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Abstract Intravascular ultrasound (IVUS) is a catheter-

based imaging method used in the study of atherosclerotic

disease. IVUS produces cross-sectional images of the

blood vessels that enable quantitative assessment of the

plaque. Automatic segmentation of the anatomical struc-

tures in the IVUS image is a really challenging task due to

the presence of noise and catheter artifacts. Hence, this

paper presents an efficient self-organizing map (SOM) and

expectation-maximization (EM)-based approach for the

segmentation of cross-sectional view of the IVUS blood

vessel image. In our proposed work, the directional filter-

ing is used to improve the signal to noise ratio of the blood

vessel image. The Hough transform is used for predicting

the circle in the image. Segmentation of the image is per-

formed using the SOM and EM algorithm. After the seg-

mentation process, extraction of the common pixels is

performed. Gray-level co-occurrence matrix is applied for

extracting features from the image. Fuzzy-relevance vector

machine based classification of the image is performed.

From the comparison results, it is clearly observed that the

proposed approach is highly efficient than the existing

techniques.

Keywords Directional filtering � Expectation-
maximization (EM) algorithm � Gray-level co-occurrence
matrix (GLCM) � Hough transform � Intravascular

ultrasound (IVUS) blood vessel image segmentation �
Fuzzy-relevance vector machine (F-RVM) � Self-
organizing map (SOM)

1 Introduction

VUS is a catheter-based imaging approach used in the

medical application for the clear assessment of the arterial

wall internal echomorphology. It is particularly used in the

study of atherosclerotic disease. IVUS produces cross-

sectional images of the blood vessels that provide the

quantitative evaluation of the blood vessel wall, informa-

tion about the atherosclerotic lesions and shape and size of

the plaque. A catheter carrying a rotating ultrasound (US)

emitter is introduced inside the vessel. A piezoelectric

transducer transmits US waves and collects the reflected

components. The IVUS image obtained by processing the

received echoes is a 360� tomographic view of the inner

arterial walls. Hence, IVUS is an appropriate technique for

in-vivo characterization of the coronary plaques composi-

tion (Seabra et al. 2011).

Segmentation plays a significant role in the medical

imaging applications to obtain the qualitative and quanti-

tative measurements of the anatomical structures. Auto-

matic segmentation of the anatomical structures in the

ultrasound image is a really challenging task due to the

presence of ultrasound speckle, catheter artifacts or calci-

fication shadows. The most prevalent blood vessel seg-

mentation methods are based on the multiscale Hessian

approach for handling the blood vessels with varying width

(Yousefi et al. 2015). This approach requires multiple pro-

cessing of the whole image to determine the blood vessel

regions. Thus leads to the increase in the overall processing
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time. To overcome the issues in the existing segmentation

approaches, this paper presents an efficient SOM and EM-

based approach for the segmentation of cross-sectional view

of the IVUS blood vessel image. The directional filtering is

used to improve the SNR of the blood vessel image. The

Hough transform is used for predicting the circle in the

image. Segmentation of the image is performed using the

SOM and EM algorithm. After the segmentation process,

extraction of the common pixels is performed. GLCM is

applied for extracting features from the image. F-RVM

based classification of the image is performed for the

classification of the plaques. The performance of the pro-

posed approach is evaluated by comparing it with the

existing image segmentation techniques. From the com-

parison results, it is clearly observed that the proposed

approach is highly efficient than the existing techniques.

The rest of the paper is organized as follows: Section 2

describes the existing blood vessel image segmentation

techniques. Section 3 explains the proposed SOM-based

approach. Section 4 presents the performance evaluation of

the proposed method. Section V involves the discussion

about the conclusion and future implementation of the

proposed work.

2 Related work

This section describes the existing research works related to

the blood vessel image segmentation techniques. Yousefi

et al. (2015) developed a hybrid Hessian/intensity-based

method for segmenting and quantifying the shape and

diameter of the blood vessels. Efficient quantification of

micro-angiograms in ophthalmology application and diag-

nosing the retinal eye diseases was achieved. Kumar et al.

(2015) presented a novel method for blood vessel segmen-

tation, centerline tracking and radius estimation. The accu-

racy and processing speed of the proposed method were

higher than the existing centerline extractionmethods. Kwee-

Seong (2006) presented a review of the image segmentation

methods using the features developed at the medical image

analysis laboratory. Kumar et al. (2015) presented a novel and

semi-automatic method for the segmentation and centerline

extraction of the blood vessel. Pellegrini et al. (2014) pro-

posed a supervised approach for blood vessel segmentation in

the laser opthalmological applications.

Klooster (2014) developed a novel automated image seg-

mentation and presented a three-dimensional (3D) vessel

model for the automatic segmentation of the vessel wall of the

carotid artery. Lasso et al. (2014) implemented a digital

algorithm that allows the digital image segmentation and

skeletonization for the early detection of Diabetic Retinopa-

thy. The filtered image with high contrast and resolution was

achieved. Koli et al. (2014) presented morphology

approaches for vessel segmentation. Better segmentation of

themajor vessel andminor vessels was achieved. Seabra et al.

(2011) proposed the modeling of the tissue echomorphology

using Rayleigh mixture model (RMM). Different types of

plaques was described accurately. Pelapur et al. (2014) pro-

posed an image fusion approach for vessel segmentation with

robust adaptive filtering. The segmentation quality was

improved by deblurring the out-of-focus regions. Hong et al.

(2014) introduced a localized hybrid level-set method for the

segmentation of 3D vessel image.

Ding and Bai (2014) reported the experimental results of

various vessel image segmentation methods. Retinal vessel

image database and micro-computed tomography (CT)

images were used for the 2D and 3D experiments. Balocco

et al. (2014) described an evaluation framework that allows

standardized and numerical comparison of the IVUS lumen

and media segmentation algorithms. Sofian et al. (2015)

presented an automated segmentation method to detect the

boundary on the cross sectional view of the artery of

patients having plaques. Luo et al. (2014) reconstructed the

morphometric data of CT scans with 11 arteries from

IVUS. Destrempes et al. (2014) analyzed the feasibility of

2D segmentation fast-marching method (FMM) for IVUS

imaging of the coronary arteries. Widynski et al. (2014)

proposed a tracking method to extract the inner and outer

contours of the vessel wall. Bourantas et al. (2014) eval-

uated a novel semi-automated border detection method to

identify the external elastic membrane or borders of stents

and lumen in the IVUS images of human coronary arteries.

Ravindraiah and Tejaswini (2013) presented a compre-

hensive review for the researchers involved in the EM-

based medical image processing application.

3 SOM and EM-based IVUS blood vessel image
segmentation approach

This section explains the proposed SOM and EM-based

approach. In our proposed work, the directional filter

improves the SNR of the blood vessel image. The Hough

transform predicts the circle and replaces the pixel in the

image. Segmentation of the image is performed using the

SOM and EM algorithm. After the segmentation process,

the common pixels are extracted. GLCM is applied to

extract features from the image. F-RVM based classifica-

tion of the image is performed. Figure 1 shows the overall

flow diagram of the proposed approach.

3.1 Directional filter

A directional filter is defined as an edge detector used for

computing the first derivatives of the image, during large

variation between the adjacent pixel values. This filter is
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designed for any direction within a given space. The x and

y directional filters are used to compute the derivatives in

the respective directions.

The original images and filtered images are shown in

Fig. 2a, b.

3.2 Hough transform

The Hough Transform is an important technique in image

processing to extract the structural features in the image. For

detecting lines in the images, initially the image is binarized

using the thresholding technique and then the positive

instances are arranged in a dataset. The Hough transform is a

technique for isolating the particular structural features

within an image. The main advantages of this technique are

its high tolerance level of the gaps in the feature boundary

descriptions and high resistivity to the image noise. It is also

useful for computing a global description of the features.

The Hough transform is used for predicting the circle and

pixel replacement in the IVUS blood vessel image. Fig-

ure 3a–c shows the Hough transformed images, Hough

transform-based circle prediction images and Hough

Transform-based pixel replacement images.

3.3 Segmentation

In our proposed work, segmentation of the images is

performed using the SOM-based method and EM

algorithm.

Fig. 1 Overall flow diagram of the proposed approach

  
(a)

  
(b)

Fig. 2 a Original images and b directional filtered images

(a) 

(b) 

(c) 

Fig. 3 a Hough transformed images, b Hough transform-based circle

prediction images, c Hough transform-based pixel replacement

images
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3.3.1 SOM-based image segmentation

The SOM (Kohonen 1998, Wu and Chow 2004, Borman

2004, Li et al. 2008) is an unsupervised artificial neural net-

work for clustering the high-dimensional data. The SOM

algorithm applies a nonlinear topology mapping of the high-

dimensional input data space onto the low-dimension discrete

space. This is called as the topological map that consists of

‘m’ neurons located on a regular low dimensional grid that

defines their neighbourhood relationships. Each neuron ‘C’ is

represented by a weight vectorWC ¼ W1
^ Wd½ � where ‘d’ is

the dimension of the input vector. The SOM consists of ‘C’

neurons located on a regular low-dimensional grid. The lat-

tice of the grid is either the hexagonal or rectangular shape.

The SOM algorithm is iterative. Each neuron ‘c’ has a d-

dimensional feature vector wc ¼ wc1; . . .. . .;wcd½ �. At each
training step ‘t’, a sample data vector x(t) is randomly chosen

from the training set. The distances between the sample data

vector and all feature vectors are computed. The winning

neuron ‘m’ is the neuron with the feature vector located close

to the sample data vector.

m ¼ arg minc x tð Þ � wck k, m 2 1; . . .. . .;Mf g: A set of

neighboring nodes of the winning node is denoted as Nm �
Hcm tð Þ is defined as the neighborhood kernel function

around the winning neuron ‘m’ at the time ‘t’. The

neighborhood kernel function is a non-increasing function

of time and distance of the neuron ‘c’ from ‘m’. The kernel

is considered as a Gaussian function

Hcm tð Þ ¼ e
�pc�p2m

2r tð Þ2 ; c2Nm ð1Þ

where pc is the coordinates of the neuron ‘c’ on the output

grid and r tð Þ is kernel width. The weight update fule in the

SOM algorithm is written as

wc tþ 1ð Þ ¼
wc tð Þ þ e tð ÞHcm tð Þx tð Þ
�wc tð Þ 8c 2 Nm

wc tð Þ Otherwise

8
><

>:
ð2Þ

where eðtÞ is the learning rate. The learning rate and

neighborhood decrease monotonically with time. Thus, the

feature vectors of neighboring neurons resemble each other

(Kwee-Seong 2006).

Pseudo Code for SOM:

Input: Extracted image using Hough transform, no of iterations,

weights, number of epochs

For i = 1 number of epochs

Select a sample from the input data set

Find the ‘‘winning’’ neuron for the sample input

Calculate the neighborhood

Adjust the weights of nearby neurons

End for

The winning neuron is calculated using.

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

i¼0
ni � við Þ ^ 2

r

ð3Þ

The amount to adjust each ‘‘neighbor’’ is determined by

using the following formula

ni t þ 1ð Þ ¼ ni tð Þ þ h � v tð Þ � ni tð Þ½ � ð4Þ

where ni tð Þ is the weight vector of neuron ‘i’ at the

regression step ‘t’, v(t) is the input vector at the regression

step and h is the neighborhood function. Figure 4 shows

the SOM-based clustered images.

3.3.2 EM algorithm

Let X be a random vector that results from a parameterized

family (Kumar et al. 2015). P (X|h) is the maximum like-

lihood (ML) estimate for h. In order to estimate h, it is
typical to introduce the log likelihood function defined as,

L hð Þ ¼ ln P Xjhð Þ ð5Þ

The likelihood fuction is a function of the parameter h.
Since ln(x) is a strictly increasing function, L hð Þ increases
with the increase in the value of h. The EM algorithm is an

iterative procedure for maximizing L hð Þ. After the nth

iteration, the current estimate for h is given by hn. The
difference between L hð Þ and L hnð Þ is maximized as

L hð Þ � L hnð Þ ¼ lnP Xjhð Þ � lnP Xjhnð Þ ð6Þ

The hidden variables are introduced for controlling the

ML estimation. The maximization of the likelihood func-

tion is made easy with the knowledge of the hidden vari-

ables. The total probability P Xjhð Þ along with the hidden

variable ‘z’ is computed as

P Xjhð Þ ¼
X

z

P Xjz; hð ÞP zjhð Þ ð7Þ

Then, the equation is rewritten as

L hð Þ � L hnð Þ ¼ ln
X

z

P Xjz; hð ÞP zjhð Þ � ln P Xjhnð Þ ð8Þ

This is also written as

L hð Þ� L hnð Þ þ D hjhnð Þ ð9Þ

Fig. 4 SOM-based clustered images

Int J Syst Assur Eng Manag (December 2016) 7(4):442–449 445

123



Our main objective is to the choose the values of h to

maximize L hð Þ. Then,
hnþ1 ¼ arg max

h
EZ X;hnj lnP Xjz; hð Þf g

� �
: ð10Þ

Pseudocode for EM

set Lclass to inticlass

for (epoch = 0; epoch\mepoch; ??epoch) {

create classes based on category

train classes on supervised items

for (x in unsupervised items)

{

compute p(c|x) with Lclass

for (c in category)

train classes on c weighted by p(c|x)

}

evaluate corpus and model probability under classes

set Lclass to classes

break if converged

}

return Lclass

Figure 5 shows the EM-based segmented images. The

common pixels for both SOM and EM segmentation are

shown in Fig. 6. Figure 7 shows the final segmented

images.

3.4 GLCM-based feature extraction

The GLCM is used for calculating a set of scalar quantities

that describe the various aspects of the texture in the image.

It defines about the linear relationship between the refer-

ence pixel ‘i’ and neighboring pixel ‘j’ located within the

ROI. The GLCM features are explained below:

3.4.1 Autocorrelation

The autocorrelation is a measure of the amount of regu-

larity and fineness of the texture present in the image.

DAC ¼
PN

i¼0

PN
j¼0 I i; jð ÞI iþ x; jþ yð Þ

PN
i¼0

PN
j¼0 I

2 i; jð Þ
ð11Þ

3.4.2 Contrast

Contrast is a measure of the local variations in the image. It

is given by

Dc ¼ k2
XNg�1

i¼0

XNg�1

j¼0

P i; jð Þ i� jj j ¼ kj
( )

ð12Þ

where Ng is the quantized gray level.

3.4.3 Correlation

Correlation indicates the local gray-level dependency of

the pixels on the texture image. It is given as

Dcorr ¼
PNg�1

i¼0

PNg�1

j¼0 ijð Þ � P i; jð Þ � lxly
rxry

ð13Þ

3.4.4 Cluster prominence

Cluster prominence is defined as a measure of asymmetry.

Dpro ¼
XNg�1

i¼0

XNg�1

j¼0

iþ j� ux � uy
� �4

P i; jð Þ ð14Þ

3.4.5 Cluster shade

Cluster shade is a measure of the skewness of the matrix

and perceptual concepts of uniformity.Fig. 5 EM-based segmented images

Fig. 6 Common pixels for both

SOM and EM segmentation

Fig. 7 Final segmented images
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Dsha ¼
XNg�1

i¼0

XNg�1

j¼0

iþ j� ux � uy
� �3

P i; jð Þ ð15Þ

3.4.6 Dissimilarity

Dissimilarity is a measure of the variation between the two

neighboring pixels.

DDIS ¼
X

i

X

j

i� jj j � P i; jð Þ ð16Þ

3.4.7 Energy

Energy is defined as a textural uniformity measure of the

pixels. It is defined as

E ¼
X

i

X

j

P i; jð Þ2 ð17Þ

3.4.8 Entropy

Entropy (H) is a measure of the uncertainty associated with

a random variable. It is determined by

H ¼ �
X

i

X

j

P i; jð Þlog P i; jð Þð Þ ð18Þ

3.4.9 Homogeneity

Homogeneity decreases with the increase in the contrast

value, while maintaining the energy at the constant level.

DH ¼
X

i

X

j

1

1þ i� jð Þ2
P i; jð Þ ð19Þ

3.4.10 Maximum probability

Maximum probability values occur if a combination of

pixels dominates the pairs of pixel in the window.

Pmax ¼ MAX
i;j

P i; jð Þ ð20Þ

3.5 F-RVM based classification

RVM is a Bayesian regularization framework to obtain the

optimal solution for the classification of the features. For a

two-class problem with training data X ¼ x1; x2; . . .. . .; xnð Þ
having class labels C ¼ c1; c2; . . .. . .; cnð Þ with

ci 2 �1; 1ð Þ. Based on the Bernoulli distribution, the

likelihood is expected as

P c=wð Þ ¼
Yn

i¼1

r ðy xið Þf gci 1� r ðy xið Þf g½ �1�ci ð21Þ

where r yð Þ is the logistic sigmoid function.

r y xð Þð Þ ¼ 1

1þ exp �y xð Þð Þ ð22Þ

An iterative method is used to obtain P c=wð Þ. Let a�i
denotes the maximum aposteriori estimate of the hyper-

parameter ai. The maximum aposteriori estimate of the

weights (Wm) is obtained by maximizing the following

objective function

f w1;w2; . . .;wnð Þ ¼
Xn

i¼1

log p ci=wið Þ þ
Xn

i¼1

log p wi=a
�
i

� �

ð23Þ

Only those training data having non-zero coefficients wi

called as relevance vectors contribute to the decision

function. The RVM classification reduces the dimension-

ality of feature set and correct grouping of classified feature

set vectors. Then, classification of the calcified plaque,

fibrotic plaque and lipidic plaque is performed. The con-

cept of the RVM is extended by using the fuzzy mem-

bership (Pellegrini et al. 2014). With the application of the

linear model and logistic sigmoid link function, the like-

lihood is written as

p tjwð Þ ¼
YN

n¼1

r y xn;wð Þf gtn 1� r y xn;wð Þf g½ �1�tn ð24Þ

where the target tn2 0; 1f g. The most probable weights wMP

is obtained by finding the minimum value over

� log p tjwð Þp wjað Þf g ¼ �
XN

n¼1

tnlogyn þ 1� tnð Þ½

� log 1� ynð Þ� þ 1

2
wTAw ð25Þ

The first term is the sum error of data and second term is

the regularization term. While introducing the fuzzy

membership, the above equation is changed as

� log p tjwð Þp wjað Þf g ¼ �
XN

n¼1

Sn tnlogyn þ 1� tnð Þ½

� log 1� ynð Þ� þ 1

2
wTAw ð26Þ

4 Performance analysis

This section presents the performance evaluation of the pro-

posed approach. The proposed F-RVM classification method

is compared with the existing RMM (Seabra et al. 2011).
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4.1 Accuracy, sensitivity and specificity

Accuracy is a measure of the correct classification results

of the plaques. Sensitivity is a true positive measure indi-

cating the correct classification rate of the plaques. Speci-

ficity is a measure of true negative classifications that

denotes incorrect classification of the plaques.

Accuracy ¼ NTP þ NTN

NTP þ NTN þ NFP þ NFN

ð27Þ

Sensitivity ¼ NTP

NTP þ NFN

ð28Þ

Specificity ¼ NTN

NTN þ NFP

ð29Þ

where NTP is the true positive measurement, NTN is the true

negative measurement, NFP is the false positive measure-

ment and NFN is the false negative measurement.

Figure 8 shows the accuracy, sensitivity and specificity

analysis graph for the proposed F-RVM and existing

RMM. The proposed F-RVM yields better classification

accuracy, sensitivity and specificity than the RMM.

Figures 9 and 10 show the sensitivity/specificity plot of

the proposed SOM and EM-based segmentation approach.

The proposed segmentation approach achieves high accu-

racy, sensitivity and specificity due to the selection of the

common pixels.

4.2 Jaccard/Dice similarity measures

Jaccard distance is a measure of the dissimilarity between

the images ‘A’ and ‘B’. This is given as

Jd A;Bð Þ ¼ 1� J A;Bð Þ ¼ A \ Bj j
A [ Bj j ð30Þ

Dice distance is a measure of the spatial overlap level

between the two similarity labeled regions over the average

volume of these regions.

D A;Bð Þ ¼ 2AB

Aj j þ Bj j ð31Þ

Figure 11 shows the Jaccard/Dice similarity measures of

the proposed approach. From the graph, it is clearly

observed that the Jaccard distance of the proposed seg-

mentation approach is found to be low, and Dice distance is

found to be higher.

Fig. 8 Accuracy, sensitivity and specificity analysis graph for

proposed F-RVM and existing RMM

Fig. 9 Accuracy plot of proposed SOM and EM-based segmentation

approach

Fig. 10 Sensitivity/specificity plot of proposed SOM and EM-based

segmentation approach
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5 Conclusion and future work

An efficient SOM and EM-based segmentation approach is

presented in this paper. The directional filtering is used to

improve the SNR of the blood vessel image. The Hough

transform is used for predicting the circle and pixel

replacement in the image. Segmentation of the image is

performed using the SOM and EM algorithm. GLCM is

applied for extracting features from the image. F-RVM

based classification of the image is performed. The pro-

posed approach is highly efficient than the existing tech-

niques. Our future work is to obtain the shape features of

the IVUS blood vessel image for achieving better plague

classification accuracy.
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