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Abstract Scheduling problems in an FMS have been

considered as complex optimization problems whose

solution by conventional techniques requires a great deal of

efforts and time. In this paper, a simultaneous loading and

scheduling of part and tool has been proposed for a flexible

manufacturing system which has identical machines and a

common tool magazine. All the tools are stored in the

common tool magazine, and shared among the different

machines through a material handling system. Each tool

type is single in number. A modified genetic algorithm

(MGA) with three parent crossover and a mutation operator

is used to find the optimal solution of the loading and

scheduling problem. The MGA uses an algorithm which is

based on Giffler and Thompson procedure with a heuristic

approach to resolve the job conflict and generate an active

feasible schedule. The performance of the proposed algo-

rithm is analyzed by comparing the makespan results with

the results existing in literature. It is observed that the

MGA yields better results than the algorithms reported so

far. Furthermore, efficiency of MGA improves as the

problem size increases.
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Abbreviations

FMS Flexible manufacturing system

AGVs Automated guided vehicles

ASRS Automated storage and retrieval system

PDRA Priority dispatching rules algorithm

CTM Central tool magazine

GA Genetic algorithm

GADG Genetic algorithm with dominant genes

ACO Ant colony optimization

PNs Petri nets

ASMEA Symbiotic evolutionary asymmetric

multileveled algorithm

WIP Work in process

SAA Simulated annealing algorithm

FMC Flexible manufacturing cell

List of symbols

estik Earliest start time of kth operation of ith job

eftik Earliest finishing time kth operation of ith job

DT Datum time

N Number of jobs

K Number of operations

tik Processing time of kth operation of ith job

IP Initial population size

s Population size of the selection pool A

Ji Job number (i = 1 to n)

Jik kth operation of ith job

COJ Conflict of jobs

Mj Machine number (j = 1 to m)

m Number of machines

MT Makespan time

p Mutation probability

MGA Modified genetic algorithm

MAXGEN Maximum number of generations for MGA

P.O.J Processed operation of job

JA Job assigned
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1 Introduction

To meet the challenge of fast changing demands, the

manufacturer must have to produce a large number of

product types with minimum lead time. The advent of

computer numerical controlled machines has resulted in the

development of flexible manufacturing systems (FMS).

A Flexible manufacturing system facilitates the production

of variety of part types in smaller batch size with minimum

setup time. Such system consists of number of general

purpose numerically controlled machines, interconnected

by automated material handling system and the control is

being done by a central computer. Using FMS for pro-

duction, flexibility of job shops and efficiency of mass

production can be enhanced; however, setting up an FMS

requires a lot of investments, hence, the efficient solutions

to the various decision problems are key to avoid its

underutilization (Turkcan et al. 2007).

There are four stages of decision problems for suc-

cessful installation and implementation of an FMS:

designing, planning, scheduling and control (Stecke 1983).

Loading and scheduling problem is to allocate parts (or

operations) and required tools to machines with exact time

span (Roh and Kim 1997). To fully exploit the benefits of

an FMS, careful attention must be paid to operational

issues like loading, scheduling and control (Gnanavel et al.

2010). Scheduling of part and tool without considering

other resources in the system, e.g. material-handling sys-

tem like automated guided vehicles (AGVs) and automated

storage and retrieval system (ASRS), lowers the efficiency

and flexibility of FMS production activity. Many FMSs

employ automated guided vehicle in material-handling

system in order to improve the flexibility and efficiency of

its production activity. The operation and control of AGVs

is done with the help of well-designed vehicle management

system.

FMS loading and scheduling problem has drawn con-

siderable attention of researchers both from academics and

industries in past four decades. FMS scheduling is much

more complicated than job shop scheduling due to inherent

flexibility of FMSs. Literature is replete with variety of

scheduling problems concerning machining environment,

job description, and objective function (French 1982;

Brucker 1995). Part and tool flows in a FMS are two

dynamic entities and their management is important for its

efficient operation (Prabaharan et al. 2006). Scheduling of

parts without considering the tool flow may lead to an

inefficient working of FMSs, thereby preventing an FMS

reaching to its fullest potential and make it ‘inflexible’ in

practice (Gray et al. 1993; Veeramani et al. 1992; Selim

and Ozkan 2001). In most of the existing works on loading

and scheduling problems, the part and tool flow are

considered as separate issues owing to computation com-

plexity, and often, the effect of one of the pair on the other

is neglected (Prabaharan et al. 2006). This might lead to

suboptimal solution to the loading and scheduling problem,

as solution to one issue affect the solution of other.

Scheduling problem in an FMS is generally solved using

any of the two approaches: part movement approach, or

tool movement approach (Roh and Kim 1997). In part

movement approach, the tools are loaded on the machines

and part moves to different machines depending on the

availability of the required cutting tool on the machine. In

tool movement policy, all the operations of a part are

performed on the same machine and the required cutting

tools are moved to the machine. The first approach is

generally used when the cost of the cutting tools is con-

sidered to be insignificant in comparison to the cost of the

parts. Most of the research work related to scheduling in an

FMS has used the part movement approach (Mukhopad-

hyay and Nandi 1999). But when the tool cost contributes

significantly to the cost of the part; sometimes as high as

25–30% (Selim and Siraceddin 1999); the second approach

is being used. Due to limited tool budget, it is essential to

find out the tool copy configuration for the best system

performance (Jun et al. 1999). Therefore, by adopting

appropriate tooling strategies and economizing on the

tooling cost, large reduction on the tooling cost are feasible

(Gray et al. 1993). In tool flow approach, automated

transport of tools to the machines has been considered. The

added cost of tool automation improves the economic

efficiency of an FMS (Gray et al. 1993). Although the

scheduling problems have been studied under the part

movement policy extensively in many papers, there are

relatively few articles on the problems under the tool

movement policy (Roh and Kim 1997). A few researchers

in their surveys on the tool management issues of auto-

mated manufacturing systems established that the lack of

tooling considerations has resulted in the poor performance

of these systems and stressed for tool scheduling (Gray

et al. 1993; Veeramani et al. 1992). Most of the existing

work on loading and scheduling in an FMS solve the

problem sequentially, i.e. first the loading problem is

solved, and based on the results obtained from the solution

of loading problem, scheduling problems are solved. This

approach does not give the optimal solution to the loading

and scheduling problem, as the solution of loading problem

becomes a limitation for the scheduling problem (Kim

et al. 2007). Considering these aspects, in this paper the

part scheduling and tool allocation problem has been

solved simultaneously. The concept of common tool

magazine (CTM) that shares with and serves for several

machines, reduce the cost of duplicating tools in each and

every machining centre, is of particular interest in each

FMS.
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Scheduling of parts with identical machines in an FMS

even without additional resources has been considered to

be NP-hard and requires heuristic approach for solution

(Agnetis et al. 1997). An FMS scheduling problem is

generally solved using optimization and heuristic based

methods, however, Optimization methods, e.g. branch and

bound, integer programming, dynamic programming etc.,

become cumbersome to solve as the problem size increa-

ses. Therefore, efficient heuristic methods need be devel-

oped for large sized problems. Priority dispatching rule

algorithms (PDRA) are the simple heuristics which can be

easily applied to any FMS scheduling problem. Giffler and

Thompson (GT) algorithm (Giffler and Thompson 1960)

developed for the job shop manufacturing environment can

also provide quality results for an FMS scheduling problem

(Nasciment 1993). Prabaharan et al. (2006) used combined

PDRA and simulated annealing algorithm for the

scheduling and sequencing of parts and tools in a flexible

manufacturing cell (FMC). Udhayakumar and Kumanan

(2010) used Ant colony optimization (ACO) algorithm to

schedule the tools and parts with the objective of mini-

mizing the makespan in an FMS having identical machines.

Fathi and Barnette (2002) solved the scheduling problem of

part and tool in an FMS with identical machine environ-

ment in order to minimize makespan using three heuristic

methods.

Artificial Intelligence techniques have drawn consider-

able attention of researchers for solving scheduling prob-

lem in FMS. One of such intelligent probabilistic search

technique is genetic algorithm (GA) (Holland 1975).

According to Goldberg (1989), GAs can be applied to treat

the complexity levels required to provide adaptive search at

the requisite robustness. Genetic algorithm has been suc-

cessfully used to solve verities of optimization problems

including problems related to manufacturing, i.e. schedul-

ing, process planning and system design. Ponnambalam

et al. (2001) stated that GA is the most popular type of

evolutionary algorithm to solve FMS scheduling problems.

Keung et al. (2003) in their work proposed a GA to solve

the sequencing problem in an FMS having one material

handling device, with an objective to minimize the penalty

cost. Shankar et al. (2005) designed multi-objective evo-

lutionary algorithm equipped with a mechanism to generate

parallel diverse optimal solutions, for scheduling of an

FMS. Chan et al. (2008) used Genetic Algorithm with

Dominant Genes (GADG) to solve the scheduling problem

in an FMS. The results obtained for the minimization of

makespan, were compared with results obtained by other

techniques like Ant Colony Optimization and Petri Nets

(PNs). The results obtained by the proposed algorithm were

found to be better. Kim et al. (2007) considered an FMS

with four types of flexibility: machine, tools, processing

and sequencing. They used Symbiotic Evolutionary

Asymmetric Multileveled Algorithm (ASMEA) to solve

the scheduling problem in the said FMS environment. They

reported that the results obtained were of high quality and

the speed of convergence of the algorithm was also fast.

Hsu et al. (2008) solved sequencing problem of cyclic tasks

in an FMS by using GAs and PNs. They selected work in

process (WIP) as performance parameter. They concluded

that the results obtained by GA in 75% of the cases were

equivalent to that of obtained by best heuristics available in

the literature. Gang and Wu (2004) used hybrid approach

(GA and PN) to solve sequencing problems in FMS. Reddy

and Rao (2006) used GA and a heuristic for simultaneous

scheduling of machines and AGVs (automated guided

vehicles). Balin (2011) used GA to solve scheduling

problem with non-identical parallel machines. The author

used new crossover operator and optimality criteria for

minimization of makespan. Godinho et al. (2014) in their

work presented a comprehensive review of the available

literature on GA applied to FMS scheduling. The analysis

of the literature is done based on the proposed six classi-

fications. Kaplanoglu (2016) in his work proposed an

object oriented approach along with simulated annealing

optimization algorithm for multi-objective flexible job-

shop scheduling problem. Wu et al. (2017) in his work

proposed genetic algorithm with a new chromosome rep-

resentation scheme to solve the distributed flexible job-

shop scheduling problem.

In GA evolutionary process; crossover and mutation are

the important search operators. Most of the work reported

on application of GAs in FMS scheduling problem, have

considered two parent crossover method. Elsayed et al.

(2014) proposed a new GA with multi-parent crossover

with a diversity operator. They tested this algorithm on

number of optimization problems and the results show its

better performance.

This work proposes an FMS environment consisting of

‘m’ identical machines with a CTM. In case, any two or

more machines require same tool at the same time, one of

the machine is served with the tool in order to resolve the

job conflict, while the other machines have to wait, till the

tool completes the job on the assigned machine. The

makespan has been used as performance measure in this

study, because, it represents a long term or steady state

performance measure for many manufacturing systems. In

this work, we have used the GA having three-parent

crossover with a mutation operator.

The paper is structured as follows: the formulated

problem is described in Sect. 2. In Sect. 3 a new algorithm

Active Schedule (ACT_SCH) and MGA are discussed.

Discussion of results and sensitivity analysis is presented in

Sect. 4. Finally, the conclusions are given in Sect. 5.
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2 Problem structure

In many manufacturing systems tools are stored at a

common place called common tool magazine. These tools

are shared with machines in the system, through a material

handling system in order to reduce the tool inventory. In

this paper, problem of simultaneous scheduling of tools and

part has been attempted for a flexible manufacturing sys-

tem with a common tool magazine with an objective to

minimize the makespan. Description of the problem envi-

ronment, assumptions and performance measure are dis-

cussed in the section below.

2.1 FMS environment

The FMS in the problem has identical machines. The

machines are capable of processing a group of parts and

part verity. None of machines has dedicated tool magazine.

All the tools are stored in the CTM and shared among all

the machines through single tool grip. There is a limitation

on the quantity of each tool type in CTM and it is kept as

one in this problem. The FMS environment is shown in

Fig. 1.

2.2 Assumptions

• Machines are capable of doing all operations of any of

the jobs.

• Each job has a number of operations and individual

operation requires a specific tool.

• Sequence of operations and respective tools vary from

job to job.

• The operations sequence and type of tool required for

each operation with processing time of operations are

pre-specified.

• One job can be processed on one machine/tool at a

time.

• All the operations of a job are processed during a single

machine visit.

• Operation cannot be interrupted, i.e., each operation

once started must be completed.

• A job does not visit the same machine twice.

• Availability of tools in each verity is considered as one

and can be used more than once for any job.

• The operation time of a job includes the loading,

unloading, tool changeover and setup times (both tool

and job) along with the processing time.

• Once the operation is over the tool returns to the

common tool magazine with negligible transfer time

and is available for the next operation.

2.3 Performance measure

Considering the high initial cost of investment in FMSs, it

is important for the manufacturer to maximize the machine

utilization. In this context, minimum makespan that

increases the utilization of machines is considered as the

appropriate measure of system performance.

The formulae used for makespan are given as below:

Job completion time

Ci ¼
XK

k¼1
ti k ð1Þ

Makespan ¼ max C1;C2; . . .;Cnð Þ ð2Þ

where k = operation, i = job, tik = operation processing

time

2.4 Problem statement

Determination of integrated schedule of tool and job which

gives optimal or near optimal makespan, considering that

n jobs are processed on m identical machines with T num-

ber of tool types are shared for many operations, in a

flexible manufacturing system.

3 Proposed heuristics

MGA heuristic is used to find the optimal or near optimal

solution for the proposed problem. The above algorithm

uses a new algorithm ACT_SCH which is developed by

modifying GT algorithm, for generating active feasible

joint operation-tool schedule. The new algorithm

ACT_SCH is described as below:

3.1 ACT_SCH algorithm for generating active

feasible schedule

GT algorithm is basically used for generating active fea-

sible schedule for a job shop scheduling. GT algorithm is a

mathematical version of procedure for drawing Gantt

1              CTM 

        t                                                      2 

T

  1  j m Machines

2                      i 

wolfkroW1

              n          

Fig. 1 Working environment of FMS
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chart to arrive at active feasible schedule. The proposed

new algorithm ACT_SCH is developed by using the similar

procedure to GT algorithm. Whenever two or more jobs

require the same tool at the same time (job conflict), the

tool is assigned to a job that has minimum datum time (DT)

for the waiting operation. Through this job conflict

resolving policy, the waiting time of other jobs for the

same tool reduces and hence an active schedule with lower

makespan is obtained. The procedural step of ACT_SCH is

explained in following Sect. 3.1.1; the flowchart is shown

in Fig. 2 and illustrated in Sect. 3.1.2.

3.1.1 Procedural steps of ACT_SCH

Step 1 Construct a table having columns one for each

machine, job assigned (JA), datum time and

processed operation of a job (POJ). The column

for each machine is further subdivided for each

tool type

Step 2 Select randomly the number of jobs equal to the

number of machines and assign one job to one

machine arbitrarily. Enter a value equal to sum

of earliest start time (estik) and processing time

(tik) in the first line of the table in appropriate

block of machine under appropriate tool. The

total of the two values gives earliest finish time

(eftik) of the immediately waiting operation of

the assigned job. For the first operation of first

job assigned on a machine the value of estik is

taken to be zero

Step 3 Enter the value of DT equal to the smallest of the

eftik entries, in the appropriate column

Step 4 Select the jobs whose eftik matches with the

current datum time. In case there are more than

one jobs whose eftik matches with current datum

time; select one job arbitrarily

Step 5 Check for the job conflict? If yes, go tostep 6

else go to step 7

Step 6 List the operations of all the jobs contending for

the same tool. Select a job whose eftik is

minimum and earmark its operation. Assign the

tool to the earmarked operation of the job

Step7 Process the earmarked operation along with its

machine and tool. Enter the job number and

operation completed in the format of ‘ik’ in the

column ‘‘P.O.J’’

Step 8 Update the value of eftik of next waiting

operation as sum of earliest finishing time of

immediate processed operation and processing

time of the waiting operation. Also, update the

eftik of the contending operation of other jobs

(who are not assigned with the required tool

during conflict resolution) as sum of earliest

finish time of the operation of the job assigned

with the tool plus its processing time

Step 9 Update the datum time as minimum of earliest

finishing time. Check, if all the operations of all

the jobs are scheduled. If yes, go to step 10, else

go to step 4

Step 10 Update the DT as largest entry of earliest

finishing time. The table gives the active feasible

schedule and DT represents the makespan time

Input: m , n , No. of Operations  
                  tool type and processing time  

     Select the number of jobs equal to number of  
           machines and load them on machine  

Set DT  as minimum 
ikeft  of the of job 

  Select all the jobs with their 
ikeft equal to DT . 

     NO                            Is there 

                                any tool conflict? 

                                               YES  

            Select one job whose 
ikeft is minimum

                           to resolve the job conflict 

  Process the operation of the selected job and  
  update the 

ikeft  of all the jobs. 

            Update the DT  as minimum of all 
ikeft

                               Have processing                 NO 
                            of all jobs completed? 

                                                 YES 

        Update DT  as maximum of 
ikeft  of jobs 

 End- makespan is equal to current DT 

Fig. 2 Flow chart for ACT_SCH algorithm
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From the table the estik and eftik of each job can be read and

subsequently the Gantt chart can be drawn.

3.1.2 Numerical example

A numerical example of scheduling problem of three jobs

on two machines with three tool types is taken to explain

the detailed procedure of the proposed algorithm

(ACT_SCH). The sequence of jobs is taken as 2–1–3. The

problem is given in the Table 1 and the procedure for

generation of active feasible schedule is shown in the

Table 2.

In row number 4 in Table 2, the operation number 3 of

job number 2 is waiting on machine number 1 and opera-

tion number 2 of job number 1 is waiting on machine 2 to

be processed and both require same tool type 1. This is a

condition of conflict of job (COJ) and is resolved by

selecting job 1 to be supplied with the tool as the earliest

finish time of its operation is the least among all the con-

tending jobs. Now, the operation 3 of job 2 has to wait till

the tool type 1 gets free from the assigned job.

3.2 Modified genetic algorithm (MGA)

Genetic algorithms are stochastic search techniques that

rely on the process of natural selection (Goldberg 1989).

To start with simple GA, A set of random solutions called

initial population, is generated. Each chromosome in this

population contains information about a possible solution.

The fitness of each chromosome is calculated based on the

objective function. The chromosomes with higher fitness

value are pooled in a group and are used for crossover.

Mutation operator is applied to the offspring obtained

through crossover, in order to maintain diversity of solu-

tion. Select the number of parents and offspring with higher

fitness value, equal to the population size for next round of

breeding and mutation. The process is repeated until opti-

mal or near optimal solution is achieved.

It is important to control the distribution of offspring in

comparison to their parents in order to improve the per-

formance of GAs. The narrow distributions of offspring

lead to premature converge of the algorithm, whereas wider

distributions of offspring result in the algorithm taking a

Table 1 Job-operation-tool

matrix
Job no. Operation no. (i)

J 1 2 3

1 4 (2)a 10 (1) 8 (3)

2 6 (3) 5 (2) 6 (1)

3 7 (1) 6 (3) 8 (2)

a The value in parenthesis rep-

resents tool type for the pro-

cessing of an operation

Table 2 Active schedule

generation procedure
Machine number Job Processed DT COJ P.O.J

1 2 Machine 1 Machine 2

Tool type Tool type

1 2 3 1 2 3

0 ? 6 0 ? 4 2 1 4 1 11

6 4*

0 ? 6 4 ? 10 2 1 6 3 21

6* 14

6 ? 5 4 ? 10 2 1 11 3 22

11* 14

11 ? 6 4 ? 10 2 1 14 2.1 12

19 14*

14 ? 6 14 ? 8 2 1 20 2 23

20* 22

20 ? 7 14 ? 8 3 1 22 1 13

27 22*

20 ? 7 3 – 27 3 31

27*

27 ? 6 3 – 33 3 32

33*

33 ? 8 3 – 41 3 33

41*

*Jobs selected for processing
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long time to converge to the optimal solution. In this

context, the research paper proposes a modified GA with

three-parent crossover and a diversity operator. Three

parents crossover produces three offspring by linear com-

bination of three parents to improve the fitness and diver-

sity of the offspring. The mutation operator further

diversifies the generated offspring.

Initial population of chromosomes of size IP equal to

(n2 - n)/2 is generated. Each chromosome in this popu-

lation contains numbers from 1 to j which are randomly

generated by permutation. The structure of a chromosome

containing five jobs is shown in the Fig. 3.

Each number in the chromosome signifies a job number

and the placement of numbers in the chromosome from left

to right represents their sequence of assignment on m ma-

chines. For instance, if there are 2 machines then first two

jobs; 5 and 3 are assigned to machine 1 and 2 respectively.

The next job in the sequence is assigned to a machine

which becomes free after processing the previous job.

From the generated initial population s best solutions are

selected and stored in an archive pool A. Now using tour-

nament selection (with size 2), the chromosomes are selec-

ted and stored in the selection pool B with a pool size of

3*IP. Three consecutive parents from the selection pool are

selected and are arranged in increasing value of fitness i.e.

f(P1) B f(P2) B f(P3). Any duplicity of the chromosomes is

removed by replacing the unwanted chromosomes with a

random chromosome from the selection pool. The crossover

among these three chromosomes P1, P2 and P3 is performed

to generate three offspring. The procedure to generate off-

spring O1 is explained in Fig. 4a, b. The whole process of

crossover operation is divided into two steps. In the first

step, as illustrated in Fig. 4a, parent chromosome P2 cross-

over with P3 using the randomly generated crossover vector

x1, to produce intermediate offspring IM1. In this step, firstly

the resultant parent P2x1 is obtained by replacing all non-

zero elements of x1 by the corresponding elements of parent

P2. Then all the zero elements in the resultant chromosome

are replaced by the corresponding elements of second parent

P3 in order to generate intermediate offspring IM1. In case, if

any of the replacement of zero elements results in repeat of

numbers in IM1, then it has to be replaced by a non-re-

peating element of the first chromosome i.e. P2. As shown in

Fig. 4a the element 3 of chromosome P3 cannot replace 0

element in P2x1, as number 3 already exist in the resultant

chromosome. Hence, the first element of chromosome P2
corresponding to zero element i.e. 4 is considered for the

replacement. But this number would also cause duplicity,

and therefore the next element in P2 corresponding to 0 i.e.

5, is considered. Since it does not create duplicate entry in

the resultant chromosome, therefore number 5 is used

instead of number 3 to replace the 0 element in the resultant

chromosome P2x1. The proposed method of crossover

results into a feasible intermediate offspring IM1. In the

second step, third parent P1 crossover with IM1 as illustrated

in Fig. 4b, to generate offspring O1.

To obtain offspring O2 and O3 first of all, intermediate

offspring IM2 and IM3 are generated by crossover of P2

  job number
 Chromosome 1

Sequence of the jobs to be assigned on m machines 

5 3 1 2 4 6 8 7

Fig. 3 Structure of a chromosome

P2

2x1 

revossorC

vector x1                                                                    P3

IM1 

P1 

1x2 

revossorC

vector x2

P

P

IM1 

O1 

4 1 3 5 2 7 6 10 9 8 
0 1 3 0 0 7 0 10 0 0 

0 1 1 0 0 1 0 1 0 0 

9 10 5 4 3 2 8 6 1 7 

 9  1 3 4 5 7 8 10 2 6 

8 10 3 4 9 7 2 6 1 5 
8 0 3 0 0 7 2 0 0 5 

1 0 1 0 0 1 1 0 0 1 

9 1 3 4 5 7 8 10 2 6 

 8  1 3 4 10 7 2 9 2 5 

(a)

(b)

Fig. 4 a Step-I: parent

chromosomes crossover using

crossover vector x1 to generate

intermediate offspring IM1.

b Step-II: IM1 and third parent

chromosome P1 crossover using

crossover vector x2 to generate

final offspring O1
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with P3 and P3 with P1 respectively, subsequently P1
crossover with IM2 and P2 crossover with IM3 to generate

offspring O2 and O3 respectively.

In three parent crossover mechanism, it is observed that

offspring O1 and O3 move towards better fitness while

offspring O3 diversify the population.

A mutation operator is used to diversify the population

to help the algorithm to escape from local minima. In this,

randomly selected two elements of a selected offspring are

exchanged. The probability of mutation operation is taken

as p. The offspring and archive pool individuals are then

merged and the best s individuals are selected as new

population for the next generation.

Various parameters for the MGA, like s = 0.5 * IP,

p = 0.05, MAXGEN = 100 and crossover probability = 1

are decided based on the trial runs of modified Genetic

Algorithm on five different scheduling problems from the

literature (Prabaharan et al. 2006) for each case of m = 2,

m = 3 and m = 4. The results are compared with the

optimum value obtained by complete enumeration of the

problems. It is observed that optimum results are obtained

for 43.33% of the problems and 50% of the problem shows

deviation\8% from optimum value.

The procedural step of Modified GA is explained in

following Sect. 3.2.1; the flowchart is shown in Fig. 5.

3.2.1 Steps of modified GA

Step 1 Set p = 0.05, IP = (n2 - n)/2,

MAXGEN = 100 and s = 0.5 * IP

Step 2 An initial population of size IP is generated by

random permutation of number of jobs j

Step 3 An archive A is filled with s best solutions

Step 4 Using the tournament selection process with size

TC = 2, a selection pool B is filled with selected

chromosomes with size 3IP

Step 5 Select three consecutive chromosomes from the

selection pool and arrange them so that

f(P1) B f(P2) B f(P3). Replace any duplicate

chromosome with randomly selected

chromosome from the selection pool

Step 6 Crossover of three parents is performed to obtain

three offspring

Step 7 Mutation operation of the selected offspring is

performed

Step 8 Generate the active feasible schedule from the

sequence of jobs in chromosomes by using

ACT_SCH algorithm and calculate the

makespan time

Step 9 Combine chromosomes from archive pool and

offspring. Select the best individuals to make a

new population of size IP

Step 10 Check, if termination criterion is met? If yes go

to step 12 Otherwise go to step 2

Step 11 Stop and note down the optimal sequence and

corresponding optimal makespan.

4 Results and discussions

To obtain the test results for makespan time for the pro-

posed joint scheduling problem a set of 20 problems, each

for m = 2, m = 3 and m = 4, are taken from the literature

(Prabaharan et al. 2006). The results obtained for makespan

                          Input: n, m, K 

 Set: 05.0=p , 2/)( 2 nnIP −=
100=MAXGEN , IPs *5.0=

Generate the initial random population of size 
 IP using random permutations (n). 

Select IPs *5.0= best chromosomes and  
store in the archive A. 

Use tournament selection with size 2=TC to  
select the chromosomes to fill the selection  
pool B with size IP*3

Select three consecutive chromosomes from  
pool B.  and arrange them in ascending order  
of their fitness value )()()( 321 PfPfPf ≤≤

The selected three parents undergo crossover  
and three offspring are generated 

Apply the mutation operator with probability p 

Merge the archive individuals and offspring  
and select best chromosomes make a new  
population of size IP   

NO                     
                          Is the termination  
                             criterion met? 
                                                YES 
Stop – Display the optimal sequence of jobs  
and optimal makespan time (MT)  

Fig. 5 Flowchart for MGA algorithm
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time using proposed Modified GA are compared with the

results reported in the literature in Tables 3, 4 and 5.

The results shown in fourth column of the tables repre-

sents the best value of makespan obtained by two tech-

niques, namely PDRA and Simulated Annealing Algorithm

(SAA), in the literature (Prabaharan et al. 2006), whereas

the results reported by Udhayakumar and Kumanan (2010)

are shown in the fifth column. The results obtained by the

proposed MGA are shown in the last column. The best

value of makespan time is marked with boldface. The

computational time taken by the proposed MGA is shown

in the Fig. 6.

The percentage difference from best (PDB) is calculated

to measure the performance of the proposed algorithm in

giving better results comparison to best results reported in

the literature.

PDB ¼ ðMTbest �MTMGAÞ � 100=MTbest

where, MTbest is the best makespan value by the other

reported algorithms and MTMGA is the value obtained by

MGA.

The results show that the MGA algorithm gives better

results for all the problems except for the problem number

3 and 14 for m = 2, and problem number 19 for m = 4.

The average percentage difference calculated are 1.95% for

m = 2, 5.25% for m = 3 and 7.29% for m = 4. The results

also show that the average percentage difference increases

with increase in number of machines which represents that

the performance of proposed MGA increases with increase

in problem size. The programming for ACT_SCH algo-

rithm and MGA was developed using ‘‘MATLAB’’. The

computational time taken by MGA is reasonable. The

computational time increases exponentially with higher

number of jobs. But the higher time does not delay the

implementation of solution as the scheduling problems can

be solved offline prior to the actual loading of the batch of

jobs.

5 Conclusions

The application of MGA to the FMS loading and

scheduling problem is explored in this paper. The FMS

environment consists of several identical machines without

tool magazines. A CTM stores all types of tools and shares

the tools among the machines through the tool transport

system. The Modified GA uses the principle of evolution to

find the optimal solution of the scheduling problem. The

three parent crossover generates better fitness and diversi-

fied offspring. Use of diversity operator helps the algorithm

to avoid local minima and premature convergence.

In the proposed MGA, initial population is generated

randomly and the best s individuals based on fitness values

are stored in archive pool. Tournament selection with size

2 was used to select the individuals of size 3 * IP for the

reproduction. Three consecutive individuals are selected

Table 3 Comparison of results obtained for m = 2

Problem no. No. of jobs No. of operations Best solution PDRA and SAA Solution by ACO Proposed MGA algorithm

1 3 3 38 38 38

2 4 3 99 99 99

3 5 4 111 103 107

4 6 4 131 128 126

5 7 5 212 210 208

6 8 7 300 300 293

7 9 5 242 243 208

8 10 6 402 394 385

9 11 5 297 294 282

10 12 4 257 265 248

11 13 5 703 693 669

12 14 6 542 540 525

13 15 7 339 340 334

14 16 8 332 328 332

15 17 8 349 350 344

16 18 8 399 419 397

17 19 9 482 476 468

18 20 9 532 527 524

19 25 9 643 643 635

20 30 9 797 813 795
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Table 4 Comparison of results obtained for m = 3

Problem no. No. of operations PDRA and SAA Best solution Solution by ACO Proposed MGA algorithm

1 3 3 25 25 25

2 4 3 90 91 90

3 5 4 83 83 78

4 6 4 102 100 95

5 7 5 168 160 153

6 8 7 227 221 216

7 9 5 200 193 168

8 10 6 299 290 280

9 11 5 220 219 202

10 12 4 203 204 182

11 13 5 540 524 475

12 14 6 402 403 367

13 15 7 247 239 233

14 16 8 238 256 232

15 17 8 253 246 242

16 18 8 291 320 272

17 19 9 344 338 324

18 20 9 392 387 364

19 25 9 450 441 445

20 30 9 583 614 556

Table 5 Comparison of results obtained for m = 4

Problem no. No of jobs No. of operations Best solution PDRA and SAA Solution by ACO Proposed MGA algorithm

1 3 3 – – –

2 4 3 87 87 70

3 5 4 78 79 73

4 6 4 90 87 85

5 7 5 142 136 135

6 8 7 192 181 168

7 9 5 158 149 146

8 10 6 270 258 232

9 11 5 196 182 164

10 12 4 187 187 157

11 13 5 457 448 407

12 14 6 328 318 308

13 15 7 210 198 191

14 16 8 200 189 183

15 17 8 217 203 189

16 18 8 247 238 217

17 19 9 271 259 255

18 20 9 322 316 288

19 25 9 366 351 355

20 30 9 464 452 446
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for reproduction by using the crossover operator. The

mutation operator is then used to diversify the offspring.

The offspring and archive pool individuals are then merged

and the best s individuals are selected as new population

for the next generation.

The ACT_SCH algorithm is used to generate the active

feasible schedule. The results obtained for the makespan by

the MGA are compared with the results reported in the

literature and it was found that the proposed MGA algo-

rithm gives optimal or near optimal results in almost all the

test problems. The computation time taken by the MGA for

m = 2 and m = 3 cases is comparable to that reported for

ACO and SAA in the literature, but the same is higher for

m = 4 case. Since the scheduling problems can be solved

offline before the actual production starts, higher compu-

tational time does not delay the implementation of solution.
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Fig. 6 Computational time taken by MGA
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