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Abstract The development of hybrid procedures for

optimization focuses on enhancing the strength and com-

pensating for the weakness of two or more complementary

approaches. The goal is to intelligently combine the key

elements of the competing methodologies to create a

superior solution procedure. The objective of this paper is

to explore the hybridization between Harmony Search and

Hill Climbing algorithm by utilizing the exploration power

of the former and exploitation power of the latter in the

context of solving Sudoku which is a well-known hard

combinatorial optimization problem. We call this hybrid

algorithm Harmony Search Hill Climber (HSHC). In order

to extend the exploration capabilities of HSHC it is further

modified to create three different algorithms namely

Retrievable Harmony Search Hill Climber (RHSHC),

Global Best Retrievable Harmony Search Hill Climber

(GB-RHSHC) and Random Best Retrievable Harmony

Search Hill Climber (RB-RHSHC). Comparing the four

algorithms proposed in this paper RHSHC outperforms its

three variations in terms of effectiveness. Experimental

results demonstrate that RHSHC perform significantly

better than standard Harmony Search algorithm and stan-

dard Hill climber algorithm. On comparing RHSHC with

the genetic algorithm it has been concluded that former

outperforms latter both in terms of effectiveness and effi-

ciency particularly for Hard and Expert level puzzles.

Comparing RHSHC and hybrid AC3-tabu search algorithm

it has been concluded that RHSHC is very competent to

hybrid AC3-tabu search algorithm.

Keywords Harmony search � Hill climbing � Sudoku �
Memetic algorithm � Evolutionary algorithm

1 Introduction

SUDOKU is a Japanese puzzle which consists of an N � N

square that is divided into
ffiffiffiffi

N
p

sub-squares, each of size
ffiffiffiffi

N
p

�
ffiffiffiffi

N
p

. Here N is a perfect square and is known as the

order of the Sudoku. In the beginning, there are some static

numbers (called givens or fixed) in the puzzle. The game is to

fill all non givens such that each row, column and sub-square

contains each integer from 1 to N exactly once. Sudoku is a

well-known NP complete problem (Takayuki and Takahiro

2003). The difficulty level of the Sudoku puzzle is deter-

mined by around twenty factors and the number of initial

givens has no or little role in it (Mantere and Koljonen 2006).

Figure 1 is an example of a Sudoku puzzle of order 9 and

Fig. 2 represents its solution. In the solution, each row,

column and sub-square contains integers from 1 to 9 exactly

once, further the givens remain intact. Sudoku is linked to

real world applications including conflict free wavelength

routing in wide band optical networks, statistical design and

error correcting codes, as well as timetabling and experi-

mental design (Jones et al. 2008). Another closely related

problem to sudoku is generating threshold matrix for

halftoning grayscale images (Mantere and Koljonen 2006).

Harmony Search (HS) is a musicians behavior inspired

evolutionary algorithm developed in 2001 by Geem et al.
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(2001), though it is a relatively new meta heuristic algo-

rithm, its effectiveness and advantages have been demon-

strated in various applications like structural design

(Gholizadeh and Barzegar 2013), load dispatch problem in

electrical engineering (Wang and Li 2013), multi objective

optimization (Nekooei et al. 2013), rostering problems

(Hadwan et al. 2013), classification and feature selection

(Diao and Shen 2012; Fattahi et al. 2015). HS has

demonstrated several advantages like simplicity, flexibility,

adaptability, generality,and scalability over traditional

optimization techniques (Al-Betar et al. 2012) and has

been particularly successful on combinatorial optimization

problems where it has outperformed other meta heuristic

algorithms like genetic algorithm as well as the traditional

branch and bound method (Geem 2005). HS works by

generating a new vector that encodes a candidate solution,

after considering the selection of all existing quality vec-

tors. This forms a contrast with conventional evolutionary

approaches such as GAs that consider only two (parent)

vectors in order to produce a new (child) vector. It

increases the exploration capabilities of HS (Diao and Shen

2012) and hence has been preferred over other global

search techniques like GA in this article.

Hill climbing is a local search optimization operator. It

is an iterative algorithm that starts with an arbitrary solu-

tion of a problem, then explores to find a better solution by

incrementally changing a single component of the solution.

If the change produces a better solution, the new solution is

accepted, repeating until no further improvements can be

found.

Memetic Algorithms (MA) are a class of stochastic

global search heuristics in which population based Evolu-

tionary algorithms are hybridized with problem specific

solvers, typically local search heuristic techniques to

improve the quality of the solution (Ong et al. 2006). The

name is inspired by Richard Dawkinś concept of meme,

which represents a unit of cultural evolution that can rep-

resent local refinement (Dawkins 2006). MAs have arisen

as a reciprocation to the problem encountered in the con-

ventional evolutionary algorithms which are good at global

exploration of the search space however can take relatively

large time to find the optimal with sufficient precision (Ong

et al. 2006). This often limits the practicality of evolu-

tionary algorithms in many real world problems where

computational time is of paramount importance. This

hybridization between global and local search methods

refereed to as MA has been shown to be more efficient (i.e.,

requiring orders of magnitude fewer evaluations to con-

verge) and effective (i.e., identifying high quality solutions

that would otherwise be unreachable by evolutionary

algorithm or local search alone) than traditional evolu-

tionary algorithms on several problem domains (Al-Betar

et al. 2012). MA are successful and popular for solving

optimization problems in many contexts (Al-Betar et al.

2012; Ishibuchi et al. 2003; Chan et al. 2012; Sharma et al.

2016; Jadon et al. 2015; Sharma et al. 2013). Hart et al.

(2005) gives an elaborate review of MAs.

Many attempts have been made in literature to solve

Sudoku puzzles these include exact search methods such as

constraint programming (Moon and Gunther 2006) and

Boolean satisfiability (Lynce and Ouaknine 2006) to

heuristic and metaheuristic based algorithms including

Simulated Annealing (SA) (Lewis 2007), GA (Mantere and

Koljonen 2006), Ant Systems (Mullaney 2006), Differen-

tial Evolution (DE) (Boryczka and Juszczuk 2012) to name

a few. Other less traditional techniques in this context such

as Sinkhorn balancig (Moon et al. 2009), rewriting rules

(Moon et al. 2009) and entropy minimization (Gunther and

Moon 2012) has also been proposed to tackle this problem.

The objective of this paper is to create an algorithm

namely Harmony Search Hill Climber (HSHC) by

Fig. 1 A sudoku puzzle with 26 givens

Fig. 2 Solution of the sudoku puzzle given in Fig. 1
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hybridizing HS and Hill Climbing operator with an aim to

solve Sudoku. In order to increase the exploration capa-

bilities of HSHC, three variations of HSHC have been

proposed. Since the proposed algorithms use hill climbing

operator they can be termed to fall in the category of

memetic algorithms.

The rest of the paper is structured as follows. Section 2

is an introduction to HS algorithm, a review of literature on

Sudoku puzzle is provided in Sect. 3. Section 4 presents

the proposed HSHC algorithm along with its three varia-

tions. In Sect. 5 the numerical results are discussed and

analyzed and in Sect. 6 RHSHC is compared with other

heuristic algorithms. Finally the conclusions are drawn in

Sect. 7.

2 Harmony search

In order to explain the Harmony Search in detail, let us first

idealize the improvisation process by a skilled musician.

When a musician is improvising there are three possible

choices:

(1) Play any famous piece of music exactly from his

memory.

(2) Play something similar to a known piece (thus

adjusting the pitch slightly).

(3) Compose new or random notes.

Geem et al. (2001) formalized these three options into

quantitative optimization process in 2001, and the three

corresponding components become usage of harmony

memory (HM), pitch adjusting, and randomization. The

usage of harmony memory is similar to the choice of the

best-fit individuals in genetic algorithms (GA). In order to

use this memory effectively, it is typically assigned a

parameter called harmony memory consideration rate

(HMCR 2 [0, 1]). If this rate is too low (near 0), only few

best harmonies are selected and thus convergence of

algorithm may be too slow. If this rate is very high (near 1),

it results in exploitation of the harmonies in the HM, thus

other harmonies are not explored well, leading to poten-

tially wrong solutions. Typically HMCR 2 [.7, .95] is used.

The second component is pitch adjustment determined by

pitch bandwidth (BW) and pitch adjustment rate (PAR)

though in music pitch adjustment means to change the

frequencies, it corresponds to generating a slightly different

solution in the Harmony Search algorithm. Pitch can be

adjusted linearly or nonlinearly however most often linear

adjustment is used. So we have

Hi
new ¼ Hi

old þ BW � ri

where ri 2 ½�1; 1� and 1� i�N
ð1Þ

where Hi
old is the i th component of the existing harmony or

solution and Hi
new is the i th component of new harmony

after the pitch adjusting action. The Eq. (1) essentially

produces a new solution around the existing solution by

varying the solution slightly by a small random amount.

Here ri is a random number generated in the range of

[�1; 1] and N is total number of components in the har-

mony. The pitch adjusting rate (PAR) controls the degree

of adjustment. A low pitch adjusting rate with a narrow

bandwidth can slow down the convergence of HS because

of limitation in exploration of only a small subspace of the

whole search space. On the other hand an extremely high

PAR with a wide bandwidth may cause the solution to

swing around some potential optimal solution. Thus most

commonly used value of PAR 2 [.1, .5]. The third com-

ponent is the randomization, which is to increase the

exploration of the search space. Although pitch adjustment

has a similar role, but it is limited to close neighborhood of

harmony thus corresponds to local search. The use of

randomization can push the system further to explore

various diverse solutions so as to find the global optima.

The pseudo code of harmony search is shown as Algorithm

1. It is evident from the pseudo code that the probability of

randomization is 1-HMCR and the probability of pitch

adjustment is HMCR � PAR. In the pseudo code H rep-

resents a potential solution or harmony, rand 2 [0, 1] is a

uniformly distributed random number generator and HMS

is the size of harmony memory.
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3 Related work

Deterministic algorithms based on branch and bound

strategy have been used to solve Sudoku, since Sudoku is

an NP-complete problem, thus we cannot find a polynomial

time algorithm for all possible problem instances, unless

P = NP (Garey and Johnson 1979). Thus researchers have

made efforts to solve Sudoku puzzles using various meta

heuristic algorithms.

For instance Mantere and Koljonen have used Genetic

Algorithm (GA) to solve Sudoku puzzle in Mantere and

Koljonen (2006). The algorithm is extension of the one

devoted to solve magic square problems. In the algorithm

each chromosome is represented as an integer array with

size 81. Each chunk of 9 digits starting from left cor-

rosponds to 3 � 3 sub block of Sudoku. Each sub block is

initialized with numbers from 1 to 9 such that there is no

repetition of digits and givens remain intact. The crossover

site is only at the boundary of sub blocks, the mutation

used is: swap mutation, 3-swap mutation and insertion

mutation and is allowed only with in the sub block. The

algorithm has been tested on different categories of Sudoku

puzzles although good performance have been exhibited in

solving easy and medium type Sudoku however the success

rate for challenging, difficult and super difficult puzzles is

30, 4 and 6% respectively. Das et al. (2012) have proposed

Retrievable GA algorithm by modifying the GA algorithm

proposed in Mantere and Koljonen (2006). The main dif-

ference between Retrievable GA and the one proposed in

Mantere and Koljonen (2006) is that in former population

is re initialized after certain number of generations (which

depend on difficulty level of puzzle). Experimental results

demonstrate that Retrievable GA performs better than the

one proposed in Mantere and Koljonen (2006) both in

terms of effectiveness and efficiency (Das et al. 2012). The

success rate shown by Retrievable GA in solving easy and

medium puzzles is 100% and for difficult and superdifficult

puzzles it is 16 and 9% respectively. Nicolau and Ryan

(2006) have used Genetic algorithm using Grammatical

Evolution (GAuGE) for solving sudoku, GAuGE uses

position independent representation. Each phenotype vari-

able is encoded as a genotype string along with an asso-

ciated phenotype position to learn linear relationships

between variables. The GAuGE algorithm has shown

promising results for majority of test puzzles, however as

reported in Nicolau and Ryan (2006) there were some test

puzzles on which the algorithm failed completely. Li and

Deng (2011) have modified the various important operators

of GA in a bold way so that the algorithm has higher

reliability, quicker convergence and better stability. Sato

and Inoue (2010) have proposed a hybrid GA local search

algorithm to tackle the sudoku puzzles and have shown

good performance particularly for solving difficult puzzles.

In Deng and Li (2013) a hybrid GA has been utilized to

solve Sudoku. The proposed algorithm was able to solve

majority of easy puzzles however the success rate for dif-

ficult and superdifficult was 17 and 0% respectively. In

order to accelerate the speed of Genetic algorithms for

sudoku solving a parallel GA has been proposed in Sato

et al. (2013).

Hill Climbers have been tested to solve sudoku puzzle in

Moraglio et al. (2006). In order to restrict the search space

explored by Hill Climber the concept of Smart Square

Mutation has been applied. This mutation applies the most

obvious constraint to the possible values Sudoku can take.

For example if a row has a fixed ’9’ then ’9’ is removed

from the set of possible values of that row, the same con-

cept is extended to columns and sub squares. Though the

proposed Hill climbing algorithm powered by Smart

Square Mutation succeeded in solving easy type puzzles

however it completely failed in solving medium and hard

ones.

In Lewis (2007) a simulating annealing algorithm has

been presented to solve sudoku, however the approach is

mainly centered on creating solvable problems than solving

hard Sudoku puzzles.

A hybrid tabu search algorithm has been proposed to

solve the Sudoku puzzle in Soto et al. (2015) and the

algorithm has shown very promising results for solving

difficult and superdifficult puzzles.

In Boryczka and Juszczuk (2012) Differential Evolution

(DE) has been tested on sudoku puzzles, the authors have

further tested the algorithm on classifying the Sudoku

puzzles depending on their difficulty level. Though

encouraging results have been reported however the algo-

rithm has been tested on only few puzzles.

An evolutionary algorithm employing filtered mutations

have been proposed in Wang et al. (2015) to tackle Sudoku

puzzle, the algorithm has been tested on 6 puzzles (2 each

of type easy, medium, difficult and super difficult) and has

shown good results particularly in solving difficult and

super difficult puzzles.

A hybrid AC3-tabu search algorithm for solving sudoku

has been proposed in Soto et al. (2013). The algorithm has

been created by combining tabu search with an arc-con-

sistency 3 (AC3) algorithm that acts as a domain reducer.

This integration reduces the number of tabu search itera-

tions thus increases the convergence speed of the algo-

rithm. As illustrated in Simonis (2005) Sudoku can be

represented as constraint network, thus consequence
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techniques from constraint satisfaction can be applied on

them. Arc-consistency is one of the most utilized filtration

technique in constraint satisfaction for reducing the search

space of combinatorial problems. Arc-consistency is for-

mally defined as local consistency with in the constraint

programming field (Rossi et al. 2006). A local consistency

defines properties that the constraint problem must satisfy

after constraint propagation. The hybrid AC3-tabu search

algorithm has shown excellent performance on all types of

Sudoku puzzles and has been compared with genetic

algorithm proposed in Manter and Koljonen (2007). The

simulation results show that former is significantly effec-

tive than later particularly on hard Sudoku puzzles.

In Soto et al. (2014) a Cuckoo Search Algorithm with

Geometric Operators has been utilized for solving Sudoku

Problems. The algorithm was able to solve easy and medium

sudoku with approximately 100% success rate and hard

puzzles with approximately 65% success rate in 10,000

iterations and if allowed to run for unlimited iterations the

success rate for all types of puzzles was 100%.

HS algorithm has been used to solve Sudoku puzzle in

Geem (2007) however there are three main limitations in

that article.

(1) In order to carry out experimentation only two

Sudoku puzzles one of type Easy another of type

Hard has been used to conclude that the algorithm

solves easy problem very efficiently and fails to

solve the hard problem, however in randomized

algorithms one can’t jump on conclusion by taking

such a small example set.

(2) There are different types of Sudoku puzzles like

Beginner, Easy, Medium, Hard, and Expert however

only Easy and Hard problem has been attempted.

(3) The fitness function used is

Minimize Z ¼
X

9

i¼1

X

9

j¼1

xij � 45

�

�

�

�

�

�

�

�

�

�

þ
X

9

j¼1

X

9

i¼1

xij � 45

�

�

�

�

�

�

�

�

�

�

þ
X

9

k¼1

X

ðl;mÞ2Bk

xlm � 45

�

�

�

�

�

�

�

�

�

�

�

�

ð2Þ

where Xij 2 f1; 2; . . .; 9gis the (i, j)th element of

Sudoku

The first term in Eq. (2) represents the penalty function for

each horizontal row; the second term for each vertical

column; and the third term for each block. The solution is

reached when there is no violation (i.e. repeating number)

in rows, columns and blocks thus for solution Eq. (2)

evaluates to Zero. There are two main disadvantages with

this fitness function (Eq. 2).

(1) Even if the fitness function evaluates to zero it is not

guaranteed that the solution has been found. A

detailed discussion on the limitations of the above

mentioned fitness function (Eq. 2) can be found in

Weyland (2015).

(2) It gives more penalty to repetition of higher face

value digits than lower face value digits. Let there be

two solutions A and B such that in solution A, the

digit ’9’ occurs twice in some row and in solution B,

the digit ’1’ occurs thrice in some row. Then

according to the fitness function (Eq. 2) solution A

is better than solution B, although solution A has

more violation than solution B.

Thus there is a scope to modify the basic HS algorithm so

that it can be effective on all categories of Sudoku puzzles

viz. Beginner, Easy, Medium, Hard and Expert.

4 Proposed HSHC algorithm

In this paper a hybrid algorithm of Harmony search and

Hill Climbing has been proposed, namely Harmony Search

Hill Climber (HSHC). In order to increase the exploration

potentiality of HSHC it has been modified to create another

algorithm namely Retrievable Harmony Search Hill

Climber (RHSHC), further two variations of RHSHC

namely Global Best Retrievable Harmony Search Hill

Climber (GB-RHSHC) and Random Best Retrievable

Harmony Search Hill Climber (RB-RHSHC) have been

proposed.

Algorithm 2 is the Pseudo code of HSHC algorithm. In

Algorithm 2 the parameters HMS, HMCR, NH_SIZE

respectively denote Harmony Memory size, Harmony

Memory Consideration Rate and Size of neighborhood to

be explored by Hill Climbing operator.
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Detailed description of the HSHC pseudo code

(Algorithm 2)

The working of Algorithm 2 is described in the fol-

lowing steps.

Step 1

In this step the free parameters of algorithm like Harmony

Memory Size (HMS), Harmony Memory Consideration

Rate (HMCR) and Neighborhood Size (NH_SIZE) to be

explored by Hill Climber operator are initialized.

Step 2

Initialization of harmony memory (HM) is performed in

this step. So far as the structure of the harmony is con-

cerned, each harmony represents a complete Sudoku. Thus

harmony is represented by a vector of dimension N � N

where N is the order of the Sudoku puzzle. Harmony

Memory (HM) is an array of such vectors with dimension

HMS. Mathematically the structure of HM is

where Hn is the nth harmony, f ðHnÞ is the fitness value of

the nth harmony and hnij is cell at row i and column j in the

nth harmony of HM. While initializing the harmonies a

constraint is defined such that each row in the harmony

contain numbers from 1 to N exactly once without repeti-

tion. Mathematically (i, j)th element of harmony n denoted

by hnij must satisfy following constraints

for each ith row; ð1� i�NÞ; hnij 6¼ hnik;

k 6¼ j; 1� j; k�N; n 2 f1; 2; . . .;HMSg
ð3Þ

If all the elements in a harmony satisfy above constraints

(Eq. 3) it is guaranteed that the frequency of occurrence of

each number in the harmony is N. This is an important

achievement because in a valid Sudoku solution frequency

of occurrence of each number must be exactly N. Line

number 15 through 27 of Algorithm 2 constitute the hill

climbing operator, where neighbors of a given harmony are

generated by exchanging cell values and this operator will

never converge to solution if the above mentioned con-

straint on frequency of occurrence of digits is not obeyed

by harmony. Therefore during random initialization of HM

it is made sure that each row in the harmony must obey the

constraint represented by Eq. (3). Though there are many

ways to achieve it, let us consider following two ways.

Consider the pseudo code given as Algorithm 3. In

Algorithm 3 line number 3* generates random number from

1 to N and assigns it to r, line number 5* compare already

assigned numbers in row i of H with r if any of the numbers

happen to be same as that of r, r gets regenerated otherwise
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H[i][j] is assigned r where H is the harmony with dimension

N � N and H[i][j] is the (i, j)th element of H . It is easy to

verify that the worst case time complexity of Algorithm 3 is

greater than OðN3Þ where N is the order of the Sudoku.

Another algorithm to obtain randomization in an array is

called Richard Durstenfeld algorithm (Durstenfeld 1964).

Pseudo code of the algorithm for random initialization of

Sudoku using Richard Durstenfeld algorithm is given as

Algorithm 4. In Algorithm 4 line number 2* and 3*

sequentially assigns numbers from 1 to N to row i of H,

then in line number 6* and 7* one of the numbers is ran-

domly picked and shifted to end, the loop in line number 5*

repeats this process for all the N numbers. Since the

complexity of Algorithm 4 is OðN2Þ so it is considered for

random initialization of harmony in HM. Further it must be

noted during initialization no special care is provided to

givens/fixed cells, rather they are also initialized randomly

and for any violation of givens the harmony will be

penalized by fitness function.

Step 3

In this step each Harmony is evaluated to determine its

fitness. The limitation of fitness function used in Geem

(2007) has already been discussed in Sect. 3, so fitness

function proposed by Das et al. (2012) has been used with

slight modification. The fitness function proposed in this

paper consists of four parts, namely row-fitness, column-

fitness, sub-square-fitness and givens violation fitness. The

first three fitness terms have equal weightage, however the

last one has W times more weightage than first three terms.

Thus the overall fitness function becomes

Fitness function ¼ Row fitnessþ Column fitness

þ Subsquare fitness�W � Givens violation

ð4Þ

The fitness function (Eq. 4) attains the maximum possible

value when the solution is reached. Each row entry is

compared with all the remaining entries to its right. If the

two entries are not equal, row fitness value is incremented

by one otherwise it remains same. Thus in the solution the

contribution from each row is NðN � 1Þ=2 (sum of first N–

1 natural numbers). Hence for N rows it is N2ðN � 1Þ=2.

Similar results hold for columns and sub squares. Hence for

an N � N Sudoku puzzle the maximum possible fitness

value is 3N3ðN � 1Þ=2. It must be noted that the contri-

bution of penalty for violating givens will be zero in the

solution. The fitness value for the solution of a 9 � 9

Sudoku puzzle is 972. Thus when the fitness function

attains its maximum possible value it is guaranteed that

solution has been obtained. Expressing this concept in

mathematical form

f ði; j; k; lÞ ¼
0 if ði; jÞ ¼ ðk; lÞ
1 otherwise

�

where (i,j) and (k,l) refer to two entries of N � N Sudoku

puzzle. The fitness function for each row is defined as

Row fitness ¼
X

N

i¼1

X

N�1

j¼1

X

N

l¼jþ1

f ði; j; i; lÞ ð5Þ

The fitness function for each column is defined as

Column fitness ¼
X

N

j¼1

X

N�1

i¼1

X

N

l¼iþ1

f ði; j; l; jÞ ð6Þ

The fitness function for each sub square is defined as

Sub Square fitness

¼
X

N

i¼1

X

ffiffiffi

N
p

q¼1

X

q
ffiffiffi

N
p

�1

j ¼ 1þ
ðq� 1Þ

ffiffiffiffi

N
p

X

q
ffiffiffi

N
p

l¼jþ1

f ði; j; i; lÞþ

8

>

>

>

>

>

<

>

>

>

>

>

:

2

6

6

6

6

6

4

X

r ¼ 1 þ ðq� 1Þ
ffiffiffiffi

N
p

i 6¼ t
ffiffiffiffi

N
p

; t 2 Zþ

X

iþ
ffiffiffiffi

N
p

�
iðmod

ffiffiffiffi

N
p

Þ

k¼iþ1

X

q
ffiffiffi

N
p

s ¼ 1þ
ðq� 1Þ

ffiffiffiffi

N
p

f ði; r; k; sÞ

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

3

7

7

7

7

7

7

5

ð7Þ
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The fitness function for violating fixed/givens is defined as

Givens violation ¼
X

N

i¼1

X

N

j¼1

lði; jÞ

where lði; jÞ ¼
1 if flagði; jÞ 6¼ 0 and ði; jÞ 6¼ flagði; jÞÞ
0 otherwise

�

ð8Þ

where flag is an N � N matrix whose (i, j)th element is 0 if

(i, j)th element is not given otherwise it is equal to

given/fixed (i, j)th element and Zþ is the set of all positive

integers.

Hence from Eq. (4) the fitness function is the sum of

Eqs. (5), (6), (7) minus W times Eq. (8). After thorough

experimentation the value for W in Eq. 4 was fixed as 8.

Step 7

This step is executed with probability HMCR and in this step

a new harmony say Hnew is produced either by selecting an

existing harmony from HM with probability P or by combing

the harmonies in HM with probability 1-P. While producing

a new harmony using existing harmonies a simple mecha-

nism is used. While generating i th (1� i�N) row of Hnew,

one of the harmonies from HM is randomly selected and its i

th row is added to Hnew. The above procedure is repeated for

all the N rows ofHnew. The optimum value of P was found out

to be .95 after thorough experimentation.

Step 9

The aim of this step is to speedup convergence by incor-

porating problem specific knowledge in harmony creation.

This step must be executed with very low probability

because it increases the probability of being stuck in local

optimal. In this step a harmony is randomly generated

however during random harmony creation two facts are

kept in mind one the givens must remain intact another

there must be no repetition of numbers in rows and col-

umns. However repetition of numbers in blocks is allowed.

Mathematically hij the (i, j)th element of Hnew must satisfy

following constraints if it is not fixed.

for each element hij; hij 6¼ hik ðj 6¼ kÞ and
hij 6¼ hlj ðl 6¼ iÞ; ði; j; k; lÞ 2 f1; 2. . .;Ng

ð9Þ

Steps 15 through 27 of Algorithm 2 constitute the Hill

Climbing operator where a neighbor of a Harmony is

generated by exchanging contents of two cells having

different values.

Step 20

In this step NBR is compared with the best Harmony and in

case NBR is better than or slightly inferior than BEST, NBR

becomes ROOT. The reason for this move is that since NBR

seems to be very promising as it can compete with the best

Harmony it is reasonable to concentrate on this new harmony

by exploring it further. If the difference between the fitness

value of BEST and NBR is less than 3 it is considered to be

marginally inferior to BEST and thus eligible to be explored

further. After through experimentation the optimal value of

T was found out to be 3.

Steps 23 and 24

If any harmony say NBR produced during hill climbing is

better than the WORST Harmony in Harmony Memory, the

WORST harmony in HM is replaced by that harmony.

One of the main disadvantages of evolutionary algo-

rithms (including HS) is premature convergence due to

lack of diversity in population, so in order to overcome this

issue the concept of catastrophic mutation form GA (Jin

and Li 1997) has been adopted in HSHC and three new

algorithms namely RHSHC, GB-RHSHC and RB-RHSHC

proposed. In Catastrophic mutation the population is

unsettled by very high mutation rate (typically greater than

0.8) so as to recover the population diversity and thus avoid

premature convergence in GA. The RHSHC is obtained by

applying catastrophic mutation to HSHC algorithm. If the

BEST Harmony in HSHC does not change 150,000 func-

tion evaluations it is assumed that the algorithm has got

stuck in some local optimal and thus Harmony memory is

reinitialized.

The difference between GB-RHSHC and RHSHC is that

in GB-RHSHC when the reinitialization of HM is per-

formed the BEST Harmony in the Harmony Memory is

copied as such and the other HMS-1 harmonies are ran-

domly initialized, however in RHSHC the entire Harmony

memory is randomly initialized.

The RB-RHSHC is also obtained by slightly modifying

RHSHC algorithm. In RB-RHSHC when the reinitializa-

tion of HM is performed one of the Harmony from Har-

mony Memory (not necessarily the BEST) is copied as

such and the other HMS-1 harmonies are randomly

initialized.

The time complexity of fitness function (Eq. 4) is OðN3Þ
and hence the overall time complexity of HSHC is OðKN3Þ
where N is the order of sudoku and K is the allowed

number of fitness function evaluations. It should be noted

that the time complexity of RHSHC, GB-RHSHC, RB-

RHSHC remains same as that of HSHC.

5 Computational experiment

In order to check the effectiveness and efficiency of the

proposed algorithms a set of 25 Sudoku puzzles (of order

9) five each of type Beginner, Easy, Medium, Hard and

Expert have been taken from the web site www.sudoku.

com and each problem has been tested 30 times. Deter-

mining the optimal setting for free parameters in a meta
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heuristic algorithm is a hyper optimization problem, how-

ever after thorough experimentation following parameter

setting was found out to be effective for most if not all the

cases: HMS = 40, HMCR = 0.99 and NH_SIZE = 120.

The stopping criteria for a run is either the solution is found

or maximum execution time of 35 s is attained. The

experimentation was carried out on a laptop having spec-

ification- Intel CORE i3 processor, 4 GB of RAM and

Windows 8.1 Operating System.

Tables 1, 2, 3, 4 demonstrate the performance of the

proposed algorithms HSHC, RHSHC, GB-RHSHC and

RB-RHSHC respectively. The columns of all the four

tables (1, 2, 3, 4) from left to right represent: Puzzle type

(PUZZLE TYPE), Percentage of runs that are able to find

solution of a given puzzle (SP), Minimum execution time

(MINT), Maximum execution time (MAXT), Average

execution time (AVGT), Standard deviation of execution

time (SDT), Minimum number of fitness Function Evalu-

ations performed (MINFE), Maximum number of fitness

Function Evaluations performed (MAXFE), Average

number of fitness Function Evaluations per-

formed(AVGFE) and Standard Deviation of number of

fitness Function Evaluations performed (SDFE).The above

statistics in terms of execution time and number of fitness

function evaluations required have been obtained for suc-

cessful runs only.

Figure 3 compare the performance of proposed four

algorithms in terms of success rate on different types of

Sudoku puzzles. Figures 4, 5 and 6 respectively compare

the performance of the four algorithms in terms of Mini-

mum, Maximum and Average execution time required for

successful runs. Figures 7, 8 and 9 respectively compare

the performance of the four algorithms in terms of Mini-

mum, Maximum and Average number fitness function

Table 1 HSHC performance
Puzzle type SP MINT MAXT AVGT SDT MINFE MAXFE AVGFE SDFE

Beginner 70.67 0.251 32.911 4.892 2.734 40041 4979069 703649.7 445102.9

Easy 66 0.436 28.805 4.221 2.847 67853 4645532 657033.3 433648.7

Medium 33.33 0.796 32.674 5.073 2.022 126055 4803732 792300.5 290206.2

Hard 33.33 0.719 29.014 6.895 2.399 116955 4759383 1114436 392600.2

Expert 30.67 0.945 28.009 5.804 2.921 144262 3647316 830308.3 355427.8

Table 2 RHSHC performance
Puzzle type SP MINT MAXT AVGT SDT MINFE MAXFE AVGFE SDFE

Beginner 100.00 0.260 29.121 3.103 2.301 41435 4358130 672271.0 635898.0

Easy 100.00 0.340 32.653 6.034 2.575 53750 4751663 634465.2 608455.6

Medium 93.33 0.691 31.370 10.196 2.582 107590 4700497 1926207.5 1152346.3

Hard 88.67 1.029 31.267 12.771 1.798 157017 4954494 2025149.5 303393.9

Expert 80.00 1.025 33.828 13.579 1.301 159260 4868901 1911467.8 252190.1

Table 3 GB-RHSHC

performance
Puzzle type SP MINT MAXT AVGT SDT MINFE MAXFE AVGFE SDFE

Beginner 81.33 0.296 22.399 3.289 3.186 47244 3581089 505804.7 477320.1

Easy 66.00 0.396 34.037 4.945 4.196 58969 4858880 766863.1 622109.7

Medium 57.33 0.750 33.158 7.861 5.297 121566 4857597 1196316.0 772401.0

Hard 49.33 0.780 28.082 8.222 1.739 109090 4170662 1237255.9 248678.5

Expert 42.67 0.846 34.154 11.091 2.914 120754 4975036 1678574.1 450827.2

Table 4 RB-RHSHC

performance
Puzzle type SP MINT MAXT AVGT SDT MINFE MAXFE AVGFE SDFE

Beginner 84.00 0.287 32.235 3.052 1.402 45830 4000409 665515.9 415526.8

Easy 76.67 0.331 26.951 5.445 1.580 51823 4522048 828088.2 695742.7

Medium 72.67 0.682 31.621 8.002 2.614 106805 5767232 1345171.3 538997.8

Hard 52.67 0.904 32.141 10.374 3.333 143274 5832768 1826020.3 490699.8

Expert 45.33 0.895 31.804 11.539 2.699 123038 4916839 1886465.3 307100.5
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evaluations required to find the optimal. Note that success

rate is the percentage of runs able to solve the Sudoku

puzzle. It is evident from Fig. 3 that the order followed by

four algorithms in terms of success rate is:

RHSHC[RB-RHSHC[GB-RHSHC[HSHC

Except for Beginner type puzzles the algorithms follow

the same order in terms of execution time of successful

runs. Now let us analyse the behavior of these algorithms.

The reason for highest success rate and execution time of

RHSHC is while trying to figure out global optima the

algorithm extensively reinitialize its HM thus increasing

the probability of escaping from local optima but at the

same time increasing its execution time because the algo-

rithm is not using its previous experience while further

exploring the search space. While trying to escape from

local optima by reinitializing HM the GB-RHSHC algo-

rithm preserves the best harmony obtained so far and thus

utilizes the best of its experience while as RB-RHSHC

preserves one of the good harmonies and not necessarily

the best thus former increases the probability of fast con-

vergence than latter on the cost of increasing the proba-

bility of being stuck in local optima. HSHC never performs

catastrophic mutation (i.e., does not unsettle its HM by

reinitialization) thus increasing its convergence speed but

at the same time decreasing the probability of escaping

from local optima. Since beginner type Sudoku puzzles

comparatively take less number of function evaluations as

a result frequency of HM reinitialization is decreased, so

all the four algorithms have almost same execution time for

such type of problems.

Fig. 3 Comparison in terms of success rate

Fig. 4 Minimum execution time required

Fig. 5 Maximum execution time required

Fig. 6 Average execution time required

Fig. 7 Minimum number of function evaluations required
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6 Comparison with other heuristic algorithms

The best performing RHSHC has been compared with the

standard Harmony Search algorithm (Geem 2007), Hill

Climber algorithm (Moraglio et al. 2006), Retrievable

Genetic algorithm (Das et al. 2012) and hybrid AC3-tabu

search algorithm (Soto et al. 2013) for solving sudoku. A

brief introduction of the above mentioned algorithms has

already been provided in Sect. 3. Retrievable Genetic

algorithm has already been compared with Genetic algo-

rithm proposed in Mantere and Koljonen (2006) and it has

been established that former is superior to latter both in

terms of effectiveness and efficiency so we have not

compared our results with latter.

Since the fitness function proposed in this paper is dif-

ferent as used in Geem (2007) further the mechanism for

generating new Harmony whether by memory considera-

tion or by randomization is also different here, so in order

to keep the comparison fair all the programs have been run

for equal amount of time (35 seconds). It has been found

that the HS algorithm to solve Sudoku proposed in Geem

(2007) was not able to solve a single problem from the set

of 25 Sudoku puzzles, thus all the four algorithms proposed

in this paper (HSHC, RHSHC, GB-RHSHC, RB-RHSHC)

significantly outperformed it.

The Hill climber algorithm proposed in Moraglio et al.

(2006) is able to solve Easy sudoku puzzles with 100%

success rate however completely failed in solving Medium

and Hard puzzles. Thus RHSHC is very effective than

standard Hill climber algorithm proposed in Moraglio et al.

(2006) particularly for Medium, Hard and Expert level

puzzles.

In order to keep the comparison fair between RHSHC

and Retrievable GA (Das et al. 2012), Retrievable GA

have been tested on same set of 25 sudoku puzzles, with

the same stopping criteria and on the same machine on

which RHSHC was executed. Further Retrievable GA

algorithm is tested 30 time on each puzzle as was done with

RHSHC algorithm.

Figures 10 and 11 compare the two algorithms (RHSHC

and Retrievable GA) in terms of success rate and execution

time respectively. As is evident from Fig. 10 the success

rate of both algorithms is almost same for Beginner and

Easy level puzzles however for Medium, Hard and Expert

level puzzles RHSHC significantly out performs Retriev-

able GA. The difference is more evident in Expert level

puzzles where the success rate of RHSHC is approximately

80% and that of Retrievable GA is only 7%. In terms of

execution time Retrievable GA outperforms RHSHC for

Beginner and Easy type puzzles, however for Medium,

Hard and Expert level puzzles RHSHC outperforms

Retrievable GA (Fig. 11). Thus RHSHC is the better per-

forming algorithm (in terms of effectiveness as well as

efficiency) than Retrievable GA particularly for Medium,

Hard and Expert level puzzles.

Hybrid AC3-tabu search algorithm and RHSHC algo-

rithm has been tested on the same set of 25 Sudoku puz-

zles, run on same machine and with same stopping criteria.

Figures 12 and 13 compare the two algorithms (RHSHC

and Hybrid AC3-tabu search) in terms of success rate and

execution time respectively. As is evident from Figure 12

Fig. 8 Maximum number of function evaluations required

Fig. 9 Average number of function evaluations required

Fig. 10 Comparison of RHSHC and retrievable GA (success rate)
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the success rate of both algorithms is almost same for

Beginner level puzzles. RHSHC is slightly better than

Hybrid AC3-tabu algorithm on Easy level puzzles whereas

on Medium, Hard and Expert level puzzles hybrid AC3-

tabu search algorithm has slight advantage over RHSHC.

In terms of time complexity (Fig. 13) hybrid AC3-tabu

search outperforms RHSHC on all category of puzzles,

except for Easy type puzzles were both take approximately

same time.

7 Wilcoxon’s rank-sum test

A pair wise Wilcoxon’s rank-sum test at 5% level of sig-

nificance is used to statistically compare the performance

of the competing algorithms. The sampling data used for

applying the test has been obtained by performing 30

independent runs of each algorithm. The Wilcoxon’s rank-

sum test revealed that there is no statistically significant

difference between RHSHC and Retrievable GA on

Beginner and Easy type puzzles, however the superior

performance of RHSHC over Retrievable GA is

statistically significant on Medium, Hard and Expert level

puzzles. Comparing the performance of RHSHC and

Hybrid AC3-tabu search algorithm Wilcoxon’s rank-sum

test revealed that there is no statistically significant dif-

ference on Beginner, Medium and Hard type puzzles,

however the better performance of RHSHC over AC3-tabu

search algorithm is statistically significant on Easy type

puzzles similarly the better performance of AC3-tabu

search over RHSHC is statistically significant on Expert

level puzzles.

8 Conclusion

This paper introduces a specialized Memetic algorithm

namely HSHC created by hybridization of Harmony Search

Algorithm and Hill Climbing operator to solve Sudoku

puzzles. In order to increase exploration capabilities of

HSHC algorithm three variations of basic HSHC are

introduced. All the four proposed algorithms performed

significantly better than the standard Harmony Search

algorithm and standard Hill Climber algorithm. RHSHC

outperformed its three variations (HSHC, GB-RHSHC,

RB-RHSHC) in terms of success rate and was able to solve

Beginner and Easy type problems with 100% success,

further it also performed extremely well in solving Med-

ium, Hard and Expert level puzzles.

Comparing RHSHC and Retrievable GA, it was estab-

lished that former significantly outperformed latter in terms

of effectiveness and efficiency particularly for Medium,

Hard and Expert level puzzles. Experimental results

demonstrate that RHSHC is competent (if not better) to

recently proposed hybrid AC3-tabu search algorithm.

The objective of this paper is to study how a simple

local search technique can be incorporated in a meta-

heuristic algorithm to solve a complex problem like

Fig. 11 Comparison of RHSHC and retrievable GA (execution time)

Fig. 12 Comparison of RHSHC and hybrid AC3-tabu search (success

rate)

Fig. 13 Comparison of RHSHC and hybrid AC3-tabu search

(execution time)
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Sudoku. In the future we intend to refine RHSHC algorithm

so that its effectiveness particularly for Hard and Expert

level puzzles is increased.
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