
ORIGINAL ARTICLE

Software maintainability prediction using hybrid neural network
and fuzzy logic approach with parallel computing concept

Lov Kumar1 • Santanu Ku Rath1

Received: 26 September 2016 / Revised: 30 March 2017 / Published online: 21 April 2017

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2017

Abstract In present day scenario, majority of software

companies use object-oriented concept to develop software

systems as it enables effective design, development, testing

and maintenance, in addition to the optimal characteriza-

tion of the software system. With the increase in number of

these software systems, their effective maintenance aspect

becomes very important day by day. In this study, Neuro-

Fuzzy approach: hybrid neural network and fuzzy logic

approach has been considered to develop a maintainability

model using ten different object-oriented static source code

metrics as input. This method is applied on maintainability

data of two commercial software products such as UIMS

and QUES. Rough set analysis (RSA) and principal com-

ponent analysis (PCA) are used to select suitable set of

metrics from the ten metrics employed to improve perfor-

mance of maintainability prediction model. From experi-

mental results, it is observed that Neuro-Fuzzy model can

effectively predict the maintainability of object-oriented

software systems. After implementing parallel computing

concept, it is observed that the training time gets reduced to

a significant amount when the number of computing nodes

were increased. Further it is observed that selected subset

of metrics using feature selection techniques i.e., PCA, and

RSA was able to predict maintainability with higher

accuracy.

Keywords Artificial neural network � Fuzzy Logic �
Source code metrics � Maintainability � Parallel computing

1 Introduction

It is often observed that, software developers give more

emphasis on object-oriented development methodologies in

the present day scenario, because of its inherent advantages

of traditional development approach such as cohesion,

coupling, inheritance etc. To assess the quality of the

software, developed on the basis of object-oriented

methodology, different software metrics are used. The

usefulness of these metrics lies in their ability to predict the

quality of the developed software. Software quality attri-

butes that have been identified by ISO/IEC 9126 (Jung

et al. 2004) are efficiency, functionality, portability,

maintainability, reliability and usability. In recent years

maintainability is considered as important quality param-

eter for achieving considerable success in software system

(Misra 2005; Zhou and Baowen 2008; Malhotra and Chug

2014). Software maintainability means the capability of the

software system or component to fix or correct the faults,

improve performance, or adapt to changes in environment.

A good number of researchers have concluded that the

maintainability prediction model can be developed using

source code metrics (Misra 2005; Chen and Huang 2009;

Chidamber and Kemerer 1994; Li and Henry 1993; Basili

et al. 1996; Damaševičius and Štuikys 2010; Misra 2007;

Baski and Misra 2011; Misra and Akman 2008; Misra et al.

2011), which are used to measure the internal structure of

software system i.e., complexity, coupling, cohesion,

inheritance, and size. There are several source code metrics

proposed by different researchers such as, Abreu MOOD

& Lov Kumar

lovkumar505@gmail.com

Santanu Ku Rath

skrath@nitrkl.ac.in

1 Department of Computer Science and Engineering, National

Institute of Technology, Rourkela, India

123

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502

DOI 10.1007/s13198-017-0618-4

http://orcid.org/0000-0002-0123-7822
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-017-0618-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-017-0618-4&domain=pdf

metrics suite (Abreu and Carapuca 1994; Kang and Bieman

1995; Briand et al. 2000; Halstead 1977; Henderson-Sell-

ers 1996; Li and Henry 1993; McCabe 1976; Lorenz and

Kidd 1994), and CK metrics (Chidamber and Kemerer

1994) suite, to measure the internal structure of software

systems. In this work, only those source code metrics are

selected which have strong relationships with maintain-

ability of software. So, we have considered CK metrics

suite consisting different source code metrics such as depth

of inheritance (DIT), weighted methods per class (WMC),

number of children (NOC), response for a class (RFC), lack

of cohesion in methods (LCOM), and Li and Henry metrics

consisting different source code metrics such as data

abstraction coupling (DAC), message passing coupling

(MPC), and number of local methods (NOM) and size

metrics [traditional line of code (SIZE1), and total number

of attributes and methods of a class (SIZE2)] to develop a

maintainability prediction model for predicting maintain-

ability of object-oriented software systems. These source

code metrics mostly emphasize on quality aspect of a class.

Performance of the maintainability prediction model

depends on choosing the right set of object-oriented source

code metrics. Feature selection is a process of selecting a

suitable subset of object-oriented metrics from the avail-

able ones. In our work, RSA and PCA are considered in

finding the right subset of source code metrics (Kumar and

Rath 2015). In RSA, subset of features are identified to

collectively improve predictive capability while in PCA,

initial set of features data are considered and builds the

derived values.

There are a number of mechanisms employed in litera-

ture for software maintainability prediction. Some of the

extensively employed approaches for maintainability pre-

diction are regression based model, association rule min-

ing, clustering, neural network, Bayesian network, SVM

etc. (Malhotra and Chug 2014; Zhou and Leung 2007;

Kumar and Rath 2015; Kumar et al. 2015). Development

of accurate maintainability prediction model to predict

maintainability of class is still a challenging task in soft-

ware engineering discipline. In this study, hybrid approach

of neural network and Fuzzy logic (Neuro-Fuzzy approach)

has been considered while developing a model to predict

maintainability of object-oriented software. Parallel com-

puting concept is used to accelerate training procedure of

the neural network model (Kumar and Rath 2015). Parallel

computing algorithms are classified into two subclasses

consisting of node and training dataset parallelism. In node

parallelism, neurons are mapped into different computing

node for pipelining the process. In training dataset paral-

lelism, a complete structure of neural network is assigned

to each computing node. Each node conducts entire com-

putation for neural network. In this study training dataset

parallelism has been considered to accelerate the neural

network training procedure.

The generic steps followed to predict maintainability of

any object-oriented software are shown in Fig. 1. Initially

the classes of the respective software are identified from

the class diagram and next, the different metric values of a

class are extracted using different tools such as CKJM,

LOCMetric analyzer etc. as available in literature.1 Then,

different feature selection techniques are considered to find

the right sets of features. Further, these metric sets are

considered as input to the developed model in order to

predict maintainability of all individual classes in a

software.

This study intends to focus on:

• Identification of suitable set of source code metrics for

maintainability prediction.

• Development of a maintainability prediction model

using Neuro-Fuzzy approach.

• Accelerating the Neuro-Fuzzy approach training

procedure.

The rest of the paper is organized in this way: Sect. 2

shows the existing literature in the field of maintainability

prediction. Section 3 highlights the experimental dataset

used to develop the maintainability prediction model. The

feature selection techniques and research methodology are

described in Sects. 4 and 5, respectively. Section 6 pre-

sents the performance parameters used for evaluating the

models. Section 7 presents the research framework and

also highlights on the results for maintainability prediction,

achieved by applying Neuro-Fuzzy approach. In Sect. 8,

various threats to validity are discussed and Sect. 9 con-

cludes the paper with scope for future work.

2 Related work

This section presents a review of literature on the use of

software metrics and their application in maintainability

prediction. In literature, different combination and subsets

UML
Diagram

Identify the
class

Metric
values of
individual
class is
obtained

Right set of
features are
selected

Metric
values are

fed as input
to the

developed
model

Maintainability (Change)

Fig. 1 Flow chart for maintainability prediction

1 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/.

S1488 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502

123

http://gromit.iiar.pwr.wroc.pl/p%5finf/ckjm/

of software metrics have been analyzed and relationship is

derived between the object-oriented metrics and main-

tainability as mentioned in Table 1. In Table 1, the first

column indicates the name of the author, and the year in

which the work was carried out. The second column indi-

cates the different subsets of object-oriented metrics, con-

sidered to develop a model for predicting maintainability of

object-oriented software. Last column of the table repre-

sents the techniques used to develop a maintainability

prediction models.

From Table 1, it is observed that in all the studies made

by different authors, independent variables are the different

subset of the object-oriented metrics and the dependent

variable is the maintainability of object-oriented software.

This shows that the performance of maintainability pre-

diction model depends on the software metrics which have

been considered as input to develop a model. Selection of

right set of feature is an important data preprocessing task

in different application of data mining and machine

learning (Huang and Chow 2005; Kabir et al. 2010). In this

work, two different types of features selection techniques

i.e. principal component analysis (PCA), and rough set

analysis (RSA) have been considered to find right subset of

software metrics (Pawlak 1982). The effectiveness of these

feature selection techniques are evaluated using Neuro-

Fuzzy approach (Adeli and Hung 1994).

From Table 1, our observations suggest that regression

based analysis and their different forms are commonly used

by various authors; but very less work has been carried out

on using neural network models for maintainability pre-

diction. Neural network models over the years have seen an

explosion of interest, and their applicability across a wide

range of problem domains. In this paper, Neuro-Fuzzy

approach is used to develop the maintainability prediction

model (Adeli and Hung 1994).

3 Experimental dataset and setup

The following subsections highlight on model used for

prediction of quality parameter i.e., maintainability, con-

sidering different case studies. Data are normalized to

obtain better accuracy and then dependent, along with

independent variables are chosen for maintainability

estimation.

3.1 Experimental dataset

In this paper, two commercial object-oriented software

published by Henry are used as case studies (Li and Henry

1993). Software such as quality evaluation system (QUES),

and user interface system (UIMS) are chosen for main-

tainability prediction. These case studies were chosen

mainly because many researchers recently used these case

studies to evaluate the performance of their developed

maintainability prediction models (Kumar and Rath 2015;

Zhou and Leung 2007; Koten and Gray 2006; Elish and

Elish 2009; Al-Jamimi et al. 2012; Aljamaan et al. 2013;

Kumar and Rath 2015) and hence this study intends to be

able to compare performance of proposed model with the

performance of published models. QUES, and UIMS

software have 71 and 39 number of classes. These soft-

wares are developed using Classic-ADa programing lan-

guage. Classic-ADa is an object-oriented programing

language that adds the capability of object-oriented pro-

graming to ADa by providing object-oriented construct in

addition to the ADa constructs (Li and Henry 1993).

3.2 Dependent variable: maintainability

Number of definition and metrics for software maintain-

ability are defined by different authors (Li and Henry

1993; Zhou and Leung 2007; Banker et al. 1993). From

literature, it is observed that most of the authors have used

‘maintainability index (MI)’ and ‘change metrics’ as the

factors to determine maintainability of software. In this

work, maintainability is defined as the amount of change

(usually a number) brought in the code throughout the

maintenance period. A line change can be considered as

an ‘addition’ or ‘deletion’ of lines of code in a class

during maintenance period (3 year) (Malhotra and Chug

2014; Li and Henry 1993; Zhou and Leung 2007;

Aggarwal et al. 2005; Riaz et al. 2009, 1997). Figure 3

shows the data boxplots of maintainability for QUES and

UIMS datasets. The line in the middle of box represents

the median of the data, lower and upper quartile show the

value of 25 and 75% of the data, and lower and upper

extreme show the minimum and maximum value of the

data. From Fig. 3, it is observed that the median value

(middle line of the box plot) of CHANGE in QUES

software is higher than those in the UIMS. This suggests

that, UIMS software is more maintainable.

3.3 Predictor variables: source code metrics

Number of software metrics have been proposed for

different application such as fault prediction, mainte-

nance effort, cost estimation etc. In this paper, ten dif-

ferent object-oriented static source code metrics such as

depth of inheritance (DIT), weighted methods per class

(WMC), response for a class (RFC), data abstraction

coupling (DAC), lack of cohesion in methods (LCOM),

number of children (NOC), message passing coupling

(MPC), number of local methods (NOM), traditional line

of code (SIZE1), and total number of attributes and

methods of a class (SIZE2). The detail description of

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502 S1489

123

these metrics are described in Li and Henry (1993).

Figure 2 shows the data boxplots of source code metrics

for QUES and UIMS datasets. Table 2 displays the

descriptive statistics such as: Min, 25%, Max, Mean,

Median, 75% and Standard deviation for all the metrics

across both projects.

From Fig. 2 and Table 2, observations made are:

1. In both the system, DIT metric of classes have low

value of median. This low value shows that, both

systems have used limited inheritance.

2. The value of ‘NOC’ in QUES software product, has all

classes with NOC values to be zero. This indicates that

there are no immediate sub-classes and hence NOC is

not considered in computing maintenance effort.

Table 1 Summary of empirical literature on maintainability

Author Software metrics used Prediction technique considered

Li and Henry

(1993)

Li and Henry metrics, CK metrics, and

size metrics

Regression based models

Oman and

Hagemeister

(1994)

Mccabe metrics, and Halstead’s metrics Regression based models

Schneberger

(1997)

Model complexity metrics Regression based models

Binkley and

Schach (1998)

CDM and design quality metrics Regression analysis

Kohavi (1999) Mccabe metrics, Halstead’s metrics, LOC Experts judgments

Bandi et al.

(2003)

Interface and design quality metrics Variance, correlation, and regression analysis

Dagpinar and

Jahnke (2003)

Cohesion metrics, coupling metrics,

inheritance metrics, and size metrics

Best subset of regression model, correlation, multivariate analysis

Misra (2005) Britee Abreu, CK metrics, Carapuca

metrics, Lorenz and Kidd metrics

Linear regression, correlation and multiple regression

Aggarwal et al.

(2005)

Li and Henry and CK metrics Fuzzy model

Aggarwal et al.

(2006)

Li and Henry and CK metrics Artificial neural network

Koten and Gray

(2006)

Li and Henry, CK metrics and size

metrics

Bayesian network, backward elimination and stepwise selection and regression

tree

Zhou and Leung

(2007)

Li and Henry, CK metrics and size

metrics

Artificial neural network, multivariate linear regression, multivariate adaptive

regression splines, regression tree and support vector regression

Zhou and

Baowen (2008)

Design quality metrics Regression based models

Elish and Elish

(2009)

Li and Henry, CK metrics and size

metrics

TreeNet

Jin and Liu

(2010)

Li and Henry, CK metrics and size

metrics

Support vector machine (SVM)

Al-Jamimi et al.

(2012)

Li and Henry, CK metrics and size

metrics

Fuzzy logic

Chandra (2012) Li and Henry, CK metrics and size

metrics

Support vector machine

Aljamaan et al.

(2013)

Li and Henry, CK metrics and size

metrics

Multilayer perceptron (MLP), radial basis function network (RBF), support

vector machines (SVMs), and M5 model tree (M5P)

Malhotra and

Chug (2014)

Li and Henry, CK metrics and size

metrics

Feed forward 3-layer back propagation network (FF3LBPN) and general

regression neural network (GRNN)

Kumar and Rath

(2014)

Li and Henry, CK metrics and size

metrics

ANN, Neuro-GA, and Neuro-PSO

Kumar and Rath

(2015)

CK metrics ANN, and Neuro-GA

Kumar et al.

(2015)

CK metrics, Li and Henry metrics, and

size metrics

Neuro-GA

Kumar and Rath

(2015)

Li and Henry, CK metrics and size

metrics

Neuro-GA with parallel computing

S1490 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502

123

3. The median value of coupling metrics (RFC, and

MPC) in QUES are higher than those in the UIMS.

This suggests that QUES software have high coupling

between the classes.

4. The median value of cohesion metrics i.e., LOCM are

similar for both system. This suggests that, both

systems have similar cohesion.

5. Similar median value of NOM and SIZE2 are found in

the both software, suggesting that both systems are

similar class size at the design level. However, both

software have significant difference in SIZE1.

3.4 Cross correlation analysis

In this study, Pearson’s correlations (r Coefficient of cor-

relation) is used to measure the linear relation between

different source code metrics. Pearson’s correlations is

used to measure the direction and strength of the linear

relationship between two attributes. Figure 4 shows the

Pearson’s correlation among all source code metrics for

UIMS and QUES software system. The sign of the corre-

lation coefficient defines the direction of the relationship,

i.e., -ve or ?ve. A ?ve value of r indicates that the

independent and dependent variables grow linearly (when

independent variables increases, the dependent metrics also

increases, and vice versa). While in case of -ve value of r,

the independent variable is inversely proportional to

dependent variable (when independent variables increases,

the dependent metrics decreases, and vice versa) For the

sake of simplicity, the graphs are represented using four

different symbols as described below:

• Black circle (d): r value between 0.7 and 1.0 indicate a

strong positive linear relationship.

• White circle (s): r value between 0.3 and 0.7 indicate a

weak positive linear relationship.

• Black square (j): r value between -1 and -0.7

indicate a strong negative linear relationship.

• White square (h): r value between -0.7 and -0.3

indicate a weak negative linear relationship.

• Blank circle: no linear relationship.

From Fig. 4, it is observed that there is a strong positive

linear relationship between some metrics such as WMC is

highly correlated with MPC, RFC, LCOM, NOM, SIZE1,

and Change. This high correlation value between pair of

metrics show that, although metrics measure different

features of class design, there is a significant statistical

reason to believe that classes with low (or high) metric

values also have low (or high) values of other highly cor-

related metrics. In this paper, Principal component analysis

(PCA) has been considered to extract new set of metrics

from original metrics set that have low correlation value.

UIMS QUES

W
M
C

0

20

40

60

80

UIMS QUES

D
IT

0

1

2

3

4

UIMS QUES

N
O
C

0

2

4

6

8

UIMS QUES

M
P
C

0

10

20

30

40

UIMS QUES

R
FC

0

50

100

150

UIMS QUES

LC
O
M

0

5

10

15

20

25

30

UIMS QUES

D
A
C

0

5

10

15

20

25

UIMS QUES

N
O
M

0

10

20

30

40

50

UIMS QUES

S
IZ
E
1

0

100

200

300

400

UIMS QUES

S
IZ
E
2

0

200

400

600

800

1000

Fig. 2 Source code metrics

UIMS QUES

Ma
int

ain
ab

ility
 (C

ha
ng

e)

0

50

100

150

200

250

300

Fig. 3 Descriptive statics of maintainability

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502 S1491

123

3.5 Effectiveness of metrics

In this study, three different set of metrics (one containing

all metrics, selected metrics using RSA, extracted feature

using PCA) are considered as input to develop maintain-

ability prediction model. The dependent and independent

variables of the model are shown in Table 3.

4 Feature extraction and selection using PCA
and RSA

Since the performance of the maintainability prediction

model is highly influenced by the quality of the maintain-

ability dataset, consisting of software metrics and the

maintainability information, the selection of the right set of

software metrics becomes an important step of the main-

tainability prediction process. In this study, two different

types of features selection techniques have been considered

to select right subset of object-oriented metrics out of total

available object-oriented metrics which are able to predict

maintainability of object-oriented software with higher

accuracy.

4.1 Principal component analysis (PCA)

Principal component analysis (PCA) concept was first

develop by Karl Pearson in 1901 (Kumar and Rath 2015).

It is a statistical technique used for transfer to feature space

of lower dimension having the most significant features

W
M

C

D
IT

N
O

C

M
P

C

R
F

C

L
C

O
M

D
A

C

N
O

M

S
IZ

E
1

S
IZ

E
2

C
H

A
N

G
E

WMC

DIT

NOC

MPC

RFC

LCOM

DAC

NOM

SIZE1

SIZE2

CHANGE

W
M

C

D
IT

N
O

C

M
P

C

R
F

C

L
C

O
M

D
A

C

N
O

M

S
IZ

E
1

S
IZ

E
2

C
H

A
N

G
E

WMC

DIT

NOC

MPC

RFC

LCOM

DAC

NOM

SIZE1

SIZE2

CHANGE

UIMS QUES

Fig. 4 Correlation between source code metrics

Table 2 Descriptive statistics

of classes for UIMS and QUES
WMC DIT NOC MPC RFC LCOM DAC NOM SIZE1 SIZE2

UIMS

Min 1.00 0.00 0.00 2.00 17.00 3.00 0.00 4.00 4.00 115.00

25% 2.00 2.00 0.00 12.00 34.25 4.00 1.00 5.00 7.00 172.50

Mean 14.96 1.92 0.00 17.75 54.38 9.18 3.44 13.41 18.03 275.58

Median 9.00 2.00 0.00 17.00 40.00 5.00 2.00 6.00 10.00 211.00

75% 22.00 2.00 0.00 21.00 62.00 14.00 4.00 20.75 24.75 331.50

Max 83.00 4.00 0.00 42.00 156.00 33.00 25.00 57.00 82.00 1009.00

SD 17.06 0.53 0.00 8.33 32.67 7.31 3.91 12.00 15.21 171.60

QUES

Min 0.00 0.00 0.00 1.00 2.00 1.00 0.00 1.00 4.00 1.00

25% 1.00 2.00 0.00 1.00 11.25 4.25 0.00 6.00 28.50 6.00

Mean 11.38 2.15 0.95 4.33 23.21 7.49 2.41 11.38 106.44 14.00

Median 5.00 2.00 0.00 3.00 17.00 6.00 1.00 7.00 74.00 9.00

75% 11.50 3.00 0.75 6.00 29.75 7.75 2.75 12.75 121.75 16.00

Max 69.00 4.00 8.00 12.00 101.00 31.00 21.00 40.00 439.00 61.00

SD 15.90 0.90 2.01 3.41 20.19 6.11 4.00 10.21 114.65 13.47

S1492 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502

123

from data space of high dimension. The detail steps of PCA

is described in Fig. 5.

From Fig. 4, it is clear that many pairs of source code

metrics have high ([0.7) correlation value. PCA is used to

extract metrics from raw metrics that have low correlation

value, we call the new PCA. In PCA, only those metrics are

selected which have Eigenvalue being more than 1. Table 4

shows the rotated component metrics of raw data. In this

paper, the rotation is performed to maximizes the sum of

the variances of the squared coefficients within each

eigenvector. The value greater then 0.7 (shown bold in

Table 4) are the metrics, which are used to interpret the

principal component. Table 4 also shows the eigenvalue,

variance percentage and cumulative percentage.

The interpretations of principal component for QUES

software (similar for UIMS software) are given as follows:

1. PC1: WMC, RFC, LOCM, NOM, DAC, SIZE1, and

SIZE2 are size, coupling, and cohesion metrics. PC1

contains the size, cohesion, and coupling metrics.

2. PC2: PC2 contains coupling metrics i.e., MPC that

counts the number of send statements in class.

Table 3 Effectiveness of

metrics
Analysis Dependent variable Independent variable

A1 Maintainability DIT, WMC, RFC, NOC, DAC, LCOM, MPC, NOM, SIZE2, SIZE1

A2 Maintainability Reduced feature attributes using RSA

A3 Maintainability Extracted feature attributes using PCA

Normalization
of data

Calculation of eigen
value and eigen vector

Selection of principal
components

Evaluation of reduced
feature matrix

Normalization of Matrix ‘X’ to ensure
zero mean of each feature value.

Calculate μj = 1
n

n
i=1 xj

i

Replace xj with (xj − μj)

Eigen vectors of matrix is
computed using MATLAB

command as:
eign = eig(sigma)

Metrics are selected which have
Eigenvalue being more than 1

Evaluate Z = X ∗ eign(:, 1 : k).
where Z is the new matrix with

reduced feature dimension.

Data Set

Fig. 5 Framework of PCA

calculation

Table 4 Rotated principal

component
Metrics UIMS QUES

PC1 PC2 PC1 PC3 PC3

DIT -0.368 0.745 0.062 0.027 0.976

WMC 0.919 0.189 0.830 0.261 -0.272

RFC 0.957 0.182 0.874 0.339 0.048

NOC 0.349 -0.792 – – –

MPC 0.693 0.389 -0.026 0.966 0.037

LCOM 0.819 0.220 0.870 -0.153 0.058

NOM 0.936 0.020 0.972 -0.129 0.094

DAC 0.707 -0.311 0.797 0.028 0.425

SIZE1 0.933 0.234 0.973 -0.090 0.187

SIZE2 0.788 -0.357 0.808 0.481 -0.090

Eigenvalues 5.332 2.351 5.375 1.397 1.246

Cumulative % variance 53.315 76.887 59.725 75.244 89.086

% variance 53.315 23.57 59.725 15.519 13.842

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502 S1493

123

3. PC3: PC3 contains inheritance metrics i.e., DIT that

measure the depth of inheritance tree of a class.

4.2 Rough set analysis

Pawlak described rough set analysis as a formal approxi-

mation of a conventional (CRISP) set (Pawlak 1982). Lowe

and upper bound of the raw data are used to represent this

formal approximation. The application of this formal

approximation is to analysis of various data types, espe-

cially when dealing with inexact, vague and uncertain data.

Figure 6 shows the steps followed to obtain reduced attri-

bute set.

In this study, RSA is used as feature selection technique

to select right set of metrics for improving performance of

maintainability prediction model. In RSA, data needs to be

classified before applying RSA. In this work, K-means

clustering was used to classify the data. The approach

followed in K-means clustering is shown in Fig. 7. The

distance from each object to the centroid is computed using

the euclidean distance concept.

Equation 4 shows the function for computing the

euclidean distance.

dðx; yÞ ¼
Xp

i¼1

jxi � yij ð4Þ

The cluster center’s of each source code metrics for our

case studies are shown in Table 5.

After computing the value of cluster center, each source

code metrics are categorized into three different groups.

Table 6 shows the range of source code metrics in each

group. The selected set of source code metrics are tabulated

in Table 7. The reduced set of source code metrics obtained

using rough set analysis are considered as input to develop

maintainability prediction model. The selected set of

source code metrics are tabulated in Table 7.

5 Research methodology: Neuro-Fuzzy approach

Neuro-Fuzzy approach helps to build hybrid architecture of

neural network and fuzzy logic which maps fuzzy inputs to

a crisp output (Adeli and Hung 1994). In Neuro-Fuzzy

approach, Fuzzy back propagation (Fuzzy BP) architecture

is used to train the network as shown in Fig. 8.

In Fig. 8, the input vector I is represented as: I ¼
ðI0; I1; I2; I3; . . .; InÞ and weight W vector is represented as

W ¼ ðW0;W1;W2;W3; . . .;WnÞ. In Neuro-Fuzzy approach,

output O is computed as:

O ¼ f ðNETÞ ¼ f CE
Xn

i¼0

WiIi

 ! !
ð5Þ

where n is the no of inputs, I and W represent the input and

weight vector respectively. NET is computed as:

NET ¼ CEðnetÞ ð6Þ

where net is defined as:

net ¼
Xn

i¼0

WiIi ð7Þ

Discretization of data

Calculation of lower and
upper approximation

Calculation Accuracy

Selection of all possible sets

Selection of best sets

Data set containing software
metrics and changes in

software modules.

Discretization of data using
K-means clustering algorithm

Lower approximation and upper
approximation are calculated using

Equation 1 and Equation 2

AY = {yi ∈ U| [yi]Ind(A) ⊂ X} (1)

ĀY = {yi ∈ U| [yi]Ind(A) ∩ y = 0} (2)
accuracy measure of the set Y

in A ⊆ B is defined as:

μA =
Card(AY)
Card(ĀY)

(3)
All possible sets are selected

whose accuracy is equal to the
accuracy of universal set.Among all possible set, only

those sets are selected which
have least value of cardinality.

Data Set

Fig. 6 Framework of rough set theory

S1494 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502

123

The CE function is the centroid of the triangular fuzzy

number. It maps fuzzy weighted summation to a crisp

value which is called defuzzification operation. If

net ¼ ðnetm; neta; netbÞ, then CEðnetÞ is defined as:

CEðnetÞ ¼ netm þ 1

3
� ðneta � netbÞ ¼ NET ð8Þ

In this paper, sigmoidal function is used as output function,

which maps non-linearly input to output. Accordingly

Eq. 5 can be represented as:

Output ¼ funðNETÞ ¼ 1

1þ eð�NETÞ ð9Þ

In fuzzy neurons, both input and weight vector are

represented by triangular left-right fuzzy numbers (LR-

type). LR-type fuzzy numbers are type of representation for

fuzzy numbers, proposed by Dubois and Prade in 1979’s

(Dubois and Prade 1979). A fuzzy number M is of LR-type

if there exist reference functions L (for left), R (for right)

and scalars, a[0; b[0 with

lm ¼

L
m� x

a

� �
for x�m

R
x� m

b

� �
for x[m

8
>>><

>>>:
ð10Þ

start

K no of
cluster is
taken

Randomly
K no of

centroid is
taken

Distance from
each object to
centroid is
computed

Objects are
grouping based

on the
minimum
distance

No
object
move

group ?

ENDYesNo

Fig. 7 Flow chart K-means

clustering algorithm

Table 5 Cluster Center of source code metrics

UIMS QUES

C1 C2 C3 C1 C2 C3

DIT 0.75 1 3.06 0.90 2 3.25

WMC 1.60 11.23 44.33 6.01 32.35 68.33

RFC 11.80 33.10 69.75 35.47 70.05 129.75

NOC 0 1.80 5.60 – – –

MPC 1.13 4.56 9.87 8.90 18.68 34.11

LCOM 3.75 7.75 25.66 4.40 14.16 24.87

NOM 5.047 12.61 34.80 5.55 21.29 37.77

DAC 0.45 3.33 17.00 1.79 7.62 25.00

SIZE1 30.88 100.266 348.50 176.32 309.29 611.45

SIZE2 6.44 18.55 43.40 8.73 28.80 52.14

CHANGE 21.14 188.33 271 33.95 84.15 173.80

Table 6 Group range

Group Range

High [C2þC3
2

, MAX(metrics)]

Low [MIN(metrics), C1þC2
2

]

Medium [C1þC2
2

; C2þC3
2

]

Table 7 Reduciced attribute
Project Metrics

UIMS Size2, DAC, MPC

QUES Size1, DAC, LCOM

I0

I1

I2

In

CE f

W0

W1

W2

Wn

.

.

.

.

.

.

netj NETj

Oj

Fuzzy neurons j

Fig. 8 Neuro-Fuzzy architecture

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502 S1495

123

where m is the mean value of fuzzy number ‘M’. a and b
are refereed to as left and right spreads as shown in Fig. 9.

Considering lM as the fuzzy number ‘M’ membership

function. An LR-type of Fuzzy number ‘M’ can be defined

as ðm; a; bÞ. Thus for input vector I ¼ ðI0; I1; I2; I3; . . .; InÞ,
single input Ii is represented as Ii ¼ ðImi; Iai; IbiÞ. Similarly

for weight vector W ¼ ðW0;W1;W2;W3; . . .;WnÞ, single

weight Wi is represented as Wi ¼ ðWmi;Wai;WbiÞ.
Fuzzy back propagation architecture Fuzzy BP is a

three layered feed-forward architecture i.e., input, hidden,

and output layer. The execution of Fuzzy BP model is a

two stage process such as:

1. Learning or training The learning procedure of fuzzy

BP follows the gradient descent method of minimizing

error. Here, mean square error (MSE) for patterns p is

represented as follow:

Ep ¼
Xn

p¼1

1

2
O00

p � Op

� �2
ð11Þ

where O and O00 are the actual and expected output

respectively.

During learning phase, the weights are updated using

following equation:

Wkþ1 ¼ Wk þ DWk ð12Þ

where DWk is computed using the following equation:

DWk ¼ �g5 Eik þ aWk ð13Þ

where 5Eik is given by

5Eik ¼
oEik

oW
¼ oEik

oWm

;
oEik

oWa
;
oEik

oWb

� �
ð14Þ

and the weight vector W is represented as:

W ¼ ðWm;Wa;WbÞ.
2. Inference After fuzzy BP execution, the model is

trained using training data set and then it is ready for

inference. Considering a set of patterns �Fp to be

inferred, where �Fp ¼ ð �Fp1; �Fp2; �Fp3; . . .; �FpnÞ and �Fpi is

an LR-type fuzzy number given by
�Fpi ¼ ð �Fpmi; �Fpai; �FpbiÞ. The objective is to obtain

output Op for the corresponding patterns Fp. Algorithm

1 is used in inference of fuzzy BP.

6 Performance evaluation parameters

Software maintainability estimation accuracy for a model

designed by using AI techniques is determined by using

four different performance parameters such as Mean

Absolute Error (MAE), Mean magnitude Relative Error

(MMRE), and Standard Error of the Mean (SEM) (Menzies

et al. 2006). They are represented as:

MAE ¼ 1

n

Xn

i¼1

jX0
i � Xij

� �
ð18Þ

MMRE ¼ 1

n

Xn

i¼1

jXi � X0
i j

Xi þ 0:05
ð19Þ

In Eq. 19, a numerical value of 0.05 is added in the

denominator in order to avoid numerical overflow (division

by zero). In Eqs. 18, 19, X0
i and Xi show the estimated and

actual value respectively.

SEM ¼ SDffiffiffi
n

p ð20Þ

where SD is the sample standard deviation, and n is the

number of samples.

mα β0

1

Fig. 9 Symmetric triangular LR-type fuzzy number

S1496 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502

123

7 Research framework and experimental results

Figure 10 shows our research framework consisting of

various steps. The first step in the process is to compute the

source code metrics and maintainability for UIMS and

QUES software system. The source code metrics serve as

the predictor or independent variables.

As shown in Fig. 10, we conduct experiments with three

different sets of source code metrics. One set of metrics

consist of all the ten source code metrics. Another set

consist of experiment with principal component analysis

(PCA) as a preprocessing step for dimensionality reduc-

tion. PCA reduces dimensionality by selecting a subset of

variables that preserves as much information present in the

original set of variables. We also apply another technique

using rough set theory for feature selection. We use rough

set analysis to remove features with little and no effect on

the dependent variable. These three sets of source code

metrics are validated using hybrid approach of neural

network and fuzzy logic i.e., Neuro-Fuzzy approach.

Before applying Neuro-Fuzzy approach, data are normal-

ized over the range between 0 to 1 i.e., [0 1] using Min–

Max normalization technique (Kumar and Rath 2014).

Normalization of data are required to adjust the defined

range of input attribute and avoid the saturation of neurons.

In this study, data are normalized using Min–Max nor-

malization technique (Kaur et al. 2010). We also use

fivefold cross validation to create different partitions of

training and testing data and generalize the result of our

analysis. Cross-validation method is based on statistical

learning concept. It is used to compare and evaluate the

models by separating the data into two groups. One group

of separated data is used for learning or training the model

and other data is used for validation of model. The basic

form of cross-validation method is K-fold cross-validation

method. In this method, data are separated into K equal or

nearly equal size group or folds. For each model, K � 1

group or folds data are used for learning or training the

All featuresSelected features using PCA Selected features using RSA

Normalization of the dataset

Partition of dataset

Structure of Neural network and
training dataset are broadcasted

Training
dataset 1

Training
dataset 2

Training
dataset 3

Training
dataset 4

Training
dataset 5

Computing 5Computing 4Computing 3Computing 2Computing 1

Results are merged

Testing

Selection of suitable
model

Data set containing software
metrics and changes in software

modules.

Normalize the dataset over the range [0,1]
using Min-Max normalization technique.

Normalized(x) = x =
x − min(X)

max(X) − min(X)
Data is randomly divided into
‘k’ disjoint sets with equal-size.

Master uses ‘scheduler’ for distributing
the training dataset and structure of
neural network among the available

computing nodes.

The trained model is tested by
passing the test data set. A suitable model is selected by

comparing true error (e) and
estimate of true error (ê).

Data Set

Fig. 10 Framework of proposed work

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502 S1497

123

model and one group data are used for validation of model.

The objective of K-fold cross-validation method is to use

each data point for both training and validation.

In this study, different subsets of static source code

metrics are considered as input to develop a maintainability

prediction model using Neuro-Fuzzy approach. Mean

absolute error (MAE), mean absolute relative error

(MARE), and standard error of the mean (SEM) are taken

as a performance parameter to compare the models.

Parameters like True error (e) and Estimate of true error (ê)

are being used for evaluating models involving cross val-

idation approach.

7.1 Performance evaluation

In this paper, a three layered architecture of Fuzzy BP is

considered. The software metric was used as input data to

train the network using Fuzzy BP. This input data is rep-

resented using LR type Fuzzy number. Figure 11 shows the

triangular membership function in which C1;C2;C3 are the

cluster centers which are found by using K-mean clustering

algorithm. Table 9 contains the cluster centers C1;C2;C3 of

software metrics suite for UIMS and QUES.

Table 8 shows the LR-type fuzzy number equivalents of

fuzzy terms for UIMS and QUES respectively. In this

paper, fivefold cross-validation concept has been consid-

ered for both QUES and UIMS for comparing the models.

Table 10 shows the obtained performance metrics for

UIMS and QUES software products.

From Table 10, it may be concluded that the perfor-

mance in estimating software maintainability is better

when PCA in UIMS and QUES (A2 analysis) is consid-

ered. Figure 12 shows the variance of mean square error

and iteration number of UIMS and QUES.

In this work, Pearson residual boxplots are used for

visual comparison between all developed models. Fig-

ure 13 shows the Pearson residual boxplots for all devel-

oped models. Boxplot diagrams help to observe

performance of all developed maintainability prediction

based on a single diagram. The top and bottom of each box

represent the 75 and 25% of Pearson residual. The line in

the middle of each box represents the median of the

Pearson residual. The 1st and 2nd sub-figure of Fig. 13

show the Pearson residual for UIMS and QUES case

studies. From Fig. 13, it may be observed that, in both case

studies i.e., UIMS and QUES, analysis A2 has narrowest

box and the smallest whiskers, as well as the few number of

outliers. Based on these boxplots, it is evident that analysis

A2 shows best estimation accuracy as compared to other

two analysis i.e., A1 and A3. Hence it is observed that the

model developed by considering extracted set of features

using PCA feature selection technique, yields better

maintenance accuracy value.

7.2 Parallel computing concepts

Core i5 processor with 4GB RAM and storage capacity of

250GB hard disk are the hardware items used in this study.

Here computing node is processed that runs on a physical

10 C1

Low

C2

Medium

C3

High

M
em

b
er
sh

ip
d
eg

re
e

Fig. 11 Symmetric triangular LR-type fuzzy number

Table 8 LR-Type fuzzy no. equivalent for fuzzy sets associated with software metrics

Metrics UIMS QUES

Low Medium High Low Medium High

DIT (0.0, 0.00, 0.25) (0.25, 0.25, 0.37) (0.62, 0.37, 0.37) (0.00, 0.00, 0.25) (0.25, 0.25, 0.27) (0.52, 0.27, 0.47)

WMC (0.02, 0.02, 0.13) (0.16, 0.13, 0.47) (0.64, 0.47, 0.35) (0.06, 0.06, 0.29) (0.35, 0.29, 0.36) (0.71, 0.36, 0.28)

RFC (0.09, 0.09, 0.17) (0.26, 0.17, 0.34) (0.60, 0.34, 0.39) (0.13, 0.13, 0.22) (0.35, 0.22, 0.30) (0.76, 0.30, 0.23)

NOC (0.00, 0.00, 0.12) (0.12, 0.12, 0.48) (0.60, 0.48, 0.39) – – –

MPC (0.02, 0.02, 0.22) (0.23, 0.22, 0.42) (0.66, 0.42, 0.33) (0.17, 0.17, 0.24) (0.41, 0.24, 0.38) (0.80, 0.38, 0.19)

LCOM (0.09, 0.09, 0.13) (0.22, 0.13, 0.59) (0.82, 0.59, 0.17) (0.04, 0.04, 0.32) (0.37, 0.32, 0.35) (0.72, 0.35, 0.27)

NOM (0.10, 0.10, 0.19) (0.29, 0.19, 0.56) (0.86, 0.56, 0.13) (0.02, 0.02, 0.22) (0.30, 0.22, 0.31) (0.62, 0.31, 0.37)

DAC (0.02, 0.02, 0.13) (0.15, 0.13, 0.65) (0.80, 0.65, 0.19) (0.04, 0.04, 0.12) (0.16, 0.12, 0.29) (0.45, 0.29, 0.54)

SIZE2 (0.02, 0.02, 0.10) (0.13, 0.10, 0.63) (0.76, 0.63, 0.23) (0.06, 0.06, 0.14) (0.21, 0.14, 0.33) (0.55, 0.33, 0.44)

SIZE1 (0.06, 0.06, 0.15) (0.22, 0.15, 0.57) (0.79, 0.57, 0.20) (0.05, 0.05, 0.24) (0.30, 0.24, 0.31) (0.61, 0.31, 0.38)

S1498 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502

123

core. In this study, various number of computing nodes are

considered ranging from one to five. fivefold cross vali-

dation techniques are used for both case studies, with the

following steps:

• In case of five computing nodes, each fold data is

assigned to each and every computing node.

• In case of four computing nodes, two folds data are

assigned to first computing node and onefold of data to

the remaining computing nodes.

• In case of three computing nodes, two folds data are

assigned to first two computing nodes and onefold of

data to the remaining computing nodes.

• In case of two computing nodes, first three folds of data

set are assigned to first computing nodes and reaming

two folds data to the second computing nodes.

• Finally, in case of single computing node, all the

fivefolds data are assigned to the existing single

computing node.

Figure 14 shows the time taken for training the model

based on number of computing nodes. From Fig. 14, it can

be inferred that normal process take less time as compared

to single node on parallel computing process. Further, it is

observed the time taken for training the model is reduced

on an average 21.14% in QUES and 18.70% in UIMS,

when the number of computing nodes are increased.

7.3 Comparison of models

From literature, it is observed that some authors such as

Zhou and Leung (2007), Koten and Gray (2006), Elish and

Elish (2009), Al-Jamimi et al. (2012), Aljamaan et al.

(2013), Kumar and Rath (2015) and Kumar and Rath

(2015) used same case studies for maintainability predic-

tion using methods. They had considered performance

parameter ‘MMRE’ to compare the performance of main-

tainability prediction models. Table 11 shows the MMRE

value of the proposed work and the work done by Zhou and

Leung (2007), Koten and Gray (2006), Elish and Elish

(2009), Al-Jamimi et al. (2012), Aljamaan et al. (2013),

Kumar and Rath (2015). From Table 11, it can be observed

that, MMRE value is almost same in case of QUES, but our

proposed model obtained better performance for main-

tainability prediction in case of UIMS. The proposed

technique reduces computational time of Kumar and Rath

(2015) by approx 50%.

Table 10 Performance matrix

MAE MARE SEM

QUES

A1 (FULL) 0.1490 0.3449 0.0257

A2 (PCA) 0.1518 0.3375 0.0095

A3 (RST) 0.0947 0.3377 0.228

UIMS

A1 (FULL) 0.0711 0.4018 0.0887

A2 (PCA) 0.0631 0.2826 0.0672

A3 (RST) 0.1461 0.3366 0.0479

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

Iteration No.

M
S

E

0 200 400 600 800 1000
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Iteration No.

M
S

E

FULL
PCA
RST

FULL
PCA
RST

UIMS QUES

Fig. 12 MSE versus number of iterations (epoch)

Table 9 Cluster Center of software metrics

UIMS QUES

C1 C2 C3 C1 C2 C3

DIT 0.000 0.2500 0.6290 0.000 0.2500 0.5205

WMC 0.0232 0.1628 0.6425 0.0612 0.3585 0.7170

RFC 0.0913 0.2626 0.6044 0.1330 0.3573 0.7618

NOC 0.000 0.1250 0.6071 – – –

MPC 0.0121 0.2364 0.6623 0.1726 0.4171 0.8028

LCOM 0.0917 0.2250 0.82222 0.0466 0.3722 0.7291

NOM 0.1038 0.2978 0.8667 0.0262 0.3085 0.6208

DAC 0.0216 0.1587 0.8095 0.0432 0.1632 0.4533

SIZE2 0.0275 0.1300 0.7645 0.0686 0.2173 0.5553

SIZE1 0.0618 0.2213 0.7920 0.0554 0.3006 0.6172

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502 S1499

123

8 Threats to validity

For the sake of completeness, it is necessary to indicate some

of the existing threats to validity of the proposed work. In

literature, some of these limitations are very common when

any empirical study is conducted (Malhotra and Chug 2014;

Zhou and Leung 2007; Koten and Gray 2006; Elish and Elish

2009; Al-Jamimi et al. 2012; Chandra 2012; Aljamaan et al.

2013). Like most of the existing works, the proposed work

also suffers from following threats:

1. All case studies are designed in ADa language.

However the models designed in this study are likely

to be valid for other object-oriented programing

languages. Further research can be extended to design

a model for other programing paradigms too.

2. In this work, only eleven different source code metrics are

considered for development of maintainability prediction

models. Some of the static source code object-oriented

metrics which are also used for object-oriented software

can be further considered for maintainability prediction.

3. Number of psychological factors also affect the

reliability of software. But in this study, factors such

as history of development of the system, stakeholders

of the system, different level of expertise for develop-

ers, standards in which software is developed are not

considered.

9 Conclusion

In this paper, an effort has been made to design a model for

maintainability prediction of object-oriented system by

considering software metrics as input. Neuro-Fuzzy

approach: Hybrid neural network and fuzzy logic approach

is used to develop maintainability prediction model for two

commercial object-oriented software. Training data paral-

lelism concept was used to accelerate the training or

learning procedure of Neuro-Fuzzy approach. The concept

involved in usage of varying number of computing nodes

was explored in this analysis. The performance of Neuro-

Fuzzy model was assessed and compared with those of the

work carried out by several researchers (Kumar and Rath

2015; Zhou and Leung 2007; Koten and Gray 2006; Elish

and Elish 2009; Al-Jamimi et al. 2012; Aljamaan et al.

FULL PCA RSA

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

P
ea

rs
o

n
 r

es
id

u
al

FULL PCA RSA

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

P
ea

rs
o

n
 r

es
id

u
al

QUESUIMS

Fig. 13 Residual boxplot for UIMS and QUES

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

No. of Computing Node

T
im

e
(S

ec
.)

1 2 3 4 5 6
0

20

40

60

80

100

120

No. of Computing Node

T
im

e
(S

ec
.)

FULL
RST
PCA

FULL
RST
PCA

QUESUIMS

Fig. 14 Training time versus number of computing node

S1500 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502

123

2013; Kumar and Rath 2015). The result shows that,

Neuro-Fuzzy model can effectively predict the maintain-

ability of object-oriented software systems. From this

analysis, it is also observed that, the training time gets

reduced on an average 21.14% in QUES and 18.70% in

UIMS when the number of computing nodes are increased.

Our result also suggested that, with the selected subset of

metrics using feature selection techniques i.e., PCA, and

RSA, predict maintainability with higher accuracy is more

suitable.

In this work, analysis has been made, based on two

commercial software datasets i.e., UIMS and QUES con-

sidered as case study, being developed in single language

i.e., ADa. Future work of this study for other development

paradigms, may be planned subsequently. Another inter-

esting work in the future is to improve the performance of

prediction models by coupling neural network with other

techniques such as Clonal selection algorithm, particle

swarm optimization etc.

References

Abreu FBE, Carapuca R (1994) Object-oriented software engineering:

measuring and controlling the development process. In: Pro-

ceedings of the 4th international conference on software quality,

vol 186, pp 1–8

Adeli H, Hung S-L (1994) Machine learning: neural networks, genetic

algorithms, and fuzzy systems. Wiley, Hoboken

Aggarwal KK, Singh Y, Chandra P, Puri M (2005) Measurement of

software maintainability using a fuzzy model. J Comput Sci

1(4):538–542

Aggarwal KK, Singh Y, Kaur A, Malhotra R (2006) Application of

artificial neural network for predicting maintainability using

object-oriented metrics. Trans Eng Comput Technol 15:285–289

Al-Jamimi H, Ahmed M et al (2012) Prediction of software

maintainability using fuzzy logic. In: 3rd international confer-

ence on software engineering and service science (ICSESS),

pp 702–705

Aljamaan H, Elish MO, Ahmad I (2013) An ensemble of computa-

tional intelligence models for software maintenance effort

prediction. In: Advances in computational intelligence,

pp 592–603

Bandi RK, Vaishnavi VK, Turk DE (2003) Predicting maintenance

performance using object-oriented design complexity metrics.

IEEE Trans Softw Eng 29(1):77–87

Banker RD, Datar SM, Kemerer CF, Zweig D (1993) Software

complexity and maintenance costs. Commun ACM

36(11):81–94

Basili VR, Briand LC, Melo WL (1996) A validation of object-

oriented design metrics as quality indicators. IEEE Trans Softw

Eng 22(10):751–761

Baski D, Misra S (2011) Metrics suite for maintainability of extensible

markup language web services. IET Softw 5(3):320–341

Binkley AB, Schach SR (1998) Validation of the coupling depen-

dency metric as a predictor of run-time failures and maintenance

measures. In: Proceedings of the 20th international conference

on software engineering, pp 452–455. IEEE Computer Society

Briand LC, Wüst J, Daly JW, Porter DV (2000) Exploring the

relationships between design measures and software quality in

object-oriented systems. J Syst Softw 51(3):245–273

Chandra D (2012) Support vector approach by using radial kernel

function for prediction of software maintenance effort on the

basis of multivariate approach. Int J Comput Appl 54(4):21–25

Table 11 Performance based

on MMRE for UIMS and QUES
MMRE

Author Technique UIMS QUES

Koten and Gray (2006) Bayesian network 0.972 0.452

Regression tree 1.538 0.493

Backward elimination 2.586 0.403

Stepwise selection 2.473 0.392

Zhou and Leung (2007) Multivariate linear regression 2.70 0.42

Artificial neural network 1.95 0.59

Regression tree 4.95 0.58

SVR 1.68 0.43

MARS 1.86 0.32

Elish and Elish (2009) TreeNet 1.57 0.42

Al-Jamimi et al. (2012) Fuzzy logic 0.89 0.36

Chandra (2012) SVM (Radial Kernel) 1.636 0.36

Aljamaan et al. (2013) MLP 1.39 0.71

RBF 3.23 0.96

SVM 1.64 0.44

Kumar and Rath (2015) ANN (CK metrics) 0.6931 0.4384

Neuro-GA (CK metrics) 0.5332 0.4180

Kumar and Rath (2015) Neuro-GA 0.1883 0.3536

Proposed work Neuro-Fuzzy approach 0.2826 0.3375

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502 S1501

123

Chen J-C, Huang S-J (2009) An empirical analysis of the impact of

software development problem factors on software maintain-

ability. J Syst Softw 82(6):981–992

Chidamber SR, Kemerer CF (1994) A metrics suite for object-

oriented design. IEEE Trans Softw Eng 20(6):476–493

Dagpinar M, Jahnke JH (2003) Predicting maintainability with object-

oriented metrics—an empirical comparison. In: 2013 20th work-

ing conference on reverse engineering (WCRE), pp 155–164

Damaševičius R, Štuikys V (2010) Metrics for evaluation of

metaprogram complexity. Comput Sci Inf Syst 7(4):769–787

Dubois D, Prade H (1979) Fuzzy real algebra: some results. IEEE

Trans Softw Eng 2(4):327–348

Elish MO, Elish KO (2009) Application of TreeNet in predicting

object-oriented software maintainability: a comparative study.

In: 13th European conference on software maintenance and

reengineering, 2009. CSMR’09, pp 69–78

Halstead MH (1977) Elements of software science. Elsevier Science,

New York

Henderson-Sellers B (1996) Software metrics. Prentice-Hall,

Englewood

Huang D, Chow TWS (2005) Effective feature selection scheme using

mutual information. Neurocomputing 63:325–343

Jin C, Liu J-A (2010) Applications of support vector mathine and

unsupervised learning for predicting maintainability using object-

oriented metrics. In: Second international conference on multi-

media and information technology (MMIT), 2010, pp 24–27

Jung H-W, Kim S-G, Chung C-S (2004) Measuring software product

quality: a survey of ISO/IEC 9126. IEEE Softw 21(5):88–92

Kabir MM, Islam MM, Murase K (2010) A new wrapper feature

selection approach using neural network. Neurocomputing

73(16):3273–3283

Kang BK, Bieman JM (1995) Cohesion and reuse in an object-

oriented system. In: Proceedings of the ACM SIGSOFT

symposium on software reuseability, pp 259–262. Seattle

Kaur J, Singh S, Kahlon KS, Bassi P (2010) Neural network—a novel

technique for software effort estimation. Int J Comput Theory

Eng 2(1):17–19

Kohavi R (1999) Relation between software metrics and maintain-

ability. In: Proceedings of the FESMA99 international confer-

ence, federation of European Software Measurement

Associations, Amsterdam, The Netherlands, pp 465–476

Van Koten C, Gray AR (2006) An application of bayesian network

for predicting object-oriented software maintainability. J Mater

Process Technol 48(1):59–67

Kumar L, Naik DK, Rath SK (2015) Validating the effectiveness of

object-oriented metrics for predicting maintainability. Proc

Comput Sci 57:798–806

Kumar L, Rath SK (2014) Hybrid neural network approach for

predicting maintainability of object-oriented software. INFO-

COMP J Comput Sci 13(2):10–21

Kumar L, Rath SK (2015) Neuro-genetic approach for predicting

maintainability using Chidamber and Kemerer software metrics

suite. Recent Adv Inf Commun Technol 2015:31–40

Kumar L, Rath SK (2015) Predicting object-oriented software

maintainability using hybrid neural network with parallel

computing concept. In: Proceedings of the 8th India software

engineering conference, pp 100–109

Li W, Henry S (1993) Maintenance metrics for the Object-Oriented

paradigm. In: Proceedings of first international software metrics

symposium, pp 52–60

Lorenz M, Kidd J (1994) Object-oriented software metrics. Prentice-

Hall, Englewood

Malhotra R, Chug A (2014) Application of group method of data

handling model for software maintainability prediction using

object oriented systems. Int J Syst Assur Eng Manag

5(2):165–173

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng

2(4):308–320

Menzies T, Chen Z, Hihn J, Lum K (2006) Selecting best practices for

effort estimation. IEEE Trans Softw Eng 32(11):883–895

Misra SC (2005) Modeling design/coding factors that drive main-

tainability of software systems. Softw Qual J 13(3):297–320

Misra S, Akman I (2008) Applicability of Weyuker’s properties on oo

metrics: somemisunderstandings. Comput Sci Inf Syst 5(1):17–23

Misra S, Akman I, Koyuncu M (2011) An inheritance complexity

metric for object-oriented code: a cognitive approach. Sadhana

36(3):317

Misra S (2007) Cognitive program complexity measure. In: Cognitive

informatics, 6th IEEE international conference on, pp 120–125.

IEEE

Oman P, Hagemeister J (1994) Construction and testing of polyno-

mials predicting software maintainability. J Syst Softw

24(3):251–266

Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356

Riaz M, Mendes E, Tempero E (1997) Predicting maintenance effort

with function points. Int Conf Softw Maint 1997:32–39

Riaz M, Mendes E, Tempero E (2009) A systematic review of

software maintainability prediction and metrics. In: Proceedings

of the 2009 3rd international symposium on empirical software

engineering and measurement, pp 367–377

Schneberger SL (1997) Distributed computing environments: effects

on software maintenance difficulty. J Syst Softw 37(2):101–116

Zhou Y, Baowen X (2008) Predicting the maintainability of open

source software using design metrics. Wuhan Univ J Nat Sci

13(1):14–20

Zhou Y, Leung H (2007) Predicting object-oriented software

maintainability using multivariate adaptive regression splines.

J Syst Softw 80(8):1349–1361

Lov Kumar

S. K. Rath

S1502 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1487–S1502

123

	Software maintainability prediction using hybrid neural network and fuzzy logic approach with parallel computing concept
	Abstract
	Introduction
	Related work
	Experimental dataset and setup
	Experimental dataset
	Dependent variable: maintainability
	Predictor variables: source code metrics
	Cross correlation analysis
	Effectiveness of metrics

	Feature extraction and selection using PCA and RSA
	Principal component analysis (PCA)
	Rough set analysis

	Research methodology: Neuro-Fuzzy approach
	Performance evaluation parameters
	Research framework and experimental results
	Performance evaluation
	Parallel computing concepts
	Comparison of models

	Threats to validity
	Conclusion
	References

