
ORIGINAL ARTICLE

Estimation of the PDF and the CDF of exponentiated
moment exponential distribution

Yogesh Mani Tripathi1 • Tanmay Kayal1 • Sanku Dey2

Received: 17 August 2016 / Revised: 4 February 2017 / Published online: 18 March 2017

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation

and Maintenance, Lulea University of Technology, Sweden 2017

Abstract This article addresses the different methods of

estimation of the probability density function and the

cumulative distribution function for the exponentiated

moment exponential distribution. Following estimation

methods are considered: uniformly minimum variance

unbiased estimators, maximum likelihood estimators,

percentile estimators, least squares estimators, weighted

least square estimators, maximum product of spacings

estimators, Cramér–von-Mises estimators and Anderson–

Darling estimators. Analytical expressions are derived for

the bias and the mean squared error. Monte Carlo simu-

lations are performed to compare the performances of the

proposed methods of estimation for both small and large

samples. Simulation studies and real data applications

show that the ML estimator performs better than others.

Finally, one real data set has been analyzed for illustrative

purposes.

Keywords Exponentiated moment exponential

distribution � Least squares estimator � Maximum

likelihood estimator � Model selection criteria �
Percentile estimator � Weighted least

squares estimator

1 Introduction

Moment distributions have found their applications in

many studies of practical interest including bio-assay,

clinical, income and life testing experiments. Hasnain

(2013) studied an exponentiated moment exponential

(EME) distribution and developed various distributional

properties of it. He showed that this distribution is more

flexible than Dara (2012) moment exponential distribution

and Gupta and Kundu (2001) exponentiated exponential

distribution. He discussed unbiasedness and sufficiency of

the parameters of EME distribution. He also discussed

different properties of nth order statistic and obtained dual

generalized order statistics for this distribution. The

moment distributions have applicability in numerous situ-

ations. For example, in the field of physics, Krumbein and

Pettijohn (1938) and Gy (1982) studied moment distribu-

tions to examine the relation between particle diameter and

its frequency. Preston (1962) applied canonical distribu-

tions in ecology. Zelen (1974) analyzed cell cycle and

pulse labeling on length biased data. Zelen (1976) also

used length biased sample for the screening of disease and

scheduling of examinations of patients. Brown (1972)

studied various aspects of the traffic streams. Warren

(1975) examined different case studies to observe the role

of statistical distributions in forest and forestry products

research. Taillie et al. (1979) modeled populations of fish

stocks using weighted distributions. Temkin (1976) studied

length biased survival models to analyze the cardiac

transplantation situations and so on. In these and other

application areas, it is pertinent that one has accurate

estimation and prediction procedures based on records and

moments of record values.
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The probability density function (PDF) of an exponen-

tiated moment exponential (EME) distribution is given by

f ðx; a; bÞ ¼ ax

b2
1 � 1 þ x

b

� �
e�

x
b

� �a�1

e�
x
b;

x[ 0; a[ 0; b[ 0;

ð1:1Þ

and the corresponding cumulative distribution function

(CDF) is

Fðx; a; bÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �a
; x[ 0; a[ 0; b[ 0:

ð1:2Þ

The survival function is of the form

Sðx; a; bÞ ¼ 1 � 1 � 1 þ x

b

� �
e�

x
b

� �a
; x[ 0; a[ 0; b[ 0;

ð1:3Þ

and the hazard function is

hðx; a; bÞ ¼ ax

b2

1 � 1 � 1 þ x
b

� �
e�

x
b

h ia�1

e�
x
b

1 � 1 � 1 þ x
b

� �
e�

x
b

h ia : ð1:4Þ

Here the parameters a controls the shape of the distribution

and b controls the scale of the distribution. We assume that

b is known except for real data analysis. In this paper, we

estimate the PDF and the CDF of the model under the

assumption that the shape parameter a is unknown. For this

purpose, we employ various methods of estimation which

includes maximum likelihood estimation (MLE), uni-

formly minimum variance unbiased (UMVU) estimation,

percentile (PC) estimation, least-square estimation (LSE),

weighted least-square estimation (WLSE), maximum pro-

duct spacings (MPS) method of estimation, Cramér–von-

Mises method of estimation and Anderson–Darling method

of estimation. Several researchers have carried out similar

kind of studies for various lifetime models. For example,

Dixit and Jabbari Nooghabi (2010) obtained efficient esti-

mates for the PDF and the CDF of a Pareto distribution.

They showed that MLEs are more efficient than UMVUEs

of the PDF and the CDF. In a subsequent work, Dixit and

Jabbari Nooghabi (2011) derived efficient estimators of the

PDF and the CDF of a four-parameter Pareto distribution

under the assumption that its shape parameter is unknown

and other parameters are known quantities. Bagheri et al.

(2013) considered efficient estimation of the PDF and the

CDF of a three-parameter generalized exponential-Poisson

distribution with unknown shape parameter. Recently,

Bagheri et al. (2016) estimated the CDF and the PDF of an

exponentiated Gumbel distribution using different methods

of estimation. They compared the performance of the

proposed estimators using a simulation study and analyzed

a real data set for illustrative purpose.

The main difference between our work with the existing

work is that we have considered eight methods of estima-

tion for estimating the pdf and the cdf whereas in existing

literature only five methods of estimation is considered to

the best of our knowledge.

We organize the contents of this paper as follows. In

Sect. 2 maximum likelihood estimators of the PDF and the

CDF are derived. Mean squared errors (MSEs) of both the

estimators are presented as well. The uniformly minimum

variance unbiased (UMVU) estimators and their MSEs are

discussed in Sect. 3. We present least squares estimators

(LSEs) and the weighted LSEs (WLSEs) in Sect. 4 and in

Sect. 5 percentile estimators (PCEs) are obtained. The

maximum product spacings estimators are obtained in

Sect. 6. We derive Cramér–von-Mises estimators of PDF

and CDF in Sect. 7 and in Sect. 8 Anderson–Darling esti-

mators are discussed. In Sect. 9 performance of suggested

estimators is studied using a Monte Carlo simulation study.

We analyze a real data set in Sect. 10 for illustration pur-

pose. Finally, the paper ends with a conclusion in Sect. 11.

2 Maximum likelihood estimation

Let X1;X2; . . .;Xn be a random sample of size n drawn from

a EME(a; b) distribution with known scale b. The maxi-

mum likelihood estimator (MLE) a is then obtained as

â ¼ � nPn
i¼1 log 1 � 1 þ xi

b

� �
e�

xi
b

h i ¼ n

T1

ð2:1Þ

where T1 ¼ �
Pn

i¼1 log 1 � 1 þ xi
b

� �
e�

xi
b

h i
. Now if X fol-

lows EME(a; b) distribution then T ¼ � log 1�½
1 þ X

b

� �
e�

X
b� has an exponential distribution with rate a.

Thus T1 being sum of n independent such exponential

distributions, it follows that T1 is distributed as gamma

Gðn; aÞ distribution with density function given by

fT1
ðt1Þ ¼

an

Cn
tn�1
1 e�at1 ; t1 [ 0; a[ 0: ð2:2Þ

Also observe that 1
T1

has inverse gamma distribution and

then the distribution of MLE â ¼ n
T1
¼ S is given by

fSðsÞ ¼
nnan

Cn
s�n�1 e�

na
s ; s[ 0:

Next we observe that MLEs of the PDF and the CDF are

respectively given by
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f̂ ðxÞ ¼ âx

b2
1 � 1 þ x

b

� �
e�

x
b

� �â�1

e�
x
b ð2:3Þ

and

F̂ðxÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �â
: ð2:4Þ

In the theorem presented below we show that the estima-

tors f̂ ðxÞ and F̂ðxÞ are biased for estimating f(x) and

F(x) respectively. Before we proceed further we rewrite

these estimators as f̂ ðxÞ ¼ âbðxÞðaðxÞÞâ�1
and F̂ðxÞ ¼

ðaðxÞÞâ where bðxÞ ¼ xe
�x
b

b2 ; aðxÞ ¼ 1 � 1 þ x
b

� �
e�

x
b

h i
.

Theorem 2.1 We have

E½f̂ ðxÞ�m ¼ 2
bðxÞ
aðxÞ

� �mðnaÞmþn
2

Cn
� 1

m ln aðxÞ

� �m�n
2

Km�n 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nam ln aðxÞ

p� �

and

E½F̂ðxÞ�m ¼ 2
ðnaÞ

n
2

Cn
� 1

m ln aðxÞ

� ��n
2

K�n 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nam ln aðxÞ

p� �
:

Proof We can write

E½f̂ ðxÞ�m ¼
Z 1

0

sbðxÞðaðxÞÞs�1
h imðnaÞn

Cn
1

snþ1
e�

na
s ds

¼ ðnaÞn

Cn
ðbðxÞÞm

Z 1

0

smðaðxÞÞsm�m 1

snþ1
e�

na
s ds

¼ ðnaÞn

Cn
ðbðxÞÞm

Z 1

0

eðsm�mÞ ln aðxÞsm�n�1e�
na
s ds

¼ 2
bðxÞ
aðxÞ

� �mðnaÞmþn
2

Cn
� 1

m ln aðxÞ

� �m�n
2

Km�n 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nam ln aðxÞ

p� �
;

where Km denotes the modified Bessel function of second

kind of order m. Also

E½F̂ðxÞ�m ¼
Z 1

0

ðaðxÞÞsm ðnaÞn

Cn
1

snþ1
e�

�na
s ds

¼ ðnaÞn

Cn

Z 1

0

esm ln aðxÞ e
�na

s

snþ1
ds

¼ 2
ðnaÞ

n
2

Cn
� 1

m ln aðxÞ

� ��n
2

K�n 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nam ln aðxÞ

p� �

h

Theorem 2.2 The mean squared error of estimates f̂ ðxÞ
and F̂ðxÞ are given by respectively

MSEðf̂ ðxÞÞ ¼ 2
aðxÞ
bðxÞ

� �2ðnaÞ
nþ2

2

Cn
� 1

2 ln aðxÞ

� �2�n
2

K2�n 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2an ln aðxÞ

p� �

� 4f ðxÞ aðxÞ
bðxÞ

ðnaÞ
nþ1

2

Cn
� 1

ln aðxÞ

� �1�n
2

K1�n 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�na ln aðxÞ

p� �
þ ðf ðxÞÞ2

and

MSEðF̂ðxÞÞ ¼ 2
ðnaÞ

n
2

Cn
� 1

2lnaðxÞ

� ��n
2

K�n 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2na lnaðxÞ

p� �

� 4FðxÞ ðnaÞ
n
2

Cn
K�n 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�na lnaðxÞ

p� �
þðFðxÞÞ2

Proof The proof follows by proceeding in a manner

similar to the proof of the previous theorem. h

3 Uniformly minimum variance unbiased
estimation

This section deals with finding uniformly minimum vari-

ance unbiased (UMVU) estimators of the PDF and the CDF

of an EME distribution. The mean square errors (MSE) of

these estimators are also obtained. Suppose X1;X2; . . .;Xn

denotes a random sample of size n drawn from the EME

distribution as defined in (1.1). We consider estimation of

f(x) and F(x) under the assumption that the scale parameter

b is known. For this problem T1 ¼
Pn

i¼1 log 1�½
1 þ x

b

� �
e�

x
b��1

is a complete and sufficient statistic for a

and it has a gamma Gðn; aÞ distribution. Following Leh-

mann–Scheffe theorem if gX1jT1
ðx1 j T1 ¼ tÞ ¼ h�ðtÞ is the

conditional pdf of X1 given T1 ¼ t then we have

E h�ðT1Þ½ � ¼
Z

gX1jT1
ðx1 j tÞgT1

ðtÞdt ¼
Z

gðx1; tÞdt

¼ f ðx1Þ

where gðx1; tÞ is the joint pdf of ðX1; T1Þ. Thus h�ðT1Þ is the

UMVU estimator of f(x).

Lemma 3.1 The conditional distribution of Z1 given T1 ¼
t1 is obtained as

fZ1jT1
ðz1 j t1Þ ¼

ðn� 1Þ t1 � log 1 � 1 þ x1

b

� �
e�

x1
b

� �h in�2

tn�1
1

;

� log 1 � 1 þ x1

b

� �
e�

x1
b

� �
\t1\1

where z1 ¼ log 1 � 1 þ x1

b

� �
e�

x1
b

h i�1

.

S1284 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S1282–S1296

123



Proof We can write the joint pdf of ðZ1; T1Þ as

fZ1;T1
ðz1; t1Þ ¼ f ðt1Þf ðz1 j t1Þ:

We now have

fZ1jT1
ðz1 j t1Þ ¼

f ðZ1 ¼ z1;T1 ¼ t1Þ
fT1

ðt1Þ

¼
f ðZ1 ¼ z1;

Pn
i¼2 1� 1þ xi

b

� �
e�

xi
b

h i�1

¼ t1 � z1Þ
fT1

ðt1Þ

¼
ae�az1 an�1

Cðn�1Þ ðt1 � z1Þn�2
e�aðt1�z1Þ

an
Cn t

n�1
1 e�at1

¼ ðn� 1Þ ðt1 � z1Þn�2

tn�1
1

¼ðn� 1Þ
t1 þ log 1� 1þ x1

b

� �
e�

x1
b

� �h in�2

tn�1
1

;

� log 1� 1þ x1

b

� �
e�

x1
b

� �
\t1\1:

In the following theorem we provide UMVU estimators of

f(x) and F(x). h

Theorem 3.1 For a given T ¼ t, the estimator ~f ðxÞ with

~f ðxÞ ¼ x

b2

e�
x
bðn� 1Þ

1� 1þ x
b

� �
e�

x
b

h i t1 þ log 1� 1þ x
b

� �
e�

x
b

� �h in�2

tn�1
1

is the UMVUE of f(x) and the estimator ~FðxÞ with

~FðxÞ ¼ 1 þ
log 1 � 1 þ x

b

� �
e�

x
b

� �
t1

2
4

3
5
n�1

is the UMVUE of F(x) where

� log 1 � 1 þ x

b

� �
e�

x
b

� �
\t1\1

Proof We observe that

E½~f ðxÞ� ¼ x

b2

e�
x
bðn� 1Þ

1 � 1 þ x
b

� �
e�

x
b

� �
2
4

3
5Z 1

� log aðxÞ

ðt1 þ log aðxÞÞn�2

tn�1
1

antn�1
1 e�at

Cn
dt

¼ x

b2

e
x
bðn� 1Þ

1 � 1 þ x
b

� �
e�

x
b

� � aea log 1� 1þx
bð Þe�

x
b

	 

n� 1

¼ ax

b2
e�

x
b 1 � 1 þ x

b

� �
e�

x
b

� �a�1

¼ f ðxÞ

Thus the estimator ~f ðxÞ is UMVU estimator of f(x). In order

to prove that ~FðxÞ is UMVU estimator of F(x) we show that
d
dx
~FðxÞ ¼ ~f ðxÞ.
Now

d

dx
~FðxÞ ¼ d

dx
1þ

log 1� 1þ x
b

� �
e�

x
b

� �
t1

2
4

3
5
n�1

¼ e�
x
bx

b2
ðn� 1Þ

t1 þ log 1� 1þ x
b

� �
e�

x
b

� �h in�2

tn�1
1 1� 1þ x

b

� �
e�

x
b

� � ¼ ~f ðxÞ:

This completes the proof of the theorem. h

Theorem 3.2 The mean squared errors of ~f ðxÞ and ~FðxÞ
are respectively given by

MSEð~f ðxÞÞ ¼ ððn� 1Þa�ðxÞÞ2
Xð2ðn�2ÞÞ

i¼0

2ðn� 2Þ
i

� �

ðaðxÞÞiCðn� 2 � i; aðxÞaÞ � f 2ðxÞ

and

MSEð ~FðxÞÞ ¼ an

Cn

Xðn�1Þ2

j¼0

ðn� 1Þ2
j

� �
ðlogðaðxÞÞÞj

Cðn� j;� log aðxÞaÞ � F2ðxÞ:

Proof Note that

~f ðxÞ ¼ a�ðxÞðn� 1Þ ðt1 þ log aðxÞÞn�2

tn�1
1

;

with a�ðxÞ ¼ x
b2

e
�x
b

1� 1þx
bð Þe�

x
b

and ~FðxÞ ¼ 1 þ log aðxÞ
t1

h in�1

. We

calculate the following expectations

E½~f ðxÞ�p ¼ ða�ðxÞÞpðn� 1Þp
Z 1

� log aðxÞ

ðt1 þ log aðxÞÞðn�2Þp

t
ðn�1Þp
1

an

Cn
tn�1
1 eat1dt1

¼ ððn� 1Þa�ðxÞpÞ a
n

Cn

Z 1

� log aðxÞ

1 þ log aðxÞ
t1

� �ðn�2Þp
t
n�p�1
1 e�at1dt1

¼ ððn� 1Þa�ðxÞÞp a
n

Cn

Z 1

� log aðxÞ

Xðn�2Þp

i¼0

ðn� 2Þp
i

� �

ðlog aðxÞÞitn�p�i�1
1 e�at1dt1

¼ ððn� 1Þa�ðxÞÞp
Xðn�2Þp

i¼0

ðn� 2Þp
i

� �

ðlog aðxÞÞiCðn� p� i; log aðxÞaÞ

and
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E½ ~FðxÞ�p ¼
Z 1

� log aðxÞ
1 þ log aðxÞ

t1

� �n�1
" #p

an

Cn
tn�1
1 e�at1dt1

¼ an

Cn

Z 1

� log aðxÞ

Xðn�1Þp

j¼0

ðn� 1Þp
j

� �

log aðxÞ
t1

� �j

tn�1
1 e�at1dt1

¼ an

Cn

Xðn�1Þp

j¼0

ðn� 1Þp
j

� �
ðlog aðxÞÞj

Cðn� j;� log aðxÞaÞ:

We further observe that MSEð~f ðxÞÞ ¼ E½~f ðxÞ�2 � ðf ðxÞÞ2

and the corresponding expectation can be obtained using

the above calculations. Similarly we can obtain mean

squared error of the estimator ~FðxÞ. h

4 Least squares and weighted least squares
estimators

This section deals with regression based estimators for

the unknown shape parameter a. This method has been

introduced in literature by Swain et al. (1988) for esti-

mating the unknown parameters of a beta distribution.

Let FðXðj:nÞÞ denotes the distribution function of the

order random variables ðX1:n;X2:n; . . .;Xn:nÞ with

X1;X2; . . .;Xn being a random sample drawn from the

distribution as defined in (1). Observe that for a sample

of size n we have EðFðXðj:nÞÞÞ ¼ 1
nþ1

;VðFðXðj:nÞÞÞ ¼
jðn�jþ1Þ

ðnþ1Þ2ðnþ2Þ and covðFðXðj:nÞÞ;FðXðk:nÞÞÞ ¼ jðn�kþ1Þ
ðnþ1Þ2ðnþ2Þ ; j\k

(see, Johnson et al. 1994) we provide two different least

square estimators for the unknown parameter a which

can be used to estimate the PDF and the CDF of the

considered model.

4.1 Least square estimators (LSEs)

In this method we minimize the expressionPn
j¼1 FðXj:n � j

nþ1

h i2

with respect to the unknown param-

eter. For the considered model the desired estimator als of a
(with known b) is the value minimizing

Pn
j¼1 1 � 1 þ Xðj:nÞ

b

� �
e�

Xðj:nÞ
b

� �a

� j
nþ1

� �2

. Thus the least

square estimators of the PDF and the CDF are given by

flsðxÞ ¼
~als
b2

1 � 1 þ x

b

� �
e�

x
b

� �~als�1

e�
x
b ð4:1Þ

and

FlsðxÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �~als

: ð4:2Þ

The expected values and mean square errors of these

estimators are computed using simulations as it is difficult

to evaluate these quantities analytically.

4.2 Weighted least square estimators

In this set up we minimize the expression
Pn

j¼1

wj FðXðj:nÞ � j
nþ1

Þ
h i2

with respect to the unknown quantity a

where the weight function is wj ¼ ðnþ1Þ2ðnþ2Þ
jðn�jþ1Þ . For the EME

distribution the weighted LSE ~awls of a is obtained by

minimizing the expression

Xn
j¼1

ðnþ 1Þ2ðnþ 2Þ
jðn� jþ 1Þ 1 � 1 þ

xðj:nÞ
b

� �
e�

xðj:nÞ
b

� �a

� j

nþ 1

� �2

:

Thus the weighted LS estimators of f(x) and (F(x)) are

obtained as

~fwlsðxÞ ¼ ~awls
x

b2
1 � 1 þ x

b

� �
e�

x
b

� �~awls�1

e�
x
b ð4:3Þ

and

~FwlsðxÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �~als
ð4:4Þ

The bias and MSE values of these estimators are calculated

using simulation.

5 Estimators based on percentiles

In this section we consider estimation of the pdf and the cdf

based percentile estimators. This method is originally dis-

cussed in Kao (1958), however, one may also refer to

Mann et al. (1974) and Johnson et al. (1994) for some

further results on this method of estimation. This method

has found easy applications in estimation problems where

distribution function has a closed form expression. Since

the considered model has a closed form distribution func-

tion we can estimate its parameters using this technique.

Let FðXðj:nÞÞ be the CDF of the ordered random sample

ðX1:n;X2:n; . . .;Xðn:nÞÞ with ðX1;X2; . . .;XnÞ taken from an

EME distribution. For further consideration let pi ¼ i
nþ1

then percentile estimator ~ape of a minimizes the expression

Xn
i¼1

ln pi � a ln 1 � 1 þ xi:n

b

� �
e�

xi:n
b

� �� �2

: ð5:1Þ

The desired estimator ~ape is the solution to equation
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Xn
i¼1

ln pi � a ln 1 � 1 þ xi:n

b

� �
e�

xi:n
b

� �� �
ln

1 � 1 þ xi:n

b

� �
e�

xi:n
b

� �
¼ 0

ð5:2Þ

This implies that

~ape ¼
Pn

i¼1 ðln piÞ ln 1 � 1 þ xi:n
b

� �
e�

xi:n
b

� �h i
Pn

i¼1 ln 1 � 1 þ xi:n
b

� �
e�

xi:n
b

� �h i2
: ð5:3Þ

So the percentile estimator of the PDF and the CDF are

now given by

~fpeðxÞ ¼
~apex

b2
1 � 1 þ x

b

� �
e�

x
b

� �~ape�1

e�
x
b ð5:4Þ

and

~FpeðxÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �~ape

: ð5:5Þ

6 Method of maximum product spacing

This method was introduced by Cheng and Amin (1979) as

an alternative method to the maximum likelihood estima-

tion method. For a given sample of size of n taken from an

EME distribution, the corresponding uniform spacing is

given by

Diða; bÞ ¼ Fðxi:n j a; bÞ � Fðxi�1:n j a; bÞ ð6:1Þ

for i = 1, 2, …, n with Fðx0:n j a; bÞ ¼ 0;Fðxnþ1:n j a; bÞ ¼
1 and

Pn
i¼1 Diða; bÞ ¼ 1.

The maximum product spacing estimator ~amps of a is

computed by maximizing the expression

Dða; bÞ ¼
Ynþ1

i¼1

Diða; bÞ
" # 1

nþ1

ð6:2Þ

with respect to a. Equivalently we maximize the function

D�ða; bÞ ¼ 1

nþ 1

Xnþ1

i¼1

lnDiða; bÞ;

and observe that ~amps can be computed from the equation

oD�ða; bÞ
oa

¼ 1

nþ 1

Xnþ1

i¼1

1

Diða; bÞ
D0ðxi:nÞ j a; bÞ � D0ðxi�1:nÞ j a; bÞ
� � ð6:3Þ

where D0ðxi:nÞ j a; bÞ ¼ 1 � 1 þ xi:n
b

� �
e�

xi:n
b

h ia
ln 1�½

1 þ xi:n
b

� �
e�

xi:n
b �. Cheng and Amin (1983) observed that

maximizing D�ða; bÞ as a method of parameter estimation

is as efficient as the MLEs. The MPS estimator of the PDF

and the CDF are, respectively,

~fmpsðxÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �~amps�1~ampsx
b

e�
x
b ð6:4Þ

and

~FmpsðxÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �~amps

: ð6:5Þ

7 Method of Cramér–von-Mises

Macdonald (1971) gave empirical evidence that bias values

of the Cramér–von-Mises type estimators are smaller than

the other minimum distance estimators. The Cramér–von-

Mises estimates ~acvm of the parameter a is computed by

minimizing, with respect to a, the function

Vða; bÞ ¼ 1

12n
þ
Xn
i¼1

Fðxði:nÞ j a; bÞ �
2i� 1

2n

� �2

: ð7:1Þ

The estimator ~acvm can also be derived from the following

non-linear equation

Xn
i¼1

Fðxði:nÞ j a; bÞ �
2i� 1

2n

� �
D0ðxi:n j a; bÞ ¼ 0 ð7:2Þ

where D0ðxi:n j a;bÞ ¼ 0 is defined in the previous sec-

tion. Now the CVM estimators of the PDF and the CDF are

given by

~fcvmðxÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �~acvm�1

e�
x
b ð7:3Þ

and

~FcvmðxÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �~acvm

: ð7:4Þ

The bias and MSE values of these estimators are computed

using simulations.

8 Method of Anderson–Darling

Anderson and Darling (1952) developed a test to detect

normality distribution of various data. The Anderson–

Darling estimator ~aad of a is derived by minimizing the

function

ADða; bÞ ¼ �n� 1

n

Xn
i¼1

ð2i� 1Þ

lnFðxi:n j a; bÞ þ ln �Fðxnþ1�i:n j a; bÞ½ �:
ð8:1Þ
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The estimator ~aad can also be obtained by solving the

following non-linear equations

Xn
i¼1

ð2i� 1Þ
D0ðxði:nÞ j a; bÞ
Fðxði:nÞ j a; bÞ

�
Dðxði:nÞ j a; bÞ
�Fðxði:nÞ j a; bÞ

� �
¼ 0 ð8:2Þ

where D0ð: j a; bÞ is defined previously.

The Anderson–Darling estimators of the PDF and the

CDF are now given by

~fadðxÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �~aad ~aadx

b2
e
� x

b2 ð8:3Þ

and

~FadðxÞ ¼ 1 � 1 þ x

b

� �
e�

x
b

� �~aad

: ð8:4Þ

9 Simulation study

In this section, we study the behavior of the suggested

methods of estimation using a simulation study in terms

of their mean squared error values. Here, we compute

the deviation of MSEs which represent difference

between MSE of an estimator from the MSE of

Fig. 1 a ¼ 1:5;b ¼ 0:5

Fig. 2 a ¼ 1:5;b ¼ 0:75
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maximum likelihood estimator. These values are com-

puted based on 1000 simulated samples from the EME

distribution with different sample sizes n = 10, 15, 20,

25, 30, 35, 40, 45, 50 and for arbitrarily assigned values

of parameters a and b. We compute MSEs for different

values of x as x = 0.75, 1 and 1.5. Figures 1, 2, 3 and 4

represent deviation of MSEs at x = 0.75. Similarly,

Figs. 5, 6, 7, 8, 9, 10, 11 and 12 represent deviation of

MSEs at x = 1 and x = 1.5 respectively. Note that, left

hand side figures are for the PDF estimation and right

hand side figures are for the CDF estimation. It is

observed from these figures that maximum likelihood

estimators of the PDF and the CDF perform better than

other proposed estimators and their efficiency improve

with the increase in sample sizes. In general, the per-

formance of UMVU estimators is good as far as its MSE

is concerned. With moderate increase in a, we get better

estimates of the PDF and the CDF for a given b.

Fig. 3 a ¼ 2;b ¼ 0:5

Fig. 4 a ¼ 2;b ¼ 0:75
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10 Data analysis

Here we analyze a real data set to illustrate the use of

proposed estimators in practice. This data set as reported in

Lawless (1982) represents the survival times for the control

group laboratory mice that were exposed to a fixed dose of

radiation for a duration of 5–6 weeks and the mice died due

to tymic lymphoma. The data set is listed below as

We first examine whether an EME distribution can be

used to draw inference from this data set. For this purpose

we fitted this data set using EME and Weibull distributions.

Since for real data the unknown parameters a and b of

EME distribution are treated as unknown and so they need

to be estimated using some estimation method for further

analysis. Here we use maximum likelihood estimation

method to estimate a and b. To proceed further we assume

Fig. 5 a ¼ 1:5;b ¼ 0:5

Fig. 6 a ¼ 1:5;b ¼ 0:75

159 189 191 198 200 207 220 235 245 250 256 261 265 266 280
343 350 383 403 414 428 432
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that X1;X2; . . .;Xn denote a random sample from a EME

distribution. Below we derive MLE of a; b based on the

given data set. The likelihood equation of ða; bÞ is

Lða; bÞ ¼
Yn
i¼1

1 � 1 þ xi

b

� �
e�

xi
b

� �
axi
b2

e�
xi
b

and the corresponding log likelihood function is obtained

l ¼ ln L ¼ a
Xn
i¼1

ln 1 � 1 þ xi

b

� �
e�

xi
b

� �
þ n ln a

þ
Xn
i¼1

xi �
Pn

i¼1

b
� 2n ln b:

Now the likelihood equations of a and b are

ol

oa
¼
Xn
i¼1

ln 1 � 1 þ xi

b

� �
e�

xi
b

� �
þ n

a
¼ 0

ol

ob
¼a

Xn
i¼1

xie
�xi

b

1 � 1 þ xi
b

� �
e�

xi
b

� �þ
Xn
i¼1

xi � 2nb ¼ 0:

The desired estimates of a and b can now be obtained by

simultaneously solving the above system of equations.

Similarly unknown parameters of the Weibull distribu-

tion can be estimated. We report MLEs of unknown

parameters of these two distributions along with the

Fig. 7 a ¼ 2;b ¼ 0:5

Fig. 8 a ¼ 2;b ¼ 0:75
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values of K-S test and the corresponding p values in

Table 1. For computational simplification, we divided

each data points by 100. The reported results suggest

that the EME distribution fits the data set reasonably

good. Further, we also fit the EME distribution to the

given data set using the suggested procedures for model

selection purpose. In Table 2 we have reported different

estimates of a and b obtained using MLE, LSE, WLSE,

PCE, CVE, MPS and AD methods of estimation. The

corresponding values of different model selection criteria

such as maximum likelihood (ML) criterion, Akaike

information criterion (AIC), corrected Akaike informa-

tion criterion (AICc), Bayes information criterion (BIC),

Hannan-Quinn criterion (HQC) are also displayed in this

table. Results suggest that, the percentile estimators

provide better fit among different model selection cri-

teria which is reasonably in line with the simulation

study as well. In Fig. 13, we provide Q–Q plots

Fig. 9 a ¼ 1:5;b ¼ 0:5

Fig. 10 a ¼ 1:5;b ¼ 0:75
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(ovserved versus expected quantiles) for all the sug-

gested estimation methods. Displayed figures indicate

that the percentile estimator (fourth in list) provides the

better fit. Figure 14 displays the P–P plots (observed

versus expected probabilities) for all the suggested

methods of estimation. Figure 15 shows the density plots

Fig. 11 a ¼ 2;b ¼ 0:5

Fig. 12 a ¼ 2;b ¼ 0:75

Table 1 Goodness of fit tests for the real data set

Distribution â b̂ K–S p value

EME 13.54 0.5614 0.1388 0.7

Weibull 3.591 0.0168 0.2052 0.3
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Table 2 Different estimates of the parameters of EME distribution and values of model selection criteria for the real data set

Estimator â b̂ ML AIC AICc BIC HQC

MLE 13.54 0.5614 153.4 157.4 158.0 159.6 157.9

LSE 6.837 0.6718 123.3 127.3 127.9 129.5 127.8

WLSE 8.216 0.6400 131.1 135.1 135.7 137.3 135.6

PCE 9.167 0.8343 102.0 106.0 106.7 108.2 106.5

MPS 8.843 0.6314 133.3 137.3 137.9 139.5 137.8

CVM 8.301 0.6327 133.1 137.1 137.8 139.3 137.6

AD 8.819 0.6288 134.0 138.0 138.6 140.2 138.5

Fig. 13 Q–Q plots for the different estimation methods

Fig. 14 P–P plots for the different estimation methods
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(fitted density functions versus empirical histogram) for

all the estimation methods. We may conclude from the

figures that percentile estimator provides reasonably

good fit.

11 Conclusion

In this article, we have considered eight methods of esti-

mation of the probability density function and the cumu-

lative distribution function for the EME distribution and

comparisons are performed. Such comparisons can be

useful to find the best estimators for the PDF and the CDF

which can be used to estimate functionals like differential

entropy, Rényi entropy, Kullback–Leibler divergence,

Fisher information, cumulative residual entropy, the

quantile function, Bonferroni curve, Lorenz curve, proba-

bility weighted moments, hazard rate function, mean

deviation about mean etc. From both simulation study and

real data analysis, we observe that both ML and UMVU

estimators along with percentiles estimator perform better

than their counter part. We hope our results and methods of

estimation might attract wider sets of applications in the

above mentioned functionals. It will be interesting to study

the methods of estimation of the PDF and the CDF based

on censoring data like progressive censoring and group

censoring data. The work is in progress and it will be

reported later.
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