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Abstract In order to assess the strength of aged and in ser-

vice components, small punch test (SPT) has emerged.

However, it has two disadvantages, firstly using of the

hemispherical punch which is difficult to manufacture in

most conventional workshops and secondly the known dif-

ficulties in obtaining the flat disk samples. This paper dis-

cusses a novel approach, the plane strain small punch test to

identify the plastic properties ofmetallic structures. To do so,

a new apparatuswas designed andmanufactured to perform a

series of plane strain SPT in room temperature. An artificial

neural network was established and trained by the corre-

sponding load displacement responses obtained from the

simulations to predict the plastic properties of Stainless Steel

304L.

Keywords Plane strain SPT � Stainless steel � Artificial
neural network � Plastic properties

1 Introduction

Certain engineering components work under high stress

situations and during long term service, the materials typ-

ically degrade and material damage occurs (typically

voiding and micro-cracks). In order to properly judge and

determine the actual and local material state of those

components, their material properties are characterised.

However, due to the severe limitations on specimen size in

testing facilities (e.g. the limited space available for testing

in nuclear reactors and boilers), only a small specimen can

be obtained. In these cases, the specimen size does not

meet the requirements of a valid tensile test.

A new material characterisation method, called the

small punch test (SPT), has emerged. Due to its small

sample requirement, the SPT has particular values in

assessing material properties and remaining life predictions

of in-service components. However, it has two obvious

disadvantages:

1. Requirement of an accurate hemispherical punch, which

is difficult to produce in most manufacturing units.

2. In welded components, as the material properties vary

along the direction perpendicular to the weld line,

harvesting a circular shaped specimen accurately from

that zone is extremely difficult. In addition, if the

weldments are not captured in the middle of the

circular specimen, the resulting stress field can become

quite complex to analyse.

Following the above difficulties, a novel approach, the

plane strain SPT has emerged and it is distinguished from

the standard SPT in two ways:

1. Instead of a disk shape specimen, a long thin

rectangular test piece (with dimensions of

20 mm 9 12 mm 9 0.5 mm) is implemented.

2. The punch head is a prism with a half-circular shape

which makes it considerably easier to manufacture.

Furthermore, the upper and lower die consists of
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rectangular blocks and are specially designed to hold

the rectangular specimen.

In this study, a number of experimental plane strain SPT

based on the newly designed apparatus have been per-

formed. In addition, finite element (FE) simulations of the

plane strain SPT have been carried out to train the artificial

neural network to identify the plastic properties of the

SS304L. The steps taken for this proposed methodology

can be seen in Fig. 1.

2 Literature review

SPT technique was first implemented by Baik et al. (1983) to

analyse the mechanical properties of irradiated materials in

the nuclear industry. The technique successfully made a

correlation between the mechanical properties found by the

small disc bend tests (i.e. SPT) and the ductile–brittle tran-

sition temperature using the standard Charpy impact test.

Manahan (1983) as seen in Fig. 2, divided the corre-

sponding load–displacement curve of SPT into the fol-

lowing four stages:

1. Elastic bending deformation

2. Plastic bending deformation (transition between elastic

to plastic

3. Membrane stretching (purely plastic)

4. Plastic instability (damage)

In addition, Manahan et al. (1981) developed a new

mechanical bending test using miniature sized disks. By the

use of finite element method, it was suggested that the

testing method was potentially capable of determining

biaxial stress/strain response, biaxial ductility, stress

relaxation behaviour and biaxial creep response (Fig. 2).

Lucas (1983) presented a detailed review of the minia-

ture testing techniques and concluded that the SPT can be

used to obtain both strength and ductility information from

specimens as small as 8 mm diameter. Moreover, it was

suggested that as the technique can sample a larger volume

of the test specimen, it is less sensitive to the scale of the

microstructure than the micro-hardness test. However, it

was found that the stress and deformation paths in the

process zone were highly complex and could not be easily

analysed.

Okada et al. (1985) performed a series of tensile disk

bulge and micro-hardness tests with miniaturised speci-

mens on a variety of metals and alloys. Following the tests,

it was concluded that there was a strong correlation

between the fracture load obtained from the bulge test and

the tensile strength. This led to concluding that specimens

as thin as 0.1 mm generally are capable of fulfilling the

requirements of obtaining the bulk properties.

Mao and Takahashi (1987) developed a SPT and suc-

cessfully obtained the fracture strain as well as strength

information from miniaturised specimens as small as 3 mm

diameter and 0.25 mm in thickness by assuming elastic

perfectly plastic analysis. The conducted test was based on

driving a steel ball punch through a clamped specimen. In

addition a number of correlations were also obtained

between the load–displacement curve of the SPT and the

mechanical properties (such as yield stress and ultimate

tensile stress).

Fig. 1 Procedure for the identification of metallic structures plastic

properties
Fig. 2 Typical load stroke curve
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Fleury and Ha (1998) successfully implemented the SPT

techniques to estimate the mechanical properties of low

alloy steel for a steam power plant. Linear relationships

were produced between mechanical properties (determined

from the SPT) and the Charpy impact tests to estimate the

fracture appearance transition temperature as well as

approximating the fracture toughness.

Abendroth and Kuna (2003) introduced a new approach

to identify plastic deformation and failure properties of

ductile materials. The experimental method of the SPT was

used to determine the material response under loading. The

resulting load displacement curve was then transferred to

artificial neural networks that were trained using the load

displacement curves generated by finite element simula-

tions. During the training process the neural network gen-

erated an approximation function for the inverse problem

relating the material parameters to the shape of the load

displacement curve of the small punch test by which the

damage and mechanical parameters of various alloy steels

were determined.

Husain et al. (2004) developed an inverse FE procedure

for SP test to determine the constitutive tensile behaviour

of H11 steel. In that procedure, the initial slope of the load

displacement curve obtained from the experiment and FE

method was matched and then implemented to predict the

elastic modulus of the material.

Pathak et al. (2009) reported the influence of key test

parameters on SP test results using flat samples. The aim of

their research work was to study the effects of yield stress

and strain hardening on peak load and corresponding dis-

placement obtained from SP test using curved samples and

simulation technique. Based on these results, sensitivity of

the material parameters were ascertained.

Zhou et al. (2012). introduced small beam shape spec-

imen to evaluate material properties. This was achieved

from the deformation through comparison with finite ele-

ment analysis and genetic algorithm (GA). Zhou coupled a

cost function based on the relative difference between the

experimental and testing forces at the top centre of the

beam to successfully characterise the material parameters

of AA2024-T3.

Furthermore, Yang et al. (2015) created an inverse

method to evaluate the yield strength of X80 through SPT

and tensile test. They validated the result by recording the

load–displacement curve of a two dimensional finite element

model (FEM). The findings of FEM proved to be in good

agreement with their corresponding experimental results

especially in the Elasto-Plastic deformation stages. In addi-

tion, the team also used a golden section search optimisation

algorithm and predicted the yield strength of X80. Their

prediction slightly varied from the experimental yield

strength and they concluded that the variationwere due to the

slight inefficiency of the optimisation technique used. The

majority of the above studies only covered a disk shaped

specimen which naturally inherits the weakness discussed

previously. In addition, the testing apparatuses implemented

in the literature entirely differs from this work as the use of

hemispherical punch head is replaced by a much easier half-

circular alternative. Although Zhou and his colleagues did

implement the half circular shaped punch head to test on

beam shaped specimen, the beam test requires significantly

more materials than its SPT counterpart.

3 Test rig design

The test rig consists of 4 major components: the punch, top

and bottom die, specimen and the alignment shim (Fig. 3).

The punch must have a 2.5 mm diameter lead as well as

being able to fit into the 4 mm aperture with minimum

friction and slacking. The challenge always lies in

obtaining the specified hemispherical lead and the right fit.

The top die basically serves two roles in the SP testing.

First of all, it provides the clamping force by the cap

screws which securely keeps the specimen in place. Sec-

ondly it provides an aligning platform by means of a

rectangular slot for the punch to apply the load on the

specimen. The bottom die which completes the clamping

pair also contains a 20mm long by 4mm wide aperture

where the specimen is positioned in the middle of it. The

receiving aperture also contains a 0.2 mm, 45� chamfer on

its edges. The alignment shim as the name suggests insures

the test piece is aligned right in the centre of the bottom die

Fig. 3 Test rig design assembly, (1) punch, (2) top die, (3) bottom

die, (4) alignment shim
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so that the bending occurs longitudinally on the centre of

the specimen. The shim must be geometrically identical to

the dies otherwise it would not be as effective. The

manufactured plane strain SPT apparatus can be seen in

Fig. 4.

4 Experiments

The specimen was prepared as a rectangular of 20 mm

length, 12 mm width and 0.5 mm thickness. The material

used in this work was Stainless Steel 304L.

The dies and the test piece were cleaned and washed

with acetone prior to the test to eliminate dirt and grease

which may result in slipping of the test piece. The speci-

men holders consist of upper and lower die, alignment

shim, and 6 9 M8 socket head clamping screws. The test

piece was placed in the holder and was clamped along its

perimeter. The socket head screws were all torqued up to

30 Nm so that the clamping force was uniform along the

specimen. It has been suggested that (Sun 2003) different

clamping forces in the equipment of the different partici-

pating laboratories were assumed to have no significant

effect on test results, although this merits further research.

The tests presented in this work were all carried out on the

same day at room temperature using a computer controlled

universal tensile machine (Zwick/Roell 2061 testing machine)

with 100 kN load cell at a constant punch displacement of

0.5 mm/min (0.833 lm/s). In order to avoid impact occur-

rence, a small sinusoidal load (&10 N)was initially applied for

10 s and then as the test carried on the corresponding load and

displacement (i.e. stroke) were digitally recorded.

5 Finite element analysis

In this section a FE model with GTN constitutive equations

was created in ABAQUS 6.10. The model was simulated

using the same key dimensions corresponding to the

experiment components. The FE models were primarily

used to compute LDCs for known elasto-plastic properties

of the test specimen at room temperature. LDC would later

be used to train the ANN.

5.1 Geometry

The FEA model was constructed using ABAQUS/Explicit

6.10 in two dimensions (plane strain). Since the geometries

and the load of the SP test were axially symmetric about

the centre line coincident with the punch axis, a two

dimensional finites element model was sufficient. In addi-

tion, axially symmetric analysis reduced the complexity of

the problem and minimised the computational time.

The FEA model used is shown in Fig. 5. There are four

components in the model: punch, top die, bottom die, and

the test piece. The punch and dies were taken as rigid

bodies, and the test piece as deformable. This decision was

taken due to the fact that rigid bodies in Abaqus do not

require meshing and hence resulting in lower processing

power requirements as well as saving significant amount of

time. It must be said that implementing rigid punch and

dies was only possible because the test piece was very thin

(0.5mm in thickness) which meant that inaccuracies could

not alter the results.

5.2 Element type

The test piece was meshed with the 4-node uniform strain

quadrilateral (CPE4R) element. This is a fine mesh of

Fig. 4 Plane strain SPT apparatus Fig. 5 FE model of the plane strain SPT
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linear, reduced-integration elements and is recommended

when simulations involving very large deformation (such

as the one in this model). The reduced integration elements

helped decreasing the analysis time as well as reducing the

possibility of excessive flexibility of elements (i.e. hour-

glassing) (Sun 2003).

5.3 Material model

The material model used was based on the constitutive

damage law developed by Gurson, Tvergaard and

Needleman (GTN or sometimes referred to as the porous

metal plasticity).

This model defines the inelastic flow of the porous metal

on the basis of a potential function that characterises the

porosity in terms of single state variable, the relative

density. In Abaqus/Explicit this is defined by a failure

definition.

The material model implemented for this FE analysis

consisted of 3 sections, elastic part, plastic part and porous

metal plasticity in which porous failure criteria and void

nucleation were accounted for.

The list of parameters implemented for the finite ele-

ment model can be seen in Table 1.

The elastic part was specified by the linear isotropic

elasticity, (i.e. the elastic modulus and Poisson ratio).

5.4 Interactions and contacts

Three contact pairs were created: (a) the punch-specimen,

(b) top die-specimen and (c) lower die-specimen. In all

three cases the analytical rigid bodies (punch and the dies)

were assigned as the master surface and the specimen as

the slave surface. The type of contact was chosen as the

node based surface which was created by specifying the

nodes from the specimen (i.e. slave surface). Also the finite

sliding approach was implemented to account for the rel-

ative motion of the surfaces. The penalty contact algorithm

was chosen in terms of friction coefficient (l).

5.5 Boundary conditions and loading

The boundary conditions applied in the present FEA model

are as followed:

The top and bottom dies were constrained on all

degrees of freedom. In addition the clamping force was

ignored in this FE model to avoid unnecessary compli-

cations. Translations in the radial and horizontal direc-

tions were prevented on the left end of the specimen and

symmetry (X direction) was implemented on the opposite

side to account for the axially symmetric conditions.

Furthermore, the punch was only allowed to move verti-

cally, hence it was constrained on both horizontal and

radial directions.

Since the experiment lasted around 6 min, the load was

applied as a displacement rate of 0.08334 mm/s to avoid

getting a large computational burden and to further reduce

the running time a mass scaling factor of 10,000 was

carefully applied.

It must be said that due to relatively high speed of the

loading in this FE analysis, the void growth, coalescence

and the failure propagation could have actually been

slightly affected, however, as the source only accounted for

a very small differences the effect was neglected.

5.6 Mesh convergence

In order to find the most suitable mesh with reasonable

computation time a mesh convergence study was

performed.

The convergence study was achieved by creating a mesh

using the fewest, reasonable number of elements and then

analyse the plane strain SPT model. The mesh was recre-

ated with a denser element distribution and the model was

subsequently re-analysed and the results were compared to

those of the previous mesh. This process was repeated until

the results converged satisfactorily. In addition, a single

domain ALE adaptive meshing was implemented on the

test piece to insure a high quality of mesh throughout the

simulation.

The final mesh contained 120 9 40 axially symmetric

reduced elements and was found to be sufficiently dense

and not overly demanding of computing resources.

6 Neural network modelling

6.1 Feature extraction

The main objective of the Neural Network Modelling is to

correctly establish a distinctive correlation between the

LDC (Force Vectors) of the simulated plane strain SPT and

the corresponding material parameters. The LDC can be

regarded as a function of the punch force F, which is

Table 1 GTN material parameters

q1 q2 q3 eN sN fN fc fF

1 1.5 2.25 0.3 0.1 0.004 0.0223 0.2
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depending on the displacement d and the material param-

eters r. This function is created by systematically varying

the parameter sets and storing them in a database.

In order to reduce the computational intensity required,

a decision had to be made where in the data set to operate

the function approximation. As the aim was to identify the

plastic properties, therefore the purely plastic region of the

load displacement curve were made the focal point of the

data extraction.

6.2 Data normalisation

Prior to constructing the database, all the original data (i.e.

force vectors and material properties) were linearly trans-

formed to the interval [0 1] using the Max–Min technique.

6.3 Database

Based on experience the plastic properties were varied

systematically to form the [3 9 125] target matrix. This

variations is shown in Table 2.

The rest of database was constructed by simulating FE

models based on the systematically varied material

parameters as the target matrix. The input matrix was

constructed by producing the corresponding LDCs based

on the above systematically varied material parameters.

Now the input matrix was constructed by extracting the

data from the purely plastic region of the simulated LDC as

shown in Fig. 6.

In addition, a set of [5 9 1] experimental force vector

was also used as the early stoppage technique during the

training of the neural networks to validate the results.

6.4 Network architecture

The configuration of the array of the neurons is essential in

the function of the artificial neural network. Amongst the

possible network architectures it was decided to use the

feed-forward network (FFN) due to being highly versatile

when used in general function approximation (i.e. nonlin-

ear regression). As can be seen in Fig. 7, the FFN archi-

tecture implemented consist of one hidden layer of sigmoid

neurons followed by an output layer of linear neurons.

Multiple layers of neurons with non-linear transfer func-

tions allow the network to learn non-linear and linear

relationships between input and output vectors.

Moreover, this particular FFN is capable of approxi-

mating any functions of interest with a finite number of

discontinuities arbitrarily well, given sufficient neurons in

the hidden layer (Hagan and Demuth 1996).

For the two layer network shown above, the output of

the first layer becomes the input to the second layer and for

M linear combinations of input variables Fi (i = 1, …, N)

this process can be expressed in terms of the following

parametric nonlinear functions:

a1j ¼
XN

i¼1

w1
jiFi þ b1j1 ð1Þ

where a, w and b are known as the activations, weights and

biases respectively. Also j = 1, …, M and subscript 1

indicates that the parameters are in the first layer.

The activations quantities are then transformed using a

Tanh-sigmoid activation function f1 (.) to give:

Table 2 Variation of Material Properties

Material parameters Range ep

r1 (MPa) [238–263] 0.0

r2 (MPa) [907–1000] 0.27

r3 (MPa) [1350–1490] 0.54
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Fig. 6 Extracted data region from 125 simulated load–deflection

curves (LDC)

Fig. 7 Two-layer FF neural network
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hj ¼ f1 a1j

� �
ð2Þ

where, h is called the hidden units and,

f 1 a1j

� �
¼ ea

1
j � e�a1

j

ea
1
j þ e�a1

j

ð3Þ

In the second layer, the resulting values in the above

equations are linearly combined to give the corresponding

output activations, aK:

a2K ¼
XM

j¼1

w2
Kjhj þ b2K1 ð4Þ

Note that K is the total number of outputs and subscript 2

refers to the second layer of the FF network. Finally, the

output activations shown in (4) are transformed using a

linear activation function, f2 (.) to give the set of network

outputs rK as a function of the input vectors, F and the

adjustable parameters, W.

rK F;Wð Þ ¼ f 2
XM

j¼1

w2
Kj f

1
XN

i¼1

w1
jiFi þ b1j1

 !
þ b2K1

 !

ð5Þ

6.5 Network training

The training involves an iterative procedure for mini-

mization of an error function, with adjustments to the

weights being made in a sequence of steps. Given a

training set comprising a set of input force vectors Fi

together with the corresponding set of target vectors tn
(containing the systematically changed material parame-

ters) the sum of the error function can be shown as follows:

E Wð Þ ¼ 1

2

XN

n¼1

rK Fi;Wð Þ � tnk k2 ð6Þ

Therefore, it is obvious that to maximise the likelihood of

function rK, the function E(W) (i.e. the sum of squared

error (SSE)), must be minimised.

Amongst training techniques, Backpropagation with

Levenberg–Marquardt (L–M) optimisation algorithm was

chosen in this study. L–M algorithm is designed specifi-

cally for minimising the SSE. In addition it is one of the

fastest methods for training moderate-sized FF neural

networks, such as the one implemented in this work

(Bishop 1995). For L–M algorithm to function effectively,

two training parameters must be defined, one is the error

goal and the second one is the minimum gradient. After

performing a series of trainings, the value of 0.0005 for the

error goal, and 0.0005 for minimum gradient were found to

produce the best result.

In addition, in order to avoid over training the network,

an early stopping technique was implemented. This tech-

nique was applied by providing the neural network with a

validation set FExp consisting of a (5 9 1) force vectors

corresponding to the experimental plane strain SPT.

Demonstration of the training process is shown in Fig. 8.

7 Results and discussion

7.1 Plane strain SPT

The load displacement curves corresponding to the SS304L

can be seen in Fig. 9. Consistency of the results is apparentFig. 8 Flow chart of the training process

Fig. 9 Experimental plane strain SPT load displacement curve
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as the load displacement curves (LDC) almost follow the

same pattern. However, small dissimilarities of the curves

can be observed in Fig. 9 as the load start to peak in the

final stage. Although, the exact rational behind the above

phenomenon is not known, nonetheless the following fac-

tors can have a significant influence:

1. Small variation of the specimen size. All the specimens

were prepared and cut by a manual guillotine shear

cutter and therefore their dimension were not exactly

the same.

2. Although due care were taken to cut the specimen

along the grain of the sheet, nonetheless this proved to

be very difficult without implementing microscope.

Therefore some of the specimen may have been cut

across the grain and this could have caused the small

variation.

3. More precise means of manufacturing such as imple-

menting the electric discharge machining (EDM) may

have been effective in eliminating the variations.

Having said that, these manufacturing methods could

only be achieved at considerably higher costs.

Furthermore, as seen in fig. 9 the load–displacement

curves show an approximately linear initial loading which

is considered as the elastic bending regime. This stage is

mainly controlled by the elastic material properties (i.e.

Yong’s modulus and Poisson ratio). The second stage

reflects the transition between elastic and plastic regime of

SS304L. This stage begins with the transition between

elastic to plastic and later becomes purely plastic. Here the

voids begin to nucleate (i.e. fN increases) as plastic strain

increases. The parameters that influences this region are q1,

q2, q3, eN, sN and fN. In the third stage, the curvature of the

graph changes from positive to negative where the

deformation mode becomes purely plastic. This is the

inflection point where the deformation mode becomes

mainly membrane stretching. As the deformation increases

the void volume fraction reaches a critical value ( fC ) at the

end of this stage. Finally as the load reaches its pick, the

specimen undergoes a noticeable reduction in thickness

and void coalescence begins. The void volume fraction has

reached a critical point and keeps rising to its final value

( fF ). The graph also shows shortly after the maximum load

has reached (just under 3mm), the load starts to decrease

and this phenomenon actually demonstrate the coalescence

of voids, in which the test piece loses its load carrying

capacity and ultimately failure occurs.

7.2 Neural network simulations

Finally the neural networks were created and run by Matlab

and the networks were simulated for 15 times during which

the material properties r1, r2, and r3 were recorded.

Afterwards, the recorded material properties were un-nor-

malised and fed back to Abaqus and the corresponding force

vectors were obtained. Consequently, thematerial properties

corresponding to the force vector that produced the least

mean squared error (when compared with its experimental

counterpart) was chosen as the ultimate result.

Hence, the following values for the plastic properties

were identified to produce the best results:

r1 = 246.93 MPa, r2 = 924.4 MPa and r3 = 1281.97.

The comparison of the experimental LDC from the

plane strain SPT and its simulated counterpart (using the

identified parameter) are shown in Fig. 10. As can be seen,

the results are in close agreement except that the predicted

LDC is slightly higher in the initial deformation stage that

is corresponding to the elastic and transition regions.

8 Conclusion

A new approach has been developed to identify the

plastic properties of SS304L by implementing the plane

strain small punch test. The plane strain SPT demon-

strated its novelty in terms of functionality and consis-

tency proved to be a possible candidate in identifying

material parameters. In addition, a successful numerical

simulation of the plane strain SPT were carried out to

construct a database which was then used to successfully

train artificial neural networks by Levenberg–Marquardt

backpropagation algorithm. This consequently led to the

successful identification of the plastic properties of

SS304L. In general, a close agreement was observed by

comparing the experimental and simulated load dis-

placement curves, even though, slight variance was

observed in the initial deformation stages. Future work
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Fig. 10 Simulated and experimental plane strain SPT
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should first of all investigates the small variations in the

initial deformation stages as well as validating the pre-

cision of the neural network through uncertainty quan-

tifications. Furthermore, the above methodology can be

tested by identifying the damage parameters in the

Gurson–Tvergard–Needleman (GTN) material model

which then can be verified by performing FE simulation

of notch and experimental tensile tests.
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