2011;

Engström and Runeson 2011), GUI Testing (Banerjee et al.

2013), Search Based non functional testing (Afzal et al.

2009), Model based testing (Memon and Nguyen 2010),

Formal testing of web services, Search based test-case

generation (Ali et al. 2010), Regression test selection

techniques (Engström et al. 2010), Combinatorial testing

(Grindal et al. 2005), Mutation testing (Jia and Harman

2011), etc. In this section, we discuss on Model based

testing. Model-based testing is a relatively new technology

to test software. A model that describes the desired beha-

viour of the system under test (SUT) is the key point in

model-based testing. The desired behaviour is often spec-

ified in the software requirment specification (SRS) docu-

ment of the SUT. Model-based testing goes beyond

automated testing because it algorithmically generates the

specified number of test cases based on the model of the

SUT.

Web application testing with MBT approach requires us

to use a model. A model represents the correct behaviour of

a system. The specification of the system, which is a

documentation of what the system is capable of doing,

specifies what the system does when certain elements are

used and what reaction the system should give on those

used elements. With the help of a model, we can generate

algorithmically test cases to verify if the SUT is behaving

as designed or not. A model can be described in different

ways. It may be noted that each model-based testing

technique uses a different model to generate test cases.

Testing web application requires documents that specify

what their correct behavior is. Lack of documentation is a

critical problem in small web applications for testing. Test

cases are commonly designed based on program source

code. This makes test case generation difficult, especially

for testing at cluster levels. Further, this approach proves to

be inadequate in component-based software development,

where the source code may not be available to the devel-

opers. It is, therefore, desirable to generate test cases

automatically from the software design documents, rather

than source code or code-based specifications, test case

generation from design documents allows test cases to be

available early in the software development life cycle,

which makes test planning more efficient. Another

advantage of design-based tests is to test the compliance of

the implementation with the design documentation (Sa-

muel et al. 2007). This is not the case for source-code

based testing. Further, in design-based tests, the generated

test data is independent of any particular implementation of

the design. Dynamic web applications have many interac-

tions between client-side machine and server-side machine,

such that code coverage is difficult to capture these com-

plex interaction for adequate testing. This paper uses

model-based testing to detect faults in web applications.

We have chosen the model based approach for testing of

web applications because it fully automates the testing

process and, adapts quicker to the changes. Also, this

approach takes less time, and it is less error prone if the

system is modeled correctly.

3 Basic concepts

This section presents some basic concepts related to web

application testing, such as overview of web applications,

Java Server Pages (JSP), dynamic page validation, test

cases and test scenarios.

3.1 Web applications

A web application (Hall and Brown 2008) is a program that

compiles on the server side and displays the result on the

client browser. It is created in a browser-supported pro-

gramming language (such as the combination of JSP,

Servelet, JavaScript, HTML and CSS) and relies on a web

browser to render the application. Web applications are

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716 S1705

123

mainly two types: Static web applications and Dynamic

web applications.

3.1.1 Static web application

A static web application consists of simple web pages that

are generated by the server according to the client request.

Static web page is always displayed on client side machine.

Static web application displays the same information with

same context for all clients. The static web application is

stored in HTML format and is always available to the web

server over HTTP. Every web application with .html

extension is not always a static web application (Hall and

Brown 2008).

3.1.2 Dynamic web application

The dynamic web application is a server-side application

written in a scripting language. It is stored and compiled on

the server side and the output is displayed on the client side

browser. This type of application is developed in JSP,

servlet, Javascript, PHP, Ruby, etc. Dynamic web appli-

cation development is a very difficult task for a developer.

It can be developed by the experienced developers. There

are some advantages of developing dynamic websites (Hall

and Brown 2008) which are given below:

– Improves functionality in website.

– Easy to update the website.

– New contents can be added in site which help to

improve the execution process of search engine.

– Collaboration of different sites is very easy.

3.2 JSP

In this section, first we discuss the basics of JSP along

with its advantages. Then, we discuss the JSP implicit

objects. Next, we describe the various types of scripting

elements. Then, we discuss JSP processing. JSP is a

server-side script language to handle HTTP requests and

generates dynamic contents on the client side. This script

links with other components of server for sending HTTP

response (Hall and Brown 2008). Any compiler does not

compile the server side script language so that it can be

error-prone. Nowadays, most of the web applications use

JSP and servlet script languages for developing dynamic

web pages. JSP is a web page scripting language that can

generate dynamic content while Servlets are Java pro-

grams that are already compiled which also create

dynamic web content. Java later released JSP as a more

flexible scripting alternative to Java Servlets. JSP has

some advantages than Servelet language which are given

below:

– JSP can be compiled into Java Servlets.

– It’s easier to code in JSP than in Java.

– Nowadays, JSP and Java Servlets are usually used in

conjunction.

– Java and JSP can be combined with HTML to provide

dynamic contents for Web pages.

– JSP provides custom library, called taglibs, using

HTML-like tags.

– JSP separates the dynamic contents of a web page from

its presentation.

Due to the above advantages of JSP, it is used in our

approach for testing dynamic web applications. This paper

presents, model based testing (MBT) approach for dynamic

web application testing (DWAT). The proposed approach

considers JSP for test case generation. In this approach,

implicit class object tags (ICOT) and directives are used for

generating the test scenarios and test cases.

3.2.1 JSP implicit objects

JSP implicit objects are explicitly declared inside each

page. JSP container provides JSP implicit objects library.

JSP implicit objects are also called predefined variables.

There are mainly nine types of JSP implicit objects, as

shown in Table 1. These objects are created by JSP Engine

during translation phase (while translating JSP to Servlet).

They are created inside service method, so we can directly

use them within Scriptlet without initializing and declaring

them. Below we explain all the JSP implicit class objects

(Ricca and Tonella 2000, 2001; Liu 2004; Fujiwara et al.

2011; Kung et al. 2000).

Request The main purpose of request implicit object is to

get the data on a JSP page which has been entered by

user on the previous JSP page. While dealing with login

and signup forms in JSP, often the user is prompted to

fill in those details. This object is then used to get those

entered details on another JSP page (action page) for

validation and other purposes.

Response It is used for modifying or deleting with the

response which is being sent to the client(browser) after

processing the request.

Out This is used for writing content to the client

(browser). It has several methods which can be used for

properly formatting output message to the browser and

for dealing with the buffer.

Session It is the most frequently used implicit object.

This is used for storing the users data to make it

available on other JSP pages till the user session is

active.

Application This is used for getting application-wide

initialization parameters and to maintain useful data

across whole JSP application.

S1706 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716

123

Config This is a Servlet configuration object and mainly

used for accessing configuration information such as servlet

context, servlet name, configuration parameters, etc.

pageContext It is used for accessing page, request,

application and session attributes.

Page Page implicit object is a reference to the current

Servlet instance (Converted Servlet, generated during

translation phase from a JSP page). We are not covering

it in detail as it is rarely used and not a useful implicit

object while building a JSP application.

Exception Exception implicit object is used in exception

handling for displaying the error messages. This object is

only available to the JSP pages. This object has a tag

named isErrorPage which is true.

We have also presented implicit class objects with exam-

ples in Fig. 1 and executable output of presented examples

are given in Fig. 2.

3.2.2 Scripting elements

Scripting elements1. are used for writing Java code inside

the JSP page. There are three types of scripting elements:

1. Scripting tag Scripting tag is used to execute Java

source code in JSP. The scripting elements of a Java

Server Page are utilized to perform server-side oper-

ation in a JSP. JSP scripting elements are also called

scriptlets and perform Java and Java script function-

ality (Hall and Brown 2008; Conallen 2002; Ricca and

Tonella 2000).

2. Expression tag Expression tag is used for writing the

output stream. The Expression element (Hall and

Brown 2008; Conallen 2002; Ricca and Tonella 2000)

contains a Java expression that returns a value. This

value is then written to the HTML page. The

Expression tag can contain any expression that is valid

according to the Java Language Specification. This

includes variables, method calls than return values or

any object that contains a toString() method.

The Java expression is evaluated, converted to a string,

and inserted in the page. This evaluation is performed

at run-time (when the page is requested), and thus has

full access to information about the request.

Remember that XML elements, unlike HTML ones,

are case sensitive. So be sure to use lowercase letters.

3. Declaration tag Declaration tag is used to define fields

and methods inside the JSP code. This tag always

writes outside the service() method of auto generated

servlet. So, it doesn’t have any memory to each

request. A declaration can consist of either methods or

variables. Static constants are a good example of what

to put in a declaration.

The declaration always ends the Declaration object tag

with a semicolon (the same rule as for a Scriptlet, but

the opposite of an Expression) e.g. \%int i ¼ 0; %[.

You can use variables or methods that are declared in

packages imported by the page directive, without

declaring them in a declaration element. A declaration

has translation unit scope, so it is valid in the JSP page

and any of its static include files. A static include file

becomes part of the source code of the JSP page and is

any file included with an include directive or a static

resouce included with a \jsp : include[element.

The scope of a declaration does not include dynamic

resources included with \jsp : include[.

3.3 Dynamic page validation

The internal structure of dynamic web application is

found in the JSP pages. Here, internal structure means

Table 1 JSP implicit object tags

SI Object Implicit object library Description

1 request javax.servlet.http.HttpServletRequest This is the HttpServletRequest object associated with the request

2 response javax.servlet.http.HttpServletResponse This is the HttpServletResponse object associated with the response to the client

3 out javax.servlet.jsp.JspWriter This is the printWriter object used to send output to the client

4 session javax.servlet.http.HttpSession This is the HttpSession object associated with the request

5 application javax.servlet.ServletContext This is the ServletContext object associated with the application

6 config javax.servlet.ServletConfig This is the ServletConfig object associated with the page

7 pageContext javax.servlet.jsp.PageContext This encapsulates the use of server-specific features like higher performance

JSPWriters

8 page java.lang.Object This is simply the synonym of this object, and is used to call the methods defined by

the translated servlet class

9 exception javax.servlet.jsp.JspException The exception object allows the exception data to be accessed by the designated

JSP

1 http://www.studytonight.com/jsp/jsp-scripting-element.php.

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716 S1707

123

http://www.studytonight.com/jsp/jsp-scripting-element.php

how the dynamic web applications are represented and

with what elements. It may be noted that the dynamic

web applications are represented in JSP through elements

such as implicit class objects, scripting elements, etc. This

structure information is used for identification of test

coverage criterion. Every test case of a dynamic page

Fig. 1 Example of implicit class object tags in JSP page

Fig. 2 Output of the example implicit class object tags given in Fig. 1

S1708 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716

123

depends on the test coverage criterion. Test cases for a

web application are sequences of def-use (Definition-use)

coverage criterion in the dynamic web page. The func-

tional test cases for a web application depends on the

visited path and the input values which are given to the

forms. Some dynamic web testing approaches based on

coverage criteria are given below:

1. Page testing: Every page in the site is visited at least

once in some test case.

2. Hyperlink testing: Each hyperlink form within every

page in the site is traversed at least once.

3. Definition-use testing: Each navigation from every

definition of a variable to every use of it, forming a

data dependence, is exercised at least once.

4. All-paths testing: Every path in the site is traversed by

some test case at least once.

3.4 Test case and test scenario

A test case is the triplet [I, D, O], where I is the initial state

of the system at which the test data is supplied as input, D

is the test data which is supplied as input to the system and

O is the expected output of the system (Booch and

Jacobson 2005; Kanjilal and Bhattacharya 2004; Kung

et al. 2000). Test cases are low level actions and they can

be derived from test scenarios. The output produced by the

execution of the software with a specific test case provides

a specification of the actual software behavior (Booch and

Jacobson 2005).

Test scenarios are sequence of test cases, which are to be

executed. Test scenarios are test cases that ensure that all

flows are tested from start to end. Before executing the test

scenarios, the test cases for each scenario have to be

developed. Test scenarios are the high level classification

of test requirements grouped together depending on the

functionality of a module and they can be derived from use

cases. Test scenarios are prepared by reviewing the func-

tional requirements, and preparing logical groups of func-

tions that can be further broken into test procedures Booch

and Jacobson (2005).

4 Generating test scenarios for dynamic web
applications

This approach uses JSP script language for dynamic web

testing. This approach generates test scenarios for testing

the basic functionalities of web pages. The flow chart for

test case generation for web applications is shown in

Fig. 3. The step-wise procedure for test scenario generation

for a web application, is presented below.

Step 1. Identify the feasible requirements of a given web

application First, the feasible functional requirements of

the web application are identified.

Step 2. Develop the basic models for the requirements

Then, models such as UML use case diagram, class

diagram, etc. are developed according to the feasible

requirements. These models are useful for covering the

basic requirements of the project.

Step 3. Implement the web application according to the

developed models and requirements, in JSP script

language After developing the models for feasible

requirements, the web application is implemented in

JSP language according to the models.

Step 4. Identify JSP implicit object action tags and store

them in a table JSP container provides the JSP implicit

object tags library inside the JSP pages. The JSP implicit

object tags are given in Table 1. The implicit object tags

are identified and stored in a table. The implicit object

tags for our case study are shown in Figs. 7 and 8.

Step 5. Construct JSP Flow Graph (JFG) After identi-

fying the JSP implicit object tags, an intermediate graph

called JSP Flow Graph (JFG) is constructed. For

constructing the JFG, first the JSP code is instrumented

using statement numbers. After that, the alias names are

given. The alias names for our case study are shown in

Table 2. According to the structure of JSP code, Alias

Fig. 3 Flowchart for test case generation for web applications

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716 S1709

123

table and flow of control in JSP page, and the JFG for

JSP page are constructed.

Step 6. Generate test scenarios for the functionalities of

web application from the JFG using JTSG algorithm The

JTSG algorithm (given in Algorithm 1) is applied on

JFG for generating the test scenarios.

Step 7. Build the test cases for the web application based

on the generated test scenarios After generating the test

scenarios, the test cases are developed semi-automati-

cally. According to the test scenarios, every node of JFG is

taken one by one and the instrumented code is extracted

according to the alias table. There are many tags in the

extracted code. By using the tags, test cases are developed.

In JTSG (Algorithm 1), JSP Flow Graph (JFG) is supplied

as input. The outcome of JTSG algorithm are the test

scenarios.

First, the array of nodes is initialized. Then, the array

TS[i] is created and initialized for storing test scenarios.

After that, all the nodes of JFG are stored in node[i]. If the

condition (node½i� ¼¼ End) is true then, the CN (Current

Node) is stored into TS[i]. If condition is false, then left

node of CN is checked up to end node. If the condition of

the while loop is true, then left node of CN is stored into

TS[i]. After that, TS[i] is incremented. When the condition

of the while loop becomes false, then the right node of CN

is stored into TS[i] and TS[i] is incremented. Finally, the

test scenarios stored in TS[i] are displayed. Then, the test

cases are developed according to the generated test

scenarios.

5 Case study

Our proposed approach can be used by software testers and

web developers in software industries to test the web

applications written in any web development language

such as JSP, servlets, Java script, HTML etc. This section

considers a Login page for illustrating and implementing

the proposed approach. The present approach considers the

login process in five web pages. These are as follows:

login.jsp and loginCheck.jsp in Fig. 4, home.jsp and

error.jsp as shown in Fig. 5 and logout.jsp as shown in

Fig. 6. The proposed approach uses JSP directives ‘‘con-

tentType’’ and ‘‘pageEncoding’’ for defining the type of

content and the encoding scheme respectively in Login

page. After that, design a form with two fields username

and password. The username and password attributes are

for retrieving input values from other fields in another

page. The attribute values of username and password are

‘‘vikas’’ and ‘‘panthi’’. When credentials get verified, then

the form is submitted to loginCheck.jsp page respectively

which is shown in Fig. 4b.

This section shows how the compilation process of

loginCheck page takes place. Validation page defines the

basic page directive and initializes ‘‘request.getParameter’’

field for obtaining the ‘‘username’’ and ‘‘password’’ values.

Then, the username and password and obtained as ‘‘re-

quest.getParameter(’’username’’)’’ and ‘‘request.getParam-

eter(’’password’’)’’ respectively. After obtaining the values

and matching with the correct credentials, which are

‘‘vikas(useranme)’’ and ‘‘panthi(password)’’. The page

transfers the control to the home page, otherwise control is

transfered to the error page. This case study can also

consider user values with database values. But for sim-

plicity, database concepts are not considered here. After

that, define session variables for storing the temporary

values. This session can store credential values till the

session expires. In this page, other pages can be called

Table 2 Alias representation of JSP implicit class object tags for

login use case

SI Line no. Alias name

1 1 A

2 2–18 B

3 3–6 B.1

4 7–12 B.2

5 8 B.2.1

6 9–16 B.2.2

7 10 B.2.2.1

8 11 B.2.2.2

9 logincheck.jsp C

10 1 D

11 2–20 E

12 3–6 E.1

13 7–19 E.2

14 8–18 F

15 4, Home.jsp G

16 17, error.jsp H

S1710 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716

123

using ‘‘response.sendRedirect()’’ method. If credential

values are matched with original values, then the home

page is called otherwise, the error page is called. Now, let

us describe the home page. Here, we have taken a new

directive attribute called errorpage, in which, if there is any

error in home page, then the error page is called. This

directive is mainly used for error handing. In the home

page, session attribute is used to extract and display the

username on the client browser. Logout button is added in

the home page for logging out purpose. In logout page, the

session ‘‘session.removeAttribute’’ is used to remove both

of the attributes. This session is mainly used when control

comes to this page, then the session will expire and the

control is transformed to the home page to display error

message.

The implementation of the proposed approach is

explained below taking Login use case as the case study.

First, instrument all the JSP source codes of Login use

case. Then, extract the implicit class object of every JSP

page of Login use case. All the implicit object tables are

shown in Figs. 7, 8 and 9. The alias representation of JSP

implicit class object is given in Table 2.

Then, construct the JFG (JSP Flow Graph). JFG of

Login use case is shown in Fig. 10. JFG is a combination

of control flow graph and data flow graph. Then, apply the

proposed algorithm JTSG, for generating test scenarios

using JFG. JFG is supplied as an input in link list form to

the JTSG algorithm. The proposed algorithm is imple-

mented in JAVA for generating test scenarios. The

Fig. 4 a JSP page of Login.jsp b JSP page of LoginCheck.jsp

Fig. 5 a JSP page of Home.jsp b JSP page of Error.jsp

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716 S1711

123

generated test scenarios are shown in Fig. 11. Finally, the

test cases are generated from the test scenarios. The gen-

erated test cases are shown in Table 3.

6 Comparison with related works

This section provides some existing approaches to dynamic

web application testing (DWAT).

Alshahwan and Harman (2011) proposed a web appli-

cation testing tool named search based web application

tester (SWAT) with dynamic and static seeding. They

proposed a search based testing algorithm. They considered

PHP web application for implementing their approach. In

their paper, they have discussed many issues raised by web

applications such as dynamic type binding, user interface

inference, etc.

Törsel (2011) presented a model-based testing approach

for user interface level testing. They developed a prototype

for generate test oracles from model information, and they

transformed abstract test cases to executable test scripts.

Li et al. (2008) presented a practical test model and test

approach for web applications based on use cases and their

corresponding sequence diagrams. They proposed a hier-

archical profile use case model called use case transition

model (UCTM). They traversed the UCTM from top to

bottom and converted it into restricted message on vertex

graph (RMOVG). Every vertex in RMOVG represents one

message in the sequence diagram. They proposed con-

straint message coverage (CMC) criterion for test case

generation.

Dai and Chen (2008) presented a technique for auto-

matic test case generation. The created test suite not only

covers the specification but also ensures that fault-sensitive

execution sequences are exercised. Their approach con-

sidered multi-tier web applications for testing.

Boni et al. (2009) introduced the architecture of a sys-

tem which tries to fully automate the test case generation

process for web applications based on agile framework

named automatic testing platform (ATP). Their tool cov-

ered many testing aspects, such as unit testing, system

testing, test case execution and reporting. Their tool is

based on the usage of different pluggable testing tools like

JUnit, TestNG and Selenium.

Hajiabadi and Kahani (2011) proposed a model based

technique to test web applications from their structural

models. They applied several ontologies and mapping

tools, test cases for filling forms for automatically

Fig. 6 JSP page of Logout.jsp

Fig. 7 a Implicit object table of Login.jsp b Implicit object table of loginCheck.jsp

S1712 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716

123

generated models and evaluated dynamic features of the

web applications. Their approach was implemented as

MBTester tool and applied to a few web applications.

Monsma (2015) proposed a model based testing tool

called G8ST for web application testing. Their developed

tool was mainly used for GUI testing. They generated test

cases based on the model of the web application. They

considered phantomJ, a headless browser, to access the

web application. After that, they established connection

between G8ST tool and headless browser. Finally, they

generated test cases based on GUI. Achkar (2010) com-

pared many tools of web application testing such as

NModel, conformiq test generator tool, TestOptimal etc.

They compared the results of DDI health case study in their

research study.

In this paper, we have proposed a novel approach for test

case generation for dynamic web application (DWA). In

Fig. 8 a Implicit object table of home.jsp b Implicit object table of logout.jsp

Fig. 9 Implicit object table of error.jsp

Fig. 10 JFG for login use case

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716 S1713

123

which, we have considered JSP pages for dynamically trac-

ing the activity of web application. We have proposed

testable graph called JSP FlowGraph (JFG). In JSP page, we

fetched all Implicit Class Object for converting JSP into JFG.

Finally, we have generate the test scenarios using JFG.

In Table 4, we have shown the achieved Test coverage

for different case studies. In this table, we have calculated

the following parameters for 5 (five) case studies. TN (total

nodes), TT (total transitions), CN (covered nodes), CT

(covered transitions), NC% (node covered percentage),

TC% (transitions covered percentage), TL (total lines of

code), TLC (total lines of code covered), TLC% (total lines

of code covered percentage). The case studies that, we have

considered are: login case study, student registration, on-

line ticket reservation system, book reservation system, on-

line book shop. All the case studies are developed by UG

(Undergraduate B.Tech)/PG (Postgraduate M.Tech) stu-

dents of Department of Computer Science and Engineering

at National Institute of Technology, Rourkela, Odisha.

In Table 4, we find that node and transition coverages

are directly proportional to test cases. LOC coverage is

directly proportional to node and transition coverages. If

we have covered all nodes and transitions, so indirectly we

have covered source code. So, this techniques improves the

quality of web application.

7 Conclusion

In this paper, an approach is presented for testing the

functional requirements of web applications. JSP script

language is used in this approach for dynamic web

Fig. 11 Generated test

scenarios for login use case

Table 3 Test cases for login use case

JSP page Tags Test data Expected result Actual result

Login.jsp \title[JSP Page JSP Page

\h1[Login Page Login Page

\h2[Sign up details Sign up details Sign up details

\form[Username, Password Username, Password,

Action:post, loginCheck.jsp

Username, Password,

Action:post, loginCheck.jsp

loginCheck.jsp \title[JSP Page JSP Page

\% � � �%[username ¼ vikas; password ¼ panthi home.jsp, home.jsp

loginCheck.jsp \title[JSP Page JSP Page

\% � � �%[username ¼ anil; password ¼ mishra error.jsp, error.jsp

home.jsp \title[JSP Page JSP Page

\% � � �%[username ¼ vikas; password ¼ panthi Hello vikas Hello vikas

\a � � � href=a[href = logout.jsp href = logout.jsp

home.jsp \title[JSP Page JSP Page

\% � � �%[username ¼ anil; password ¼ verma

\a � � � href=a[href = error.jsp href = error.jsp

Error.jsp \title[JSP Page JSP Page

\h1[username ¼ anil; password ¼ mishra Some Error has occurred,

Please try again later

Some Error has occurred,

Please try again later

Logout.jsp \% � � �%[Clickbutton Referesh username, password Referesh username, password

\h1[Login Page Login Page

\h1[logout was done successfully logout was done successfully

S1714 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716

123

application testing. In this paper, Login use case is con-

sidered as the case study. First, the implicit class object

tags are identified, and the JFG is constructed for the Login

JSP page. Then, the functionalities in JFG are identified for

test scenario generation. Then, JTSG algorithm is applied

on the JFG for generating the test scenarios of the web

page. Finally, test cases are developed for the web page. In

future, we will generate the test scenarios based on service-

oriented architecture (SOA).

There are many optimization and prioritization

techniques exist for optimization such as Ant Colony

Optimization, Fire Fly Optimization, Cuttlefish Opti-

mization etc. We will try to apply these techniques in

future.

Acknowledgements This work is supported by a Grant No. SR/FST/

ETI-359/2014(C) for the FIST-2014, from Department of Science and

Technology (DST), Goverment of India. Carried out by Department

of Computer Science & Engineering, National Institute of Technol-

ogy, Rourkela, Odisha, India.

Table 4 Achieved test

coverage for different case

studies

TCID TN TT CN CT NC% TC% TL TLC TLC%

Login case study TS1 16 15 15 14 93.75 93.33 82 69 84.14

TS2 16 15 15 14 93.75 93.33 82 44 53.63

Student registration TS1 23 27 18 16 78.26 59.25 163 139 85.27

TS2 23 27 13 16 56.52 59.25 163 119 73.00

TS3 23 27 20 21 86.95 77.77 163 147 90.18

TS4 23 27 8 9 34.78 33.33 163 72 44.17

TS5 23 27 13 14 56.52 51.85 163 112 68.71

On-line ticket reservation system TS1 37 35 34 31 91.89 88.57 206 187 90.77

TS2 37 35 29 27 78.37 77.14 206 162 78.64

TS3 37 35 27 31 72.97 88.57 206 169 82.03

TS4 37 35 30 32 81.08 86.48 206 172 83.49

TS5 37 35 27 29 72.97 82.85 206 159 77.18

TS6 37 35 31 30 83.78 85.71 206 174 84.46

TS7 37 35 15 17 40.54 48.57 206 97 47.08

TS8 37 35 17 19 45.94 54.28 206 109 52.91

TS9 37 35 33 32 89.18 91.42 206 191 92.71

Book reservation system TS1 31 33 29 31 93.54 93.93 189 178 94.17

TS2 31 33 19 21 61.29 63.63 189 119 62.96

TS3 31 33 27 25 87.09 75.75 189 156 82.53

TS4 31 33 23 25 74.19 75.75 189 137 72.48

TS5 31 33 15 17 48.38 51.51 189 112 59.25

TS6 31 33 19 21 61.29 63.63 189 131 69.31

On-line book shop TS1 44 42 38 41 86.36 97.61 347 287 82.70

TS2 44 42 34 33 77.27 78.57 347 254 73.19

TS3 44 42 41 40 93.18 95.23 347 304 87.60

TS4 44 42 26 25 59.09 59.52 347 227 65.41

TS5 44 42 42 41 95.45 97.61 347 318 91.64

TS6 44 42 39 40 88.63 95.23 347 296 85.30

TS7 44 42 41 39 93.18 92.85 347 302 87.03

TS8 44 42 29 32 65.90 76.19 347 263 75.79

TS9 44 42 27 29 61.36 69.04 347 241 69.45

TS10 44 42 39 41 88.63 97.61 347 316 91.06

TS11 44 42 21 23 47.72 54.76 347 211 60.80

TS12 44 42 40 38 90.90 90.47 347 289 83.28

TS13 44 42 35 37 79.54 88.09 347 282 81.26

TN Total nodes, TT total transitions, CN covered nodes, CT covered transitions, NC% node covered

percentage, TC% transitions covered percentage, TL total lines of code, TLC total lines of code covered,

TLC% total lines of code covered percentage

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716 S1715

123

References

Achkar H (2010) Model based testing of web applications. STANZ-

2010, Sydney, Australia, 26-27 August 2010.

Afzal W, Torkar R, Feldt R (2008) A systematic mapping study on

non-functional search-based software testing. In: International

conference on software engineering and knowledge engineering,

SEKE. p 488493

Afzal W, Torkar R, Feldt R (2009) A systematic review of search-

based testing for non-functional system properties. Inf Softw

Technol Elsevier 51(6):957–976

Ali S, Briand LC, Hemmati H, Panesar-Walawege RK (2010) A

systematic review of the application and empirical investigation

of search-based test case generation. IEEE Trans Softw Eng

36(6):742–762

Alshahwan N, Harman M (2011) Automated web application testing

using search based software engineering. In: 26th international

conference on automated software engineering, IEEE Computer

Society, pp 3–12

Banerjee I, Nguyen B, Garousi V, Memon A (2013) Graphical user

interface (gui) testing: systematic mapping and repository. Inf

Softw Technol 55(10):1679–1694

Barmi ZA, Ebrahimi AH, Feldt R (2011) Alignment of requirements

specification and testing: a systematic mapping study. In: IEEE

fourth international conference on software testing, verification

and validation workshops (ICSTW), pp 476–485

Boni G, Juan CD, Hugo APG (2009) Automatic functional and

structural test case generation for web applications based on

agile frameworks. In: IEEE 5th international workshop on

automated specification and verification of web systems, pp 1–15

Booch G, Jacobson I (2005) The unified modeling language user

guide, 3rd edn. Pearson Education India, Noida

Conallen J (2002) Building web applications with UML, 2nd edn.

Addison-Wesley Publishing Company, Boston

Dai Z, Chen M-H (2008) Automatic test case generation for multi-tier

web applications. In: 9th IEEE international workshop on web

site evolution (WSE 2007), pp 39–43

Engström E, Runeson P (2011) Software product line testing-a

systematic mapping study. Inf Softw Technol 53(1):2–13

Engström E, Runeson P, Skoglund M (2010) A systematic review on

regression test selection techniques. Inf Softw Technol

52(1):14–30

Fujiwara S, Munakata K, Maeda Y, Katayama A, Uehara T (2011)

Test data generation for web application using a uml class

diagram with ocl constraints. Innov Syst Softw Eng Springer

7(4):275–282

Grindal M, Offutt J, Andler SF (2005) Combination testing strategies:

a survey. Softw Test Verif Reliab 15(3):167–199

Hajiabadi H, Kahani M (2011) An automated model based approach

to test web application using ontology. In: IEEE conference on

open systems (ICOS), pp 348–353

Hall M, Brown L (2008) Core servlets and JavaServer pages, 2nd edn.

Pearson Education, Noida

Jia Y, Harman M (2011) An analysis and survey of the development

of mutation testing. IEEE Trans Softw Eng 37(5):649–678

Kanjilal A, Bhattacharya S (2004) Static analysis of object oriented

systems using extended control flow graph. In: 10th IEEE region

conference TENCON, IEEE Computer Society, pp 310–313

Kung DC, Liu C-H, Hsia P (2000) An object-oriented web test model

for testing web applications. In: First Asia-Pacific conference on

quality software, IEEE Computer Society, pp 111–120

Li L, Miao H, Qian Z (2008) A uml-based approach to testing web

applications. In: International symposium on computer science

and computational technology (ISCSCT’08), IEEE Computer

Society, pp 397–401

Liu C-H (2004) Data flow analysis and testing of java server pages.

In: 28th Annual international computer software and applications

conference, IEEE Computer Society, pp 114–119

Memon AM, Nguyen BN (2010) Advances in automated model-based

system testing of software applications with a gui front-end. Adv

Comput 80(5):121–162

Monsma JR (2015). Model based testing of web applications (Mater

Thesis Computer Science). Radboud University, Nijmegen,

Netherlands

Neto PADMS, do Carmo Machado I, McGregor JD, De Almeida ES,

de Lemos Meira SR (2011) A systematic mapping study of

software product lines testing. Inf Softw Technol 53(5):407–423

Ricca F, Tonella P (2000) Web site analysis: structure and evolution.

In: IEEE international conference on software maintenance,

ICSM2000, pp 76–86

Ricca F, Tonella P (2001) Analysis and testing of web applications.

In: 23rd international conference on software engineering, IEEE

Computer Society, pp 25–34

Samuel P, Mall R, Kanth P (2007) Automatic test case generation

from UML communication diagrams. Inf Softw Technol

49(2):158–171

Törsel A-M (2011) Automated test case generation for web applica-

tions from a domain specific model. In: 35th annual computer

software and applications conference workshops (COMP-

SACW), IEEE Computer Society, pp 137–142

S1716 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1704–S1716

123

	An approach for dynamic web application testing using MBT
	Abstract
	Introduction
	Model based testing of dynamic web pages
	Basic concepts
	Web applications
	Static web application
	Dynamic web application

	JSP
	JSP implicit objects
	Scripting elements

	Dynamic page validation
	Test case and test scenario

	Generating test scenarios for dynamic web applications
	Case study
	Comparison with related works
	Conclusion
	Acknowledgements
	References

