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Abstract The tremendous impact of an optimized main-

tenance program on system overall cost and reliability

leads various industrial managers and owners to seek an

intelligent tool for maintenance decision making. Gas tur-

bine industry is no exception, since it is of the most

expensive and critical components in both power plant and

oil and gas industries. In this paper an intelligent mainte-

nance optimization tool is developed based on genetic

algorithm. Genetic algorithm is a heuristic optimization

method in which genetic evolution patterns are employed.

The algorithm has been used for solving several opti-

mization problems and its ability to find optimized solu-

tions makes it one of the most used algorithms. The main

purpose of proposed algorithm is to make the balance

between maintenance costs (i.e. direct and indirect) and

down time cost while maintaining system availability on

predefined level. Moreover, maintenance constraints such

as task interval, maintenance duration are considered. To

handle these constraints, new repair operators are defined

and applied in the proposed genetic algorithm, besides

other crossover and mutation operators. In order to verify

and validate the novel developed algorithm, results of its

implementation on a gas turbine case study are discussed.

The case study is a maintenance optimization problem of

Siemens SGT600 gas turbine, comprised of seventeen

components and their maintenance activities, two life wear

patterns and four production loss scenarios. Results of the

optimized solution are compared with gas turbine con-

ventional maintenance plan which is proved to have con-

siderable improvements. It is shown that an optimized

maintenance plan would reduce outage time and also

increase the availability, which is mainly due to grouping

maintenance activities. Besides, reduction in total cost

including maintenance costs and production loss cost are of

economic consequences of using proposed algorithm. Total

cost is reduced more than 80% while availability is

improved roughly 2%.

Keywords Maintenance optimization � Gas turbine �
Availability � Genetic algorithm

List of symbols

MIP Mixed integer programming

Ci Maintenance cost of each item

Dt Gas turbine downtime

i The number of component

Oi Remaining life of the individual component

BCGA Binary-coded genetic algorithm

GA Genetic algorithm

x Random number

H Scheduling horizon

W Working days per week

A Working days per day
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Ti Time interval of maintenance activity i

wt Total work time in maintenance phases

St Base cost

P Phase of maintenance activity

NRt Down time per day

WRt Down time per week

xiT Maintenance plan of individual components

yt Occurrence of maintenance at occasion t

dt Gas turbine downtime

f Objective function

zt Maintenance event

1 Introduction

One of the concerns of managers and owners of various

industries is to be able to maintain the reliability and

availability of systems and meanwhile to decrease main-

tenance and operating costs. The importance of the main-

tenance management has greatly gained a large attention in

all sectors of manufacturing and service organizations.

When a machine fails to operate in a system, it does not

only delay the completion time of the operations assigned

on it but also affect all the other planned operations in the

system. Consequently, the missions cannot be finished on

time and it will induce penalties and bad reputation to the

company (Chung et al. 2009). As much as 1/3 of mainte-

nance costs are due to bad planning, overtime costs, and

limited or misuse of preventive maintenance, and are

therefore unnecessary (Wireman 1989). Others estimate

these expenses to 15–70% (Coetzee 2004; Bevilacqua and

Braglia 2000). Maintenance management could have ben-

efited from the advent of a large area in operations

research, called maintenance optimization (Dekker

1996, 1998). The interest in development and implemen-

tation of maintenance optimization started in the early

1960s (Dekker 1996; Sandve and aven 1999). There is an

attempt to find the optimum balance between the cost of

maintenance and the associated cost which is called

maintenance optimization model (Sandve and aven 1999).

So maintenance optimization plan has been always con-

sidered as one of the main interests of researchers and

several papers have been presented in this regard. In the

view of optimization approach, the studies fall into two

categories: analytical/numerical optimization methods and

meta-heuristic methods.

There are considerable works about analytical/numerical

optimization methods in maintenance optimization prob-

lems, such as Fattahi et al. (2014), Niazi et al. (2012),

Baslis et al. (2012) and Latify et al. (2013). These methods

have some obvious deficiencies such as convergence

problems, time-consuming solution and error in lineariza-

tion of nonlinear problems. Analytical/numerical opti-

mization methods are always in two states; either finding a

global solution or not having a solution. In other words,

they consequently could not represent local solutions.

Meta-heuristic methods has also been considered in

solving maintenance optimization (Ezzinbi et al. 2014;

Marković et al. 2013; Otsmani et al. 2013). Among this

kind of optimization methods, genetic algorithm (GA) has

always been in center of interest for solving such problems

and has been successfully applied in several papers,

(Martorell et al. 2005; Morcous and Lounis 2005; Ilgin and

Tunali 2007; Okasha and Frangopol 2009). GA is well-

known due to their robust search capabilities that help

reduce the computational complexity of large optimization

problems (Kobbacy 2008; Coit and Smith 1994; Busacca

et al. 2001) and overwhelm numerical methods mentioned

inadequacies.

Today’s competitive world and increasing customer

demand for highly reliable energy producers makes avail-

ability measure more challenging task especially in gas

turbines. This is led to get more interest among researchers

to optimize maintenance plan effectively to reduce cost and

downtime especially in industrial gas turbines. Numerical

optimization methods have been applied for optimization

purpose to get outage time reduction, availability

improvement and cost reduction in this field of interest

(Bohlin et al. 2009, 2010; Wärja et al. 2008; Bohlin and

Wärja 2015). These studies, however, are not exempt from

mentioned shortcomings of numerical methods. To get rid

of numerical method deficiencies, an intelligent tool for

optimizing maintenance decisions has been developed in

which genetic algorithm (GA) is used as the optimization

algorithm.

The rest of this paper is organized as follows. Second

Section provides the mathematical modeling of Gas turbine

maintenance planning. In third Section, a general overview

of proposed genetic algorithm is presented. Numerical

results are given and discussed in forth Section. Finally, the

conclusion is presented in last Section.

2 Gas turbine maintenance optimization
formulation

The maintenance scheduling problem of a gas turbine is

formulated in this section. Optimization of maintenance

plan is a mixed integer programming (MIP) Model and like

other optimization problems, involves an objective func-

tion and a set of constraints.

Aircraft model is a general optimization model which

was applied to the replacement of components in aircraft

engines (Andréasson 2004). The model is a MIP with

Int J Syst Assur Eng Manag (September 2017) 8(3):594–601 595

123



components i ¼ 1; . . .;N, and time units t ¼ 1; . . .; T , and it

uses two binary variables for replacement and maintenance

called xit and zt respectively which are formulated in

Eqs. (2) and (3) (Andréasson 2004).

xit ¼
1 if part i is to be replaced at time t

0 else

�
ð1Þ

zt ¼
1 if some parts is to be replaced at time t,

0 else:

�
ð2Þ

The constant cost for performing maintenance d multi-

plied by the binary variable for maintenance zt, and the cost

for replacement, that is the spare part cost, c multiplied by

the binary variable for replacement xit makes the sum of

costs, the objective function that is represented in Eq. (3)

(Andréasson 2004).

min
XT
t¼1

dzt þ c
XN
i¼1

xit

 !
ð3Þ

The first constraint represented in Eq. (4) says that every

time the replacement of some part is trigged a fixed cost

must be paid. This means that if a replacement is carried

out then maintenance is performed. The constraint pushes

the binary variable zt to be one if it xit is one as stated in

Eq. (5) (Andréasson 2004).

xit � zt; i 2 N; t 2 T ð4Þ
xit; zt 2 0; 1gf ; i 2 N; t 2 T; ð5Þ

Each component has a fixed life length Ti, and each

component must be replaced within its life length. The fact

that the part must be replaced at least once every Ti time

step yields the constraint with Eq. (6) (Andréasson 2004).

XlþTi�1

t¼l

xit � 1; i 2 N; l ¼ 1; . . .; T � Ti þ 1 ð6Þ

According to Bohlin and Wärja (2015), this general

model can be modified for applying in gas turbine main-

tenance scheduling. The modification, performed on the

objective function and the constraints, are described as

follows.

(a) Objective function

The objective function of this optimization problem is

the cost of the maintenance schedule which consists of

maintenance cost, base cost, downtime cost. Decision

variable of the problem is a binary-coded matrix of which

rows are the maintenance plan of individual components;

xi1; xi2; . . .; xiT the yt is another decision variable that shows

occurrence of maintenance at occasion t. Each item has a

maintenance cost Ci consisting of direct and indirect cost

of the maintenance activity. In addition, the value of pro-

duction per hour at an occasion t is denoted Dt. This value

is used for calculating the downtime cost which is the

product of production value and downtime hours. A base

cost St is also used for each occasion t. The base cost is

associated with shared setup costs not related to the down

time of the occasion t and includes some of the costs for

shutting down and restarting the gas turbine, travel

expenses, and other shared costs that cannot be modeled

using material, work, or down time costs (Holland 1975).

This objective function can be presented in the form of

Eq. (7) that is modified form of Eq. (6).

minf ¼
XI
i¼1

XH
t¼1

cixit þ
XH
t¼

Styt þ
XH
t¼1

Dtdt ð7Þ

In this case, Gas turbine downtime dt is calculated as

follows:

wt ¼
XP
p¼1

maxðDpixitÞ ð8Þ

NRt ¼ ð24� AÞ wt

A
� 1

l m
� yt ð9Þ

WRt ¼ 24ð7�WÞ wt

WA
� 1

l m
� yt ð10Þ

Rt ¼ NRt þWRt ð11Þ
dt ¼ wt þ Rt ð12Þ

According to Eq. (12), gas turbine downtime can be

estimated as the sumofwork time and rest time.Work time is

the time that doing maintenance activities take at a mainte-

nance stop. It is assumed that each maintenance activity is

divided into P parallel phases. The total work time is the sum

of the maximum work time in each phase. The rest time at a

maintenance stop consists of the night-rest and week-rest

which are calculated using (9) and (10), respectively. For

more detail, reader is referred to Bohlin and Wärja (2015).

(b) Constraints

The set of constraints to be considered in mainte-

nance optimization problem is specified below, in

Eqs. (13) to (16). Equation (13) ensures that each

maintenance activity i must be done at least once within

an interval of length Ti. H is the horizon of the

scheduling. Remaining life of individual component, Oi

is modeled in Eq. (14). Dependency between mainte-

nance activities is also an important factor in mainte-

nance scheduling and is displayed in Eqs. (15) and (16)

(Bohlin and Wärja 2015).

XtþTi

j¼t

xij � 1 8i; t where t 2 1. . .H � Ti ð13Þ

XTi�Oi

j¼1

xij � 1 8i where Ti� Oi�H ð14Þ

596 Int J Syst Assur Eng Manag (September 2017) 8(3):594–601

123



XtþTii

j¼t

ðxij þ
X
i02Ni

xi0jÞ� 1

8i; t where t 2 1. . .H � Ti

ð15Þ

XTi�Oi

j¼1

ðxij þ
X
i02Ni

xi0jÞ� 1

8i where Ti� Oi�H

ð16Þ

Gas turbine availability plays an important role in sys-

tem operation and management and it’s essential to be

guaranteed. System availability constraint is given in (17)

(Bohlin and Wärja 2015).

Avail:\1�
PH

t¼1 dt

24 � 7 � H ð17Þ

where Avail. is the required availability of Gas turbine.

3 Proposed binary coded genetic algorithm

Genetic algorithm is one of the most famous and efficient

meta-heuristic optimization methods which models genetic

evolution pattern for solving problems. It was first for-

malized as an optimization method by Holland (1975) in

1960s as a search tool (Mitchell 1998).This algorithm is an

effective search method in large-scale solution spaces that

ultimately led to finding the optimum solution. Genetic

algorithms have been most commonly applied to solve

combinatorial optimization problems.

In genetic algorithm, each solution of the optimization

problem would be represented by a vector X of the decision

variables, which is coded in a so-called chromosome. Both

binary-coded and real-coded chromosome is used in solv-

ing optimization problems.

The GA search usually starts with a random initial

population of potential solutions. Then, these individuals

are evaluated in terms of their so-called finesses, which are

their corresponding objective function values. This initial

population is called first generation which is used to pro-

ducing next generations by four main genetic operators

(Lee and El-Sharkawi 2008):

• Selection of a pair of individuals as parents;

• Crossover of the parents, to generate two children;

• Repair operator; to modify generated children,

• Genetic mutation.

In this paper a binary-coded genetic algorithm (BCGA)

which is described as follows.

Chromosome definition In the proposed BCGA, the

chromosome consists of a sequence of 0/1 bits, represent-

ing the maintenance occasion. Chromosomes are in form of

matrix X with I 9 H bits. Figure 1 shows the sample

chromosomes for typical maintenance scheduling. In order

to create of the new generation of solutions, it is needed to

evaluate proposed solution by fitness value. In proposed

BCGA fitness value is estimated by the objective function

of maintenance optimization problem.

Selection Parents are selected using the one of selection

algorithms. In this paper, the roulette wheel is used for

parent selection in which the chance of a chromosome to be

Fig. 1 Sample chromosomes for BCGA Fig. 2 Flowchart of proposed genetic algorithm
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selected for reproduction is proportional to its fitness. It

means the lower the cost is, the higher the chance will be.

After the selection, two new children are produced by

means of crossover and mutation.

Crossover Two crossover operators are used in BCGA;

window crossover and two point crossover. In window

crossover, two rows and two columns would be randomly

selected and area between would be swapped in associated

matrix. Two point crossover only two columns would be

selected.

Mutation In BCGA, the standard mutation scheme that

changes a bit from 0 to 1 and vice versa is used.

Repair operators As mentioned before, the solution to

maintenance optimization problem should satisfy a set of

constraints. In BCGA, a special kind of operator is devel-

oped which grantees constraints (Marković et al. 2013;

Morcous and Lounis 2005) to be satisfied. These operators

apply to the produced children resulting from mutation and

crossovers. This operator checks whether the new children

satisfy the mentioned time constraints. If mentioned

requirements are not satisfied, then these operators will

change it to an acceptable solution.

The Genetic algorithm evolution would be continued

until a specific number of generations. The flowchart of the

BCGA is shown in Fig. 2.

4 Numerical results and discussions

Numerical results, based on a SGT-600 maintenance case

study, are reported in this section. The case study consists

of 17 components of SGT-600 Gas turbine which has 25

maintenance activities. Scheduling horizon, H, is 15 years.

Details of each activity include time interval, duration and

cost, are given in Table 1 in Bohlin and Wärja (2015).

In order to study the effect of remaining life of com-

ponents, two aging patterns are defined: uniform aging and

random aging. In random aging, the remaining life of each

component is a random number between 0 and Ti-1. While

in uniform aging scenario, the remaining life of each

component is calculated based on Eq. (13) in which X is a

random number between 0 and maxIi¼1 Ti � 1.

Oi ¼ Xb c mod k Ti ð18Þ

where k equals 0.9.

The maintenance plan is optimized for four scenarios A

to D. In scenario A, the production value is $10 k US per

hour. In scenario B, the production value in 10% of the

occasions is zero. These occasions would be selected ran-

domly. In the third Scenario, production value is randomly

selected using a Gaussian distribution with expected value

$10 k US and a standard deviation of $5 k US. Scenarios C

and D are the same, however in the latter case, 10% of the

occasions have zero production value. Details of these four

scenarios are shown in Table 1.

The results of implementation proposed genetic algo-

rithm is given in Tables 2 and 3 which are respectively

related to uniform and random aging scenarios. The pre-

sented results are average results of 50 sample GA runs for

each case which consist of maintenance cost, production

loss cost and availability in both conventional and opti-

mized maintenance schedule. It should be noted that the

conventional plan includes fixed intervals without any

optimization.

4.1 Comparing result of conventional and optimized

maintenance schedule

The results of implementation proposed genetic algorithm

is given in Tables 2 and 3 which are respectively related to

random and uniform aging scenarios. The presented results

are average results of 50 sample GA runs for each case

Table 1 Production scenarios

Scenario Production value Dt ($k US/h) Percentage of zero cost

A 10 0

B 10 10

C N (10,5) 0

D N (10,5) 10

Table 2 BCGA Results of Uniform aging

Scenario A B C D Mean

Conventional plan

Maintenance (K $) 34,076 34,218 35,135 35,860 34,822

Production loss (K $) 49,120 57,180 67,096 52,204 56,400

Availability (%) 96.20 95.10 94.75 95.21 95.320

Optimized solution

Maintenance (K $) 31,400 39,281 37,229 38,992 36,725

Production loss (K $) 27,550 600 3722 1529 8350

Availability (%) 97.87 97.72 97.61 97.61 97.705
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which consist of maintenance cost, production loss cost and

availability in both conventional and optimized mainte-

nance schedule. Input maintenance intervals for performing

PM tasks in optimized model are constant, while in opti-

mized maintenance plan it is possible that the time for an

activity differs from its interval due to reduction of cost.

Comparing the results of conventional and optimized

maintenance schedule indicate a significant improvement

in the latter case, since the total cost is decreased and the

availability is increased. This improvement is mainly due

to two important points. The first point is maintenance

grouping which means to make two or more maintenance

Table 3 Results proposed BCGA of random aging

Scenario A B C D Mean

Conventional plan

Maintenance (K $) 36,148 32,171 38,009 32,281 34,652

Production loss (K $) 66,920 37,530 43,086 33,833 45,342

Availability (%) 94.83 96.68 96.29 96.67 96.12

Optimized solution

Maintenance (K $) 37,654 37,025 39,346 35,534 37,389

Production loss (K $) 21,350 400 1182 1060 5998

Availability (%) 98.35 97.51 97.79 97.31 97.74

Table 4 Comparison of

optimized and conventional

plan (Uniform aging)

Items Conventional plan Optimized solution Difference (%)

General

Availability 95.320 97.705 (?) 2.5

Costs

Maintenance (K $) 34,822 36,725.5 (?) 5.4

Production loss (K $) 56,400 8350 (-) 85.2

Table 5 Comparison of

optimized and conventional

plan (Random aging)

Items Conventional plan Optimized solution Difference (%)

General

Availability 96.12 97.74 (?) 1.7

Costs

Maintenance (K $) 34,652 36,726 (?) 6.0

Production loss (K $) 45,342 8350 (-) 81.6

94

95

96

97

98

Uniform Aging Random Aging

Availavility

Conventional Plan Optimized Plan

Fig. 3 Availability comparison of conventional and optimized

maintenance plans

0
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T
ho

us
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ds

Production Loss (K$)

Conventional Plan Optimized Plan

Fig. 4 Production loss reduction due to optimization of maintenance

plan
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activities to be done in one occasion. By parallel execution

of maintenance activities, the total shared base cost will be

decreased. Grouping, however, can increase the total

number maintenance stops. Besides, improvement in opti-

mized plan comes from using opportunistic maintenance

scheduling which results in cost savings due to downtime

reduction.

Comparison of maintenance cost, production loss cost

and availability is shown in Tables 4 and 5 and revealed in

Figs. 3, 4 and 5. Figure 3 reveals a slight raise in avail-

ability due to optimization of conventional plan in both life

patterns roughly 2% due to reducing outage time. This

growth would benefit the production unit to be affected less

loss of production. Besides, reduction in total cost includ-

ing maintenance costs and production loss cost is also

shown in tables. This has been represented in Fig. 4 in

which optimization of maintenance plan, would result in a

large reduction in production loss, almost more than 80%.

It should be noted that maintenance cost is increased by 5%

which is due to increase of number of maintenance

activities.

4.2 Verification and validation

As the final study, the results are compared to reported

results in Bohlin and Wärja (2015). The differences

between two results are presented in Tables 6 and 7.

Negative numbers show that GA result is lower. It is shown

there are acceptable Note that due to stochastic nature of

input data (life patterns and production scenarios), having

zero difference is not expected or even logical. In all cases

availability of proposed algorithm is in better condition,

while the results of Bohlin and Wärja (2015) have lower

maintenance cost.

5 Conclusion

In this paper, a proposed genetic algorithm for Gas Turbine

maintenance optimization is presented. The main purpose

of proposed algorithm is to make the balance between

maintenance costs (i.e. direct and indirect) and down time

cost while maintaining system availability on predefined

level. In order to handle optimization constraints, new

repair operators are applied. The results of proposed GA on

a SGT-600 case study are discussed. It is shown that

compared to conventional maintenance plan, in the opti-

mized maintenance plan availability is increased and

meanwhile the total cost is reduced. These improvements

are mainly due to grouping of maintenance activities. The

proposed algorithm is also verified using a Cplex mainte-

nance optimization (Boschian et al. 2009; Ghosh and Roy

2009; Garg and Deshmukh 2006; Maintenance NRC 2008;

R. Corporation; Smith and Hinchcliffe 2004; Bloom 2006).
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