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Abstract K-out-of-n redundant systems are used to

increase reliability in various industries. The failure of a

component in such systems is dependent upon the failure of

other components. Therefore, if an appropriate model is not

developed to take dependent failures into consideration,

reliability and MTTF of redundant systems are evaluated

wrongly. One of the most crucial varieties of dependent

failures is common cause failure. Common cause failure

refers to the failure of two or more components of a k-out-

of-n system which occurs simultaneously or within a short

time interval and thus components are direct failures

resulting from a shared cause. Another type of dependent

failure in k-out-of-n redundant systems is load share, where

the failure of one component leads to increased load in

surviving components, hence changing their failure rate. In

this paper, using Markov chain, three models are used to

evaluate the MTTF of a 2-out-of-3 redundant system by

taking dependent failures into account. Model I addresses

the MTTF of a 2-out-of-3 redundant system by considering

common cause failure based on alpha factor model. In

Model II, both dependent failures (common cause failure

and load share) are examined based on capacity flow and

alpha factor model. In Model III, in addition to common

cause failure and load share, component repair is studied,

too. In order to examine the validity of the models intro-

duced and conduct sensitivity analysis, some diagrams are

drawn for each model. Considering the dependent failures

in the 2-out-of-3 redundant systems, all the three proposed

models can be practical and be used to evaluate MTTF.

Keywords MTTF � Common cause failure � Load share �
Alpha factor � Capacity flow

1 Introduction

Due to its special significance in the design, production,

and maintenance phases, investigation of system reliability

has always been carried out by designers and engineers.

System reliability must be evaluated precisely and cor-

rectly. Hence, the assumption of independent components

is ruled out, because in the real world the failure of one

component affects other components, thus leading to

dependent failure.

In some systems, in order to increase reliability, n

components are used in parallel, so that the system does not

undergo failure and continues functioning in case of failure

of one component. If k system components experience

failure, the whole system breaks down. Such systems are

known as k-out-of-n systems. In k-out-of-n systems, there

are commonly two types of dependent failures. The most

important dependent failure which affects the safety of the

redundant system is common cause failure (CCF). CCF

refers to the failure of two or more components of a k-out-

of-n system which occurs simultaneously or within a short

time interval and thus components are direct failures

resulting from a shared cause (Hwang and Kang 2011).

Following the occurrence of a fire at a nuclear power plant
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in Alabama in 22 March 1975, CCF began to receive

greater attention in nuclear industries (Rausand and Høy-

land 2004).

Load share is another type of dependent failure in k-out-

of-n systems, in which the failure of one component

increases the load applied to other system components.

The early models which consider load share in redundant

systems are state graph model, capacity flowmodel (Pozsgai

et al. 2003) and Freund model (Freund 1961). Platz (1984)

used a continuous time four-state Markov chain to investi-

gate dependency in a redundant system. Shao and Lamber-

son (1991) examined the reliability and availability of load

share in k-out-of-n systems. Lin et al. (1993) developed a

multivariate exponential share load model. In most

mechanical systems, the failure rate of components is not

constant. Pozsgai et al. (2003) developed general simulation

algorithms for 1-out-of-n systems with load share, in which

failure rate is dependent on time. Having discussedmodeling

concepts in load share systems, Amari and Bergman (2008)

elaborated on existing analysis methods and their lamina-

tions in the analysis of load share systems. Sharifi et al.

(2009) used markov chain and considered a k-out-of-n sys-

temwith n parallel and identical components with increasing

failure rates and non repairable components. A load-sharing

parallel system is considered when the lifetimes of the

components in the system are any continuous random vari-

ables by Yun and Cha (2010). Maatouk et al. (2011) used the

Markov process and the universal generating function to

evaluate the reliability of series–parallel multi-state systems

in the presence of load share. The reliability analysis of load-

sharing k-out-of-n systems under the shared load by different

conditions for the load andWeibull probability distributions

of time to component failure has been provided byGurov and

Utkin (2015).

Various models such as beta factor (Fleming 1975), alpha

factor (Mosleh and Siu 1987) and MGL (Fleming and

Kalinowski 1983) have been developed to measure the

possibility of component failure with CCF. Dhillon and

Anude (1994) advanced Mean Time To Failure (MTTF) of

the redundant system in the presence of warm standby and

CCF. Byeon et al. (2009) used the dynamic fault tree to

incorporate independent failure and CCF, and proposed the

new analysis. Jain andGupta (2012) dealtwith load share and

CCF in a k-out-of-n redundant systemwith non-identical and

non-reparable components. Moreover, Jain (2013) investi-

gated the availability of redundant system, CCF, and reboot

delay. Yusuf et al. (2014) developed an explicit expression

for MTTF of a 3-out-of-5 system with warm standby in the

presence of CCF. They also took the reparability of the

components into consideration. Specifically, in some cases

where it is impossible to identify the dependent failure in the

systems, the copula function is used to compute the charac-

teristics and features. Using copulas, Jia et al. (2014) studied

some systems with arbitrary dependent components and

investigated the efficiency of the formulas presented in ser-

ies, parallel, and k-out-of-n systems. In their work, all

components are interdependent, and dependent relations

may be linear or nonlinear. Troffaes et al. (2015) investigated

the imprecise continuous time Markov chain to find out how

it can improve on the traditional reliability models. They

deemed reparability non-immediate, addressed CCF, and

particularly analyzed the reliability of power networks. They

also incorporated the CCF into their proposed model,

assuming that following a CCF event all components suffer

failure simultaneously. Kumar and Sankar (2016) attempted

of made to analyze the limiting state probabilities (LSP) of

states for small and large repairable systems in which, the

components are prone for failures due to CCF.

It is crucial that equipment and systems perform their

functions efficiently during theirmission time.Hence, in order

to enhance the performance of repair systems, some features

such as reliability, maintenance, and supportability are

invariably taken into consideration by engineers. Asjad et al.

(2013a, b) integrated the opportunistic policy in the mainte-

nance and supportability schedule for a reciprocating com-

pressor. Asjad et al. (2015) took into consideration the

reliability, maintenance, and supportability of a repair system

and developed a mathematical model for estimating the

availability of systems.The failure rate ofmechanical systems

(e.g. pumps, motors, turbines, etc.) increases with the passage

of time. Therefore, maintenance actions require opportunistic

policies. Asjad et al. (2016) investigated maintenance and

found an optimal level of supportability at lowest possible

costs. Supportability is highly crucial for products. It comes in

a variety of ways such as installation, commissioning, docu-

mentation, training, warranty, and maintenance (Asjad et al.

2013a, b), with maintenance being the most important and

MTTF computation is one of the most important parts of

maintenance. It includes precise evaluation as well as con-

sideration of all dependent failures. An efficient way to

evaluate the reliability and MTTF of systems is use of math-

ematical methods such as state transition diagrams or markov

chains which appeal to researchers. Using state transition

diagrams and Laplace transform techniques, Ram andNagiya

(2016) evaluated system reliability andMTTF and conducted

a sensitivity analysis for different parameters of the proposed

model. Using Kolmogorov’s forward equation, Yusuf and

Hussaini (2012) developed various features such as MTTF,

steady state availability for a 2-out-of-3 system.

k-out-of-n redundant systems under load share and CCF

have been prevalently investigated in the literature but few

research has addressed two types of dependent failure

simultaneously. Most studies on CCF have posited that a

CCF event entails the simultaneous failure of all redundant

system components. But, this is not the case (for 2-out-of-3

systems), and it is possible that following a CCF event only
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some of the components in the redundant system suffer

failure. Another gap existing in the researches is the

development of models with various parameters which are

difficult to estimate and hence inapplicable. To tackle this

problem, in the present study, the alpha factor and the

capacity flow models were used. These two models have

extensive application in industries, and studies have

attempted to estimate their parameters.

High pressure water pumps play an indispensable role in

industrial equipment, including in nuclear industries (Kang

et al. 2011), cooling towers (Rahmati et al. 2016; Alavi and

Rahmati 2016), main water transfer routes and etc. High

pressure water pumps are placed in the main route of water

pipelines to compensate for water pressure drop. Failure of

these pumps leads to water outages in the water supply net-

work. Three pumps are used in parallel so as to prevent water

outage in case of failure of one pump (Fig. 1). In the event of

failure of two of the three pumps, the water supply network

undergoes pressure drop or water outage (2-out-of-3 system).

Besides, due to thewater pressure inside the pipes, if one of the

pumps fails, pressure accumulates on the surviving pumps

(load share). Moreover, the water pumping system is a

redundant system which fails due to CCF as well as inde-

pendent failure. Today, drinking water outage in a city has

political, social, cultural, and health consequences. Therefore,

in recent years, authorities have paid attentions to the main-

tenance of pipelines and water pumps. As mentioned above,

one of the important features in the maintenance and inspec-

tion of systems is Mean Time Between Failure (MTBF).

MTBF helps the maintenance operator to estimate the time to

failure of the system and start the maintenance operation

before the system fails. Furthermore,MTBF is instrumental in

controlling the maintenance costs of the water pumps. In this

paper, usingMarkov chain and Laplace transform techniques,

MTBF is computed for municipal water pumping system by

taking reparability, load share, and CCF into consideration.

The model developed is applicable for all k-out-of-n redun-

dant system configurations with dependent components. To

verify the validity and utility of the structure developed, the

dependencies and reparability are taken into consideration in

the model step by step.

The organization of the paper is as follows: In Sect. 2,

Assumptions and notations are presented. In Sects. 3 and 4,

an introduction to the alpha factor model and capacity flow

model is presented. In Sect. 5.1, the MTTF for 2-out-of-3

redundant system is computed with CCF based on alpha

factor model. In Sect. 5.2, the model of capacity flow for

load share is used and added to the model presented in

Sect. 5.1. In Sect. 5.3, reparability in the proposed model is

addressed, and, using the absorbing state, MTBF is com-

puted for municipal water pumping system.

2 Assumptions and notations

• The system and the components operate in a binary

fashion. They either work or fail.

• The components are considered identical.

• Using technical and engineering measures, load share

in high pressure water pumps is detected.

• Initially, all system components function (They are in

good condition).

• After repairs, the systemfunctions inanewandgood fashion.

• After failure of a component, the load is distributed

equally on the surviving components.

• Component failure is detected and repaired immediately.

• Failure frequency and repair frequency of the compo-

nents is constant (component lifetime has an exponen-

tial distribution).

• Components are repaired singly (There is one

repairman).

Fig. 1 High pressure water pumps 2-out-of-3 redundant system

t Time scale (h)

s Laplace transforms variable

PkðtÞ Probability that k components are fail at time

t (k = 0, 1, 2, 3)

AI ;BI ;CI Independent failures of components A, B, and C

CAB;CAC ;CBC Failures of A&B, A&C, B&C due to CCF

CABC Failure of A&B&C due to CCF

Q1 Independent failures rate (failure per 1000 h)

Q2 Simultaneous failure rate of two components caused

by common cause (failure per 1000 h)

Q3 Simultaneous failure rate of three components

caused by common cause (failure per 1000 h)

Q�
x Failure rate of surviving components after suffering

the failure of component X (failure per 1000 h)

c Load factor

l Repair rate (repaire per 100 h)

WI ;WI ;WIII The rates of transition matrix for model I, II and III
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3 Alpha factor model

CCF is a subset of dependent failures, and it influences the

reliability of redundant systems considerably. The alpha-

factor model was developed by Mosleh in 1998 in order to

consider CCF in k-out-of-n redundant systems.

Following the presentations in NUREG/CR-4780 and

NUREG/CR-5485 (Mosleh et al. 1988, 1998), the basic

parameter model is best explained with an example using a

2-out-of-3 redundant system of similar components (A, B,

and C).

Figure 2 illustrates the fault tree for a 2-out-of-3 system

for the 3 identical components A, B and C. These three

components constitute a common cause component group

(CCCG). A common cause component group is a set of

components which suffer failure due to a common cause

besides their independent failure. The minimal cut sets for

the fault tree in Fig. 2 are as follow:

A;Bf g; A;Cf g; B;Cf g; A;B;Cf g ð1Þ

Each component A, B and C undergoes CCF as well as

independent failure. Figure 3 illustrates the fault tree of

component A. The minimal cut sets for this fault tree are as

follows:

AIf g; CABf g; CACf g; CABCf g ð2Þ

And, in a similar vein, the minimal cut sets for com-

ponents B and C is:

BIf g; CABf g; CBCf g; CABCf g ð3Þ
CIf g; CACf g; CBCf g; CABCf g ð4Þ

In the above equation AI , BI , and CI are the independent

failures of components A, B, and C, respectively. Also,

CAB, CAC , CBC, and CABC are the failures of A&B, A&C,

B&C, and A&B&C, respectively, due to common cause.

Thus, the probability of failure of a 2-out-of-3 redundant

system is:

PðsÞ ¼ PðAIÞPðBIÞ þ PðAIÞPðCIÞ þ PðBIÞPðCIÞ
þ PðCABÞ þ PðCACÞ þ PðCBCÞ þ PðCABCÞ ð5Þ

CCCG in water pumping system is presented in Fig. 4.

In order to simplify the equation, it is assumed that:

PðAIÞ ¼ PðBIÞ ¼ PðCIÞ ¼ Q1

PðCABÞ ¼ PðCACÞ ¼ PðCBCÞ ¼ Q2

PðCABCÞ ¼ Q3

ð6Þ

Hence, the probability of failure of a 2-out-of-3 redun-

dant system is:

Fig. 2 Fault tree of 2-out-of-3 system

Fig. 3 Fault tree for component A

Fig. 4 CCCG for high pressure water pumps
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PðTÞ ¼ 3ðQ1Þ2 þ 3Q2 þ Q3 ð7Þ

In alpha factor model, the two parameters QT and ak are
defined: QT is the total failure frequency of the system

caused by independent failure and CCF; ak is a fraction of

the total frequency of failure event including the failure k

of the component in the system. Hassija et al. (2014), Kang

et al. (2011) and Zheng et al. (2013) developed methods to

estimate the value of ak.
There are two types of testing schemes here: staggered

testing scheme and non-staggered testing scheme. A stag-

gered testing scheme is a scheme where components are

tested separately within an equal time interval. Therefore,

for the staggered testing scheme,

Q1 ¼ a1QT

Q2 ¼
1

2
a2QT

Q3 ¼ a3QT

ð8Þ

and for the non-staggered testing scheme

Q1 ¼
a1
a2

QT

Q2 ¼
2a2
aT

QT

Q3 ¼
3a3
aT

QT

ð9Þ

where

aT ¼ a1 þ 2a2 þ 3a3 ð10Þ

In this paper, a staggered testing scheme along with

Eq. 8 is used.

4 Capacity flow model

Load share is another type of dependent failure. When a

component suffers failure in a redundant system, the load

applied to the surviving components increases. This

increase changes the failure rate of the surviving compo-

nents, hence affecting the total system MTTF. The capacity

flow model is a simple model for load share. It this model,

a k-out-of-n system with n identical components is

assumed. Load L is applied equally to all operation com-

ponents. When all the components are in operation, the

load applied to each component equals L/n. As soon as the

first component begins to suffer failure, load L/n - 1

increases on the surviving components. The initial failure

rate for all the components equals Q1. Due to the load

increase following the failure of the first components, the

failure rate of the surviving components equals Q�
x , which

is defined as follows:

Q�
x ¼

n

n� x

� �c
�Q1 x ¼ 0; 1; . . .; n� 1 ð11Þ

x is the number of components suffering failure in a

redundant system, and c is the load factor. Load share

exists in most redundant engineering systems such as

electric generators, water pumps, cables in suspension

bridges, CPUs, graphics cards, laptop RAMs, etc.

5 Description and model preparation

In this section, three models are presented to evaluate the

MTTF and MTBF of a 2-out-of-3 redundant system with

dependent failures and repair. In cases where there is CCF

as well as component independent failure in a redundant

system, Model I can be used to evaluate MTTF. In

redundant systems with more than two components, it is

possible that a CCF event does not entail the simultaneous

failure of all components (instead, the components may

suffer failure in groups of two, three, or more). In order to

consider this issue in the evaluation of MTTF of such

systems, the alpha factor model is employed. In addition to

the CCF, some redundant systems undergo load share, too.

The MTTF of such systems can be evaluated using Model

II. If the components of a redundant system are repairable,

Model III can be used to evaluate MTBF. Therefore, each

of the three aforementioned models can be used to the

redundant system of high pressure water pumps following

the expert judgment.

5.1 Model I

Letting PnðtÞ to be the probability that n components are

fail at time t (n = 0, 1, 2, 3); and (X(t), t C 0) is governed

by continuous-time homogeneous markov process. The

rates of transition matrix for the first model is as follows.

WI ¼
�ð3Q1þ 3Q2þQ3Þ 3Q1 3Q2 Q3

0 �ð2Q1þ 3Q2þQ3Þ ð2Q1þ 2Q2Þ ðQ2þQ3Þ
0 0 �ðQ1þ 2Q2þQ3Þ ðQ1þ 2Q2þQ3Þ
0 0 0 0

2
6664

3
7775

ð12Þ

The differential equations can be expressed as

dPnðtÞ
dt

¼ PnðtÞ �WI ð13Þ
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Differential equations based on Eq. 13 obtained

dP0ðtÞ
dt

¼ �ð3Q1 þ 3Q2 þ Q3Þ � P0ðtÞ

dP1ðtÞ
dt

¼ ð3Q1Þ � P0ðtÞ � ð2Q1 þ 3Q2 þ Q3Þ � P1ðtÞ

dP2ðtÞ
dt

¼ ð3Q2Þ � P0ðtÞ þ ð2Q1 þ 2Q2Þ � P1ðtÞ � ðQ1 þ 2Q2 þ Q3Þ � P2ðtÞ

dP3ðtÞ
dt

¼ ðQ3Þ � P0ðtÞ þ ðQ2 þ Q3Þ � P1ðtÞ þ ðQ1 þ 2Q2 þ Q3Þ � P2ðtÞ

ð14Þ

Laplace transform is defined P�
n sð Þ ¼ r

1

0

e�st � Pn tð Þdt
(n = 0, 1, 2, 3) for PnðtÞ and Possibilities row vector in the

initial state of the system is Pn 0ð Þ ¼ P0 0ð ÞP1 0ð ÞP2 0ð Þ½
P3 0ð Þ� ¼ ½1000� So the Laplace transform of Eq. 14 is

obtained as follows:

We obtained inverse Laplace of Eq. 15 as follows:

Whereas the system is a 2-out-of-3 so the reliability

function of the system is given by

RT1ðtÞ ¼ P0ðtÞ þ P1ðtÞ ¼ 3 expð�t � ð2Q1 þ 3Q2 þ Q3

� 2 expð�t � ð3Q1 þ 3Q2 þ Q3ÞÞ ð17Þ

The MTTF for Model I is

MTTFI ¼
Z1

0

RT1ðtÞ dt ¼
5Q1 þ 3Q2 þ Q3

ð2Q1 þ 3Q2 þ Q3Þ � ð3Q1 þ 3Q2 þ Q3Þ

ð18Þ

where

Q1 ¼ a1QT Q2 ¼ 1=2a2QT Q3 ¼ a3QT ð19Þ

Figures 5 and 6 are shown reliability function (Eq. 17)

and MTTF function (Eq. 18) Respectively For specific

values of QT (a1 ¼ 0:5; a2 ¼ 0:3; a3 ¼ 0:2).

The diagram in Fig. 5 clearly illustrates the effect of

CCF on the reliability of 2-out-of-3 redundant system.

Increase in QT leads to considerable decrease in system

reliability. As illustrated by the diagram in Fig. 6, increase

in QT leads to decrease in MTTF, too.

P�
0ðsÞ ¼

1

ðsþ 3Q1 þ 3Q2 þ Q3Þ

P�
1ðsÞ ¼

3Q1

ðsþ 3Q1 þ 3Q2 þ Q3Þ � ðsþ 2Q1 þ 3Q2 þ Q3Þ

P�
2ðsÞ ¼

ð3Q2 � ðsþ 4Q1 þ 5Q2 þ Q3ÞÞ
ðsþ 3Q1 þ 3Q2 þ Q3Þ � ðsþ 2Q1 þ 3Q2 þ Q3Þ � ðsþ Q1 þ 2Q2 þ Q3Þ

P�
3ðsÞ ¼

12Q3
1 þ 42Q2

1Q2 þ 20Q2
1 þ 3Q2

1sþ 36Q1Q
2
2 þ 37Q1Q2Q3 þ 9Q1Q2sþ 9Q1Q

2
3 þ 9Q1Q3sþ 6Q2

2Q3 þ 5Q2Q
2
3 þ 5Q2Q3sþ Q2

3 þ 2Q2
3sþ Q3s

2
� �

ðs � ðsþ Q1 þ 2Q2 þ Q3Þ � ðsþ 2Q1 þ 3Q2 þ Q3Þ � ðsþ 3Q1 þ 3Q2 þ Q3ÞÞ

ð15Þ

P0ðtÞ ¼ expð�t � ð3Q1 þ 3Q2 þ Q3ÞÞ
P1ðtÞ ¼ 3 expð�t � ð2Q1 þ 3Q2 þ Q3ÞÞ � 3 expð�t � ð3Q1 þ 3Q2 þ Q3ÞÞ

P2ðtÞ ¼
expð�t � ð3Q1 þ 3Q2 þ Q3ÞÞ � ð3Q1 þ 6Q2Þ

2Q1 þ Q2

� 6 expð�t � ð2Q1 þ 3Q2 þ Q3ÞÞ � ðð9Q1 � expð�t � ðQ1 þ 2Q2 þ Q3ÞÞ
2Q1 þ Q2

P3ðtÞ ¼
3 expð�t � ð2Q1 þ 3Q2 þ Q3ÞÞ þ ð6Q1 þ Q3Þ

3Q1 þ 3Q2 þ Q3

� 9Q1 � expð�t � ðQ1 þ 2Q2 þ Q3ÞÞ
2Q1 þ Q2

� expð�t � ð3Q1 þ 3Q2 þ Q3ÞÞ � ð3Q2
1 þ 6Q1Q2 � Q3Q1 þ 9Q2

2 þ 4Q3Q2Þ
ð2Q1 þ Q2Þ � ð3Q1 þ 3Q2 þ Q3Þ

ð16Þ
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5.2 Model II

In this model, the CCF is considered with the alpha factor

model, and the load share is considered with capacity flow

model simultaneously. Letting PnðtÞ to be the probability

that n components are fail at time t (n = 0, 1, 2, 3); and

(X(t), t C 0) is governed by continuous-time homogeneous

Markov process. The rates of transition matrix for the

model II is as follows:

The Differential equations can be expressed as:

dPnðtÞ
dt

¼ PnðtÞ �WI ð21Þ

Differential equations based on Eq. 21 obtained:

dP0ðtÞ
dt

¼ �ð3Q1 þ 3Q2 þ Q3Þ � P0ðtÞ

dP1ðtÞ
dt

¼ ð3Q1Þ � P0ðtÞ � ð2Q�
1 þ 3Q2 þ Q3Þ � P1ðtÞ

dP2ðtÞ
dt

¼ ð3Q2Þ � P0ðtÞ þ ð2Q�
1 þ 2Q2Þ � P1ðtÞ � ðQ�

2 þ 2Q2 þ Q3Þ � P2ðtÞ

dP3ðtÞ
dt

¼ ðQ3Þ � P0ðtÞ þ ðQ2 þ Q3Þ � P1ðtÞ þ ðQ�
2 þ 2Q2 þ Q3Þ � P2ðtÞ

ð22Þ

Laplace transform is defined P�
n sð Þ ¼ r

1

0

e�st � Pn tð Þdt
(n = 0, 1, 2, 3) for PnðtÞ and Possibilities row vector in the

initial state of the system is Pn 0ð Þ ¼ P0 0ð ÞP1 0ð Þ½
P2 0ð ÞP3 0ð Þ� ¼ ½1000� So the Laplace transform of Eq. 22

is obtained as follows:

Fig. 6 Sensitivity of MTTF as function of QT

Fig. 5 Sensitivity of reliability as function of time

WII ¼

�ð3Q1 þ 3Q2 þ Q3Þ 3Q1 3Q2 Q3

0 �ð2Q�
1 þ 3Q2 þ Q3Þ ð2Q�

1 þ 2Q2Þ ðQ2 þ Q3Þ
0 0 �ðQ�

2 þ 2Q2 þ Q3Þ ðQ�
2 þ 2Q2 þ Q3Þ
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We obtained inverse Laplace of Eq. 23 for P0 tð Þ and

P1 tð Þ as follows
P0ðtÞ ¼ expð�t � ð3Q1 þ 3Q2 þ Q3ÞÞ

P1ðtÞ ¼
3Q1 � expð�t � ð3Q2 þ Q3 þ 2Q�

1ÞÞ
3Q1 þ 2Q3 � 2Q�

1

� 3Q1 � expð�t � ð3Q1 þ 3Q2 þ Q3ÞÞ
3Q1 þ 2Q3 � 2Q�

1

ð24Þ

Whereas the system is a 2-out-of-3 so the reliability

function of the system is given by

RTII ðtÞ ¼ P0ðtÞ þ P1ðtÞ ¼ expð�t � ð3Q1 þ 3Q2 þ Q3ÞÞ

þ 3Q1 � expð�t � ð3Q2 þ Q3 þ 2Q�
1ÞÞ

3Q1 þ 2Q3 � 2Q�
1

�

� 3Q1 � expð�t � ð3Q1 þ 3Q2 þ Q3ÞÞ
3Q1 þ 2Q3 � 2Q�

1

�
ð25Þ

The MTTF for Model II is

MTTFII ¼
Z1

0

RTII ðtÞ dt ¼
3Q1

3Q2þQ3þ2Q�
1

þ 2�ðQ3�Q�
1
Þ

3Q1þ3Q2þQ3

3Q1 þ 2Q3 � 2Q�
1

ð26Þ

where

Q1 ¼ a1QT Q2 ¼ 1=2a2QT Q3 ¼ a3QT ð27Þ

The diagram in Fig. 7 presents the sensitivity analysis of

the reliability function of model II for

(a1 ¼ 0:5; a2 ¼ 0:3; a3 ¼ 0:2) and (c = 0.25). In this dia-

gram, reliability is decreased over time and It is also

decreased as QT increases. The sensitivity analysis of

MTTF function is illustrated by Fig. 8. QT and MTTF have

an inverse relationship, so that increase in QT is accom-

panied by decrease in MTTF.

5.3 Model III

In this model, besides CCF and load share, component

repair is also incorporated. The main rule to evaluate

MTTF is presented in Eq. 28. As indicated, MTTF
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evaluation requires a system reliability function measured

in time.

MTTF ¼
Z1

0

RTðtÞ dt ð28Þ

Considering the state transition matrix in model III

(Eq. 29), the Laplace transform techniques could not be

readily used to estimate the system reliability function.

Therefore, in this section, a method is adopted to evaluate

the MTBF of such systems, and using this method, the

MTBF of model III is computed (see Wang et al. 2006;

Sridharan 2006; Hajeeh 2011; Yen et al. 2013).

MTBFIII ¼ E TPð0Þ!PðabsorbingÞ
� 	

¼ Pð0Þð�W�1
IIIabsorbing

Þ 1

1


 �

ð30Þ

Matrix transpose WIII is used to compute MTBF.

Afterwards, the rows and columns of matrix WIII are

removed for the absorbing state. The new matrix is called

WIIIabsorbing .

WIIIabsorbing ¼
�ð3Q1 þ 3Q2 þ Q3Þ l

3Q1 �ðlþ 2Q�
1 þ 3Q2 þ Q3


 �

ð31Þ

The initial state is

Pð0Þ ¼ P0ð0Þ P1ð0Þ½ � ¼ 1 0½ � ð32Þ

Then, using Eq. 30, the MTBF of model III equals

MTTFIII

¼ 3Q1

9Q1Q2 þ 3Q1Q3 þ 6Q2Q3 þ 6Q1Q
�
1 þ 6Q2Q

�
1 þ 2Q3Q

�
1 þ 3Q2lþ Q3lþ 9Q2

2 þ Q2
3

þ 3Q2 þ Q3 þ 2Q�
1 þ l

3Q1Q2 þ 3Q1Q3 þ 6Q2Q3 þ 9Q1Q
�
1 þ 6Q2Q

�
1 þ 2Q3Q

�
1 þ 3Q2lþ Q3lþ 9Q2

2 þ Q2
3

ð33Þ

Figure 9 illustrates sensitivity analysis versus l for

model III. Increase in l is accompanied by Increase in

MTBF.

Some kinds of dependent failure increase reliability

(known as negative dependency failure). In contrast, CCF

and load share both decrease the reliability of redundant

systems. Therefore, following the effect of CCF and load

share, the system MTTF/MTBF is reduced dramatically,

too. In model I which incorporates only CCF, MTTF for

different values of QT is greater than MTTF in the model

II. In model III, repair is taken into consideration, too.

Under such circumstances, MTBF for different values of

QT is greater than that in models I and II. If QT increases

(considering l ¼ 0:003), the MTBF of model III does not

exhibit a considerable increase compared to that of models

I and II (Fig. 10). Hence, if repair rate changes to 0.03, the

MTBF of model III is increased (See Fig. 11).

As well as undergoing independent failure, all k-out-of-

n systems also suffer failure due to CCF. Model I is used to

evaluate the MTTF of such systems. In some other

redundant systems, for reasons of system optimization,

economic design, and improvement of conditions, the

system is designed in such a way that there is load share

Fig. 8 Sensitivity of MTTF as function of QT
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among the components while the components are not

reparable (like in CUPs). In such cases, model II is used to

evaluate the MTTF. 2-out-of-3 redundant systems (like in

high pressure municipal water pumps) enjoy CCF, load

share, and reparability. Therefore, model III may be suit-

able for evaluating the MTBF of such systems. Hence, each

of the three models presented in this paper can be applied

to redundant systems with dependent components.

6 Conclusion

In most of the redundant systems, components are interde-

pendent. Due to this interdependency, failure of one com-

ponent affects other components (dependent failure). The

present study deals with a 2-out-of-3 redundant system with

identical components, CCF, load share, and repair. The

MTTF and MTBF of this system is presented in three mod-

els: model I with CCF based on alpha factor, model II with

load share based on capacity flow, and model III with com-

ponent repair; each model develops and improves the pre-

vious model. Considering the judgment of technical experts

and design engineers of the system, each of these three

models can be used to evaluate the MTTF or MTBF of a

2-out-of-3 redundant system. The models used can be

developed to be applied to k-out-of-n systems. In the present

study, capacity flow and alpha factor models, which are

functional model, are used. Sensitivity analysis was carried

out to validate the models, and, finally, a comparison was

drawn among the MTTFs and MTBF of the three models.

CCF and load share decrease MTTF/MTBF in k-out-of-n

systems. Omission of the dependent failure in the evaluation

of MTTF/MTBF systems leads to irreversible damages. In

order to improve and increase MTTF/MTBF in k-out-of-n

systems, standby components are used so that in case of

failure of one component, the failing component can be

replaced by the standby component. Future researches can

evaluate reliability, availability, MTTF and MTBF of k-out-

of-n systems with CCF, load share, repair, standby compo-

nents, and non-identical components. Besides, in the present

study, failure rate and repair of components were assumed to

be constant, while, this is not always the case in real situa-

tions. Future studies may also investigate the failure rate of

time-dependent components.
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