
ORIGINAL ARTICLE

An empirical study of software entropy based bug prediction
using machine learning

Arvinder Kaur1 • Kamaldeep Kaur1 • Deepti Chopra1

Received: 29 April 2015 / Revised: 14 April 2016 / Published online: 18 May 2016

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2016

Abstract There are many approaches for predicting bugs

in software systems. A popular approach for bug prediction

is using entropy of changes as proposed by Hassan (2009).

This paper uses the metrics derived using entropy of

changes to compare five machine learning techniques,

namely Gene Expression Programming (GEP), General

Regression Neural Network, Locally Weighted Regression,

Support Vector Regression (SVR) and Least Median

Square Regression for predicting bugs. Four software

subsystems: mozilla/layout/generic, mozilla/layout/forms,

apache/httpd/modules/ssl and apache/httpd/modules/map-

pers are used for the validation purpose. The data extrac-

tion for the validation purpose is automated by developing

an algorithm that employs web scraping and regular

expressions. The study suggests GEP and SVR as

stable regression techniques for bug prediction using

entropy of changes.

Keywords Software bug prediction � Regression �
Software entropy � Gene expression programming �
General regression neural network � Locally weighted

regression � Support vector regression � Least median

square regression

1 Introduction

Software bug prediction is an active and continuously

evolving research field. Bug Prediction is defined as the act

of identifying files or software code modules that are most

likely to contain bugs before formal testing, so that that

testing time and resources, can be allocated optimally.

Only the files that are more likely to contain bugs should be

tested more thoroughly. Accurate and reliable bug predic-

tion can help software industry, as companies seek out

ways to deliver extremely high quality software systems at

lower costs of software quality assurance activities such as

testing (Catal and Banerjee 2010). Other benefits of bug

prediction models are that they can be used to identify

refactoring candidates (Catal and Banerjee 2010), archi-

tectural improvements (Catal and Banerjee 2010) and

selection of best design approaches (Catal and Banerjee

2010). Bug prediction is also useful for software project

managers as it helps in quantitative planning and steering

of projects (Ekanayake et al. 2012).

Bug prediction literature contains many seminal studies

where bug prediction models are based on static code

metrics (Agarwal 2009; Basili 1996; Gyimothy 2005).

Basili et al. (1996) concluded that a relationship exists

between bugs and Chidamber and Kemerer metrics. Their

conclusions were based on studying eight medium sized

systems. Aggarwal et al. (2009) concluded that import

coupling and size metrics were related to bugs. Their

conclusions were based on studying 12 software systems.

Gyimothy et al. (2005) also found object oriented metrics

to be influential in bug prediction. Their results were based

on study of open source web software Mozilla. Despite

existence of many seminal studies on empirical validation

of code metrics (Agarwal 2009; Basili 1996; Gyimothy

& Deepti Chopra

dchopra27@gmail.com

1 University School of Information and Communication

Technology (U.S.I.C.T), Guru Gobind Singh Indraprastha

University (G.G.S.I.P.U.), New Delhi, India

123

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616

DOI 10.1007/s13198-016-0479-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-016-0479-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-016-0479-2&domain=pdf

2005) in bug prediction, code metrics based bug prediction

has faced criticism from some researchers (Fenton and

Ohlsson 2000). Fenton et al. (2007) constructed a bug

prediction model based on project and process metrics.

Moser et al. (2008) also showed that process metrics out-

perform code metrics in bug prediction. Graves et al.

(2000), Khoshgoftaar et al. (1999) and Nagappan and Ball

(2007) have shown that number of previous modifications

to a file are good predictors of bugs. Radjenovic et al.

(2013) conducted a systematic literature review of bug

prediction metrics and found that object-oriented metrics

were twice more popular as compared to traditional source

code metrics or process metrics. They reported that object-

oriented and process metrics were more successful in

finding faults compared to traditional size and complexity

metrics. Recently, Hassan (2009) introduced the concept of

complexity of code change by applying information theory

principles. He conceptualized that code change process of a

software system can be viewed as a system that emits data,

where he defined data as the feature introducing changes

(FIC) to source code files. This allows concepts from

Shannon’s information entropy theory to be applied to

quantify the complexity of code change. As per Has-

san(2009), in a software system consisting of n source code

files, if changes are monitored and it is found that the

probability of modification of a single file(for example

file1), is one and all other files is zero, then the complexity

of code change or software entropy is minimum. On the

other hand if the probability of modification of all files

(file1….file n) is equal (= 1/n), then software entropy is

maximum. Hassan (2009), further defined history com-

plexity metrics (HCM) based on software entropy concepts

and showed that bugs could be more accurately predicted

using HCM as predictors. Hassan (2009) used statistical

linear regression to build bug prediction models with HCM

as predictors (Hassan 2009). Another conspicuous research

direction in software bug prediction emphasizes that the

selection of learning methods is very important to accu-

rately predict software bugs (Menzies et al. 2007). Menzies

et al. (2007) established a baseline experiment by utilizing

rich developments in machine learning and data mining to

demonstrate that the selection of a machine learning

method greatly affect the accuracy of a defect prediction

model. Later, Lessmann et al. (2008) extended Menzies

et al.’s (2007) experiment and evaluated 22 machine

learners on defects data sets of ten large scale NASA

projects. However, the experiments by Menzies et al.

(2007) and Lessmann et al. (2008) are based on static code

metrics only. Very recently, Malhotra (2015) performed

systematic literature review machine learning techniques

for software fault/bug prediction and they concluded that

the machine learning techniques had the ability to predict

software bugs. They further conclude that more number of

studies should be carried out in order to obtain well formed

and generalizable results. Hassan (2009) did not evaluate

any learning techniques in the context of entropy based bug

prediction. Although a large number of machine learning

techniques have been evaluated in static code metrics based

bug prediction (Menzies et al. 2007; Lessmann et al. 2008;

Malhotra 2014; Kaur and Kaur 2014), no comparative

study is available in entropy based bug prediction. This

motivates us to evaluate machine learning techniques in

entropy based bug prediction. It is also imperative to note

that the dependent or variable in static code metrics based

bug prediction (Menzies et al. 2007; Lessmann et al. 2008;

Malhotra 2014; Kaur and Kaur 2014) considered in most

previous studies is binary. In this paper, the dependent or

response variable is continuous. To the best of our

knowledge there is only one study that considers the

application of only a single machine learning technique,

that is support vector regression in software entropy based

bug prediction (Singh and Chaturvedi 2012). This moti-

vates us to investigate various machine learning techniques

in software entropy based bug prediction. Collection of

data for empirical studies for bug prediction is another

challenge. Therefore a tool for automatic data extraction is

developed. Thus, the contribution of this paper is twofold:

(1) A tool for automatic data collection and classifica-

tion of software changes is developed.

(2) Concept of complexity of code change as proposed

by Hassan (2009) is used and performance of the

following machine learning techniques for predicting

bugs is compared:

• Gene Expression Programming (GEP)

• General Regression Neural Network (GRNN)

• Locally Weighted Regression (LWR)

• Support Vector Regression (SVR)

• Least Median Square Regression (LMSR)

The performance of these machine learning techniques

is compared for two subsystems of Mozilla and two sub-

systems of Apache Http Server. The results are analyzed to

arrive at general conclusions regarding the applicability of

the techniques.

The rest of this paper is organized as follows: Sect. 2

presents an overview of related work in bug prediction.

Section 3 describes the concept of Entropy of changes. The

data extraction algorithm and metrics calculation is

explained in Sect. 4. Section 5 describes the regression

techniques that have been compared. Results are analyzed

in Sect. 6 while Sect. 7 discusses the threats to validity.

The study is finally concluded in Sect. 8.

S600 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616

123

2 Related work

Many Bug Prediction approaches have been developed by

distinguished researchers. Mende and Koschke (2009)

verified that a trivial defect prediction model such as large

files are more prone to bugs performs well when a classic

evaluation metric is used, but fails badly when an effort-

aware performance metric is used. D’Ambros et al. (2012)

have compared the performance of various such tech-

niques. They developed a benchmark for bug prediction

that includes process metrics, system metrics and defect

history of five open source software projects: Eclipse JDT

Core, Eclipse PDE UI, Equinox framework, Mylyn and

Apache Lucene. The approaches are evaluated using a

binary classification scenario, a ranking-based evaluation

and an effort-aware ranking-based evaluation. Also, two

effort-aware models were also evaluated and compared

with a classical prediction model. Khoshgoftaar et al.

(1996) used the number of past modifications to the module

to predict bug-prone entities in the software system. It was

concluded by them that the number of modifications in the

past reliably predict future bugs. Nagappan and Ball (2005)

also conducted a study on the influence of code churn or

the number of changes to the system on the defect density.

Their study was validated for Windows Server 2003 and it

was found that relative code churn predicted better than

absolute churn. Zhou and Leung (2006) built bug predic-

tion models that could classify bugs according to two levels

of severity-high and low. Later, Singh et al. (2010) used

machine learning techniques to classify bugs in three

severity levels-low, medium and high.

A lot of work has been done to determine the best

techniques for prediction. Khoshgoftaar et al. (1997)

applied neural networks for bug prediction using proce-

dural static code metrics as predictor variables. Thwin and

Quah (2005) applied generalized regression neural net-

works and used object-oriented static code metrics as

predictor variables to predict bugs. Kanmani et al. (2007)

used object-oriented static code metrics as predictor vari-

ables and applied two different kinds of neural network

techniques for bug prediction. Menzies et al. (2007) con-

ducted a study that suggested that the category of static

source code metrics employed is not as important as the

learning algorithm that is used for prediction. They used

the datasets from NASA Metrics Data Program (MDP) to

conclude this. Their study compared the impact of using

various categories of software metrics like Halstead met-

rics, Lines of code, McCabe complexity metrics with the

impact of using various learning algorithms like J48, Naive

Bayes and OneR. Tosun et al. (2011) performed a study on

bug prediction on embedded software projects using clas-

sifier ensembles and found that 70 % defects could be

detected. Their study is based on static code metrics.

Rodrigues et al. (2013) utilized static code metrics datasets

from PROMISE (Menzies et al. 2016) data repository and

bug prediction datasets developed by D’Ambros et al.

(2012) and suggested an evolutionary subgroup based

descriptive approach for defect prediction rather than the

precise classification techniques. Malhotra (2014) per-

formed comparative analysis of statistical and machine

learning techniques for bug prediction using static code

metrics. They found that decision tree method was better

than logistic regression and other machine learning tech-

niques. Okutan and Yildiz (2014) applied Bayesian net-

works in code and process metrics bug prediction and

found that there was positive correlation between number

of developers and level of defects. Dejaeger et al. (2013)

applied fifteen different Bayesian network classifiers in

static code metrics based bug prediction and found that

they had better comprehensibility than other machine

learning techniques. We have presented a brief review of

machine learning techniques in bug prediction. There are

three noteworthy systematic literature reviews on bug

prediction (Catal 2011; Radjenovic et al. 2013; Malhotra

2015). Two significant observations from these reviews

are:

• Most bug prediction studies use static code metrics as

predictors or independent variables

• The dependent or response variable is binary in most

bug prediction studies.

There are only a few studies (Afzal and Torkar 2008)

where dependent variable is continuous but they use only

one technique that is genetic programming.

Hassan (2009) introduced a novel concept of bug pre-

diction by quantifying the complexity of code changes and

using them to develop bug prediction models. He applied

Shannon’s information entropy principles to complexity of

changes. He devised three code change models namely:

Basic Code Change (BCC) Model, Extended Code Change

(ECC) Model and File Code Change (FCC) Model.

Entropy of changes is calculated using Shannon’s entropy

(Hassan, 2009). Hassan (2009) proposed a new entropy-

based complexity metric which is termed as history com-

plexity metric (HCM) and used it as independent or pre-

dictor variable for prediction of bugs. He concluded that

history complexity metrics (HCM) predicted bugs more

accurately than the code churn metrics and prior faults.

Hassan (2009) developed bug prediction models using

Statistical Linear Regression (SLR) techniques but did not

evaluate any machine learning techniques in the context of

entropy based bug prediction. Singh and Chaturvedi (2012)

also employed the same concept of history complexity

metrics to arrive at the conclusion that Support Vector

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616 S601

123

Regression performs better than Statistical Linear Regres-

sion (SLR). They have considered only one software sys-

tem and one machine learning technique, but in our current

study on software entropy based bug prediction, subsys-

tems from two different software systems are considered

and five machine learning techniques have been compared.

We consider two subsystems of Mozilla and two subsys-

tems of Apache Http Server and compare the performance

of the five machine learning techniques for predicting bugs:

Gene Expression Programming (GEP), General Regression

Neural Network (GRNN) Locally Weighted Regression

(LWR), Support Vector Regression (SVR), and Least

Median Square Regression (LMSR).

3 Entropy of changes

Entropy of changes as proposed by Hassan (2009) is used

to quantify the complexity of code changes. A software file

is altered:

• when a bug is to be removed,

• when a new functionality is introduced,

• when some comments or coding standards are changed.

The changes that take place when a new functionality is

introduced are the most complex type of changes. The

complexity of such changes is what is quantified in terms

of entropy of changes. This entropy of changes is then used

to derive History Complexity Metrics (HCM) for predict-

ing bugs.

3.1 Measurement of entropy

Entropy of changes for a period in a system/subsystem is

calculated by the Shannon’s Entropy formula specified in

(1). The period is taken as 1 year for this study.

SEnðPÞ ¼ �
Xn

k¼1

ðPk � log2 PkÞ ð1Þ

where Pk C 0 and
P

k=1
n Pk = 1

Pk is taken to be the probability of change for the kth file

in the specified period i.e. the number of times kth file is

modified divided by the total number of modifications. For

example, let us assume as shown in Fig. 1, that there are 14

changes that occurred in four files and divided into three

periods. For a first period, there are six changes that

occurred across all four files. The probability of change

occurrence for files F1, F2, F2, and F4 will be 2/6 (=0.33),

1/6 (=0.17), 1/6 (=0.17) and 2/6 (=0.33) respectively. These

probabilities are also shown in Fig. 1. The value of Entropy

for the first period is calculated as

� 0:33� log2 0:33þ 0:17� log2 0:17þ 0:17� log2 0:17ð
þ0:33� log2 0:33Þ ¼ 1:924819:

The Entropy is normalized using (2), so that it the

entropy of subsystems that contain different number of files

or totally different software systems can be compared

easily.

SEðPÞ ¼ 1

Maximum Entropy
� SEnðPÞ

¼ � 1

log2 n
�
Xn

k¼1

ðPk � log2 PkÞ ð2Þ

such that, 0 B SE B 1 SE is the value of Normalized

Entropy. For the example given in Fig. 1 the value of

Normalized Entropy (SE) for the first period is calculated

as 1.924819/log2 4 = 0.962409.

3.2 History Complexity Metric

Entropy of Changes is then used to compute the History

Complexity Metric (HCM). It is a measure for the effect of

complexity of changes that is assigned to each file in the

software subsystem/system. But, first the History Com-

plexity Period Factor HCPFi(j) for a file j during period i is

calculated using (3).

HCPFiðjÞ ¼
Cij � SEi; j 2 Fi

0; otherwise

� �
ð3Þ

where SEi is the Entropy of changes for the system/sub-

system over period i and Cij is the portion of SEi which is

assigned to every file j that is modified in period SEi. The

definition of variants of Cij is varied to arrive at the three

variants of HCPF that are used in computing HCM. Fig-

ure 2 describes the three variants of HCM.

File

F1

F2

F3

F4

Time T1 T2 T3

Probabilities for period
T1

0.33

0.17

0.33

0.17

Fig. 1 Probability of change for a file in a specified time period

S602 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616

123

In the example given in Fig. 1 the HCPF calculated for

file 1in the first period is different for the three variants of

HCM. For HCM1 the HCPF calculated is 1 9

0.962409 = 0.962409, for HCM2 the HCPF is

0.33 9 0.962409 = 0.317595 whereas for HCM3 the

HCPF is 1/4 9 0.962409 = 0.240602. The HCM for a file

j for the evolution period set {f,…,g} is defined as

HCMff ;...;ggðjÞ ¼
X

i2ff ;...;gg HCPFiðjÞ ð4Þ

Similarly, HCM for a system/subsystem S for the evo-

lution period set {f,…,g} is the sum of HCMs for all files in

that subsystem as specified in (5).

HCMff ;...;ggðSÞ ¼
X

j2S HCMff ;...;ggðjÞ ð5Þ

4 Empirical data

Data Extraction is the most crucial step in any empirical

study. It is very important to correctly collect the data from

software repositories for predicting bugs. The prediction is

accurate only if the data collected is reliable and does not

contain errors. The following subsections describe the

software subsystems used for this study, the development

of the tool used for data extraction and how the metrics are

calculated.

4.1 Data sources

In this study, we extract bugs data for two subsystems

each of Mozilla and Apache Http Server for evaluating

the performance of machine learning techniques in soft-

ware entropy based bug prediction. Mozilla is a popular

web browser whereas Apache Http Server is a popular

web server. The data for the subsystems of Mozilla is

extracted from Mozilla-central which is a Mercu-

rial repository of Mozilla project. On the other hand

GitHub, a web-based hosting service for Git repositories

is used to extract the data for Apache Http Server. After

extracting the year-wise bugs and changes for each file in

each subsystem, the entropy and History Complexity

Metric (HCM) are calculated for a time period of each

year using Eqs. (1)–(5). The number of changes and

Normalized Entropy for each year for the four subsystems

is given in Table 2.

Since manual data collection is a tedious process and

prone to errors, we develop a tool for automatic data col-

lection as explained in next Sect. 4.2

4.2 Automating data extraction

The first step in data extraction is to browse the revision

history of each file and record the year-wise bugs and

changes. A change record typically defines the reason for

the change along with date of change, name of the com-

mitter, lines of code added/deleted/modified etc. These

changes are categorized as follows:

• Bug Repairing Changes (BRC): These are the changes

that take place when a bug is to be corrected.

• Functionality Introducing Changes (FIC): These

changes take place whenever new functionality or a

feature needs to be added in the software system.

HCM2HCM1

Cij=1
For all files modified

during the period i

HCM3

Cij=1/NFi where NFi
Is the number of files

modified during the period i

Cij=Pj
Where Pj is probability of

change of file j over period i

Fig. 2 Variants of HCM

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616 S603

123

• General Changes (GC): These changes are maintenance

related and do not add any feature or rectify a bug. This

class of changes includes changes in comments,

copyrights, formatting changes etc.

Feature introducing changes (FIC) are those that intro-

duce new features or enhance existing features and are

related to adaptive maintenance of a software system. FIC

cause modifications to software code which may be highly

scattered in large number of source code files and modules

and cause code decay. This code decay is responsible for

increase in overall complexity and thus FIC are used for

calculating entropy of changes (Hassan 2009). General

Changes (GC) are not related to introduction of new fea-

tures (Hassan 2009). Some examples of general changes

are like addition of authors in comments, update of copy-

right notice in comments or re-indentation of source code

to make it more readable. Thus general changes are

localized and do not lead to code decay. Bug Repairing

changes (BRC) are logically related to the number of faults

or bugs in a file or module of source code. Thus, BRCs are

used for validation of results. This methodology is con-

sistent with the methodology established by Hassan (2009).

Change classification is automated by developing a Java

application named Change Classifier, which inputs the

URL of the repository, the repository name and classifies

change records listed on that page. The output generated is

year-wise frequency of each type of change. Web scraping

and regular expressions are used for the purpose of

extracting the date and reason of change. A regular

expression is a text string used for pattern matching. Two

regular expressions are formulated, one for Mozilla-Central

repository and the other for GitHub Repository. The main

reason behind writing different regular expression for

GitHub and Mozilla-Central is that the website of these

repositories are structured and formatted differently hence

requiring a different regular expression for pattern match-

ing. The regular expression used for Mozilla-Central in the

Change Classifier is:

expr = ‘‘\td class =\‘‘age\’’[.*?\i[([^\]?)\/i[.

?\td[(.?)\/strong[\/td[’’

The regular expression used for GitHub in the Change

Classifier is:

expr = ‘‘\a href = .*?class =\‘‘message\’’.*?title =

(.*?)[.*?\time datetime = [^[]*[(.*?)\/time[’’

The content matching the highlighted expression is

extracted. After extracting the date and reason of change,

the changes are classified as specified in the algorithm

given in Fig. 3. The output of Change Classifier for

Mozilla-Central and GitHub is as shown in Figs. 4 and 5.

4.3 Metrics calculation

After extracting the year-wise bugs and changes for each

file in the subsystem, the entropy and History Com-

plexity Metrics are calculated for each year using

Eqs. (1)–(5). The number of changes and Normalized

Entropy for each year for the four subsystems is given in

Table 2.

4.4 Independent and dependent variables

In this study bug prediction models are built using data of

History Complexity Metrics (HCM1, HCM2 and HCM3)

as independent variables and number of bugs as dependent

1. Begin
2. Input the URL of the repository page
3. Set Bug Repairing Changes (BRC), Functionality Introducing Changes (FIC) and General

Changes (GC) count to zero.
4. For year in considered time period

a. Get content from the specified URL.
b. While regular expression pattern is found

i. Assign variables desc and date the value of extracted reason of change and
date of commit.

ii. If date contains year
I. if desc contains any of the following substrings:

"bug","patch","reintroduce","issue,"revert","fix","fault".
then increment BRC.

II. else if desc contains any of the following substrings:
"introduce","implement","add","new"","merge".
then increment FIC.

III. else increment GC.
5. Print value of year, BRC, FIC and GC.
6. Set BRC, FIC and GC to zero.
7. End for.
8. End.

Fig. 3 Algorithm for data

extraction

S604 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616

123

variable. The dependent variable is continuous in this

study. The calculations of History Complexity Metrics

(HCM1, HCM2 and HCM3) are explained in Sect. 3. The

bug prediction models are built using five machine learning

based regression techniques. The accuracy of five machine

learning techniques is evaluated on the data sets of five

software subsystems described in Table 1. For each of the

five software subsystems mentioned in Table 1, bug pre-

diction models are built using three HCM metrics as

predictors

Fig. 4 Output of change classifier for Mozilla-Central

Fig. 5 Output of change classifier for GitHub

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616 S605

123

5 Machine learning based regression techniques

Regression analysis is a statistical process used for estimat-

ing the relationships among variables. There are many dif-

ferent types of techniques that model and analyze variables

to derive a relationship between a target variable that is

dependent on one or more independent predictors. Perfor-

mance of some of these regression techniques for predicting

bugs using Entropy-based metrics have been compared in

this study. The following subsections describe the regression

techniques which are being compared in this study.

5.1 Gene expression programming (GEP)

Gene Expression Programming (GEP) (Ferreira 2001) is a

procedure based on biological evolution. It creates a

computer program for modeling some phenomenon. The

different types of models that can be created by GEP

include neural networks, decision trees and polynomial

constructs. A simplified representation of GEP algorithm is

given in Fig. 6.

GEP is similar to Genetic Algorithms (GA) and Genetic

Programming (GP) as it uses a population of individuals,

computes their fitness to select them and introduces genetic

variations by using genetic operators such as mutation,

transposition, recombination etc. But the basic difference

between the three is that:

• in GA the individuals are linear strings having fixed

length.

• in GP the individuals are non-linear entities having

different sizes and shapes.

Table 1 Software subsystems for evaluation

Software

system

Application

type

Programming

Language

Subsystem Repository URL Number of

files

Mozilla Web

browser

C?? mozilla/layout/generic http://hg.mozilla.org/mozilla-central/file/

9ee9e193fc48/layout/generic

132

mozilla/layout/forms http://hg.mozilla.org/mozilla-central/file/

9ee9e193fc48/layout/forms

43

Apache Http

server

Web server C apache/httpd/modules/

ssl

https://github.com/apache/httpd/tree/trunk/modules/ssl 34

apache/httpd/modules/

mappers

https://github.com/apache/httpd/tree/trunk/modules/

mappers

38

Table 2 Normalized entropy and number of changes

Year Mozilla/layout/generic Mozilla/layout/forms Apache/httpd/modules/ssl Apache/httpd/modules/mappers

Changes Entropy Changes Entropy Changes Entropy Changes Entropy

1999 – – – – – – 30 0.725

2000 – – – – – – 40 0.591

2001 – – – – 119 0.796 41 0.631

2002 – – – – 120 0.678 35 0.479

2003 – – – – 17 0.592 30 0.541

2004 – – – – 32 0.671 14 0.344

2005 – – – – 17 0.615 4 0.381

2006 – – – – 13 0.553 8 0.458

2007 138 0.849 37 0.896 25 0.734 4 0.286

2008 73 0.633 3 0.292 38 0.639 8 0.202

2009 58 0.558 3 0.169 33 0.645 6 0.341

2010 61 0.556 2 0.184 41 0.682 20 0.442

2011 504 0.850 85 0.818 72 0.182 20 0.504

2012 1005 0.821 220 0.816 37 0.637 5 0.137

2013 22 0.546 3 0.169 30 0.669 2 0.191

S606 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616

123

http://hg.mozilla.org/mozilla-central/file/9ee9e193fc48/layout/generic
http://hg.mozilla.org/mozilla-central/file/9ee9e193fc48/layout/generic
http://hg.mozilla.org/mozilla-central/file/9ee9e193fc48/layout/forms
http://hg.mozilla.org/mozilla-central/file/9ee9e193fc48/layout/forms
https://github.com/apache/httpd/tree/trunk/modules/ssl
https://github.com/apache/httpd/tree/trunk/modules/mappers
https://github.com/apache/httpd/tree/trunk/modules/mappers

• in GEP the individuals are encoded using linear strings

having fixed length which are later expressed using

non-linear entities of different sizes and shapes.

DTREG (Predictive Modeling Software) tool is used to

implement GEP. The type of GEP modeled by DTREG is

Symbolic Regression. Symbolic Regression is a subset of

non-parametric regression in which the form of the func-

tion to be fitted is not given in advance but the function is

restricted to be mathematical or logical expressions. It is

the goal of the procedure to find the function that best fits

the data.

The goal of GEP for Symbolic Regression is to find the

expression that performs well for all fitness cases within a

certain minimum error of the correct target value. An

evolutionary strategy is used for discovering a very good

solution without halting the evolution process. So, the

system finds the best possible solution within minimum

error. The founder individuals are very unfit but their

modified descendents are reshaped by selection and then

the population adapts wonderfully by finding better solu-

tions that ultimately approach a perfect solution. The fit-

ness fi of a program i is calculated using (6) if absolute

error is considered or by (7) if relative error is considered.

fi ¼
XCt

j¼1

M � Ci;j � Tj
�� ��� �

ð6Þ

fi ¼
XCt

j¼1

M � Ci;j � Tj

Tj
:100

����

����
� �

ð7Þ

where M is the range of selection, Ci,j is the value returned

by individual i for fitness case j out of total Ct fitness cases

and Tj is the target value for fitness case j.

5.2 General regression neural network (GRNN)

The general regression neural network (GRNN) (Specht

1991) is a memory-based network that provides estimates

for continuous target variable. It is a single-pass learning

algorithm having a highly parallel structure. The architec-

ture of GRNN is as shown in Fig. 7.

GRNN consists of the following four layers:

1. Input layer The input layer consists of one neuron per

predictor. The input neuron standardizes the values of

input variables by subtracting the median and then

dividing the result by the interquartile range. Then

these values are fed into the neurons of the hidden

layer.

2. Hidden layer There is one neuron for each case of

training data set in the hidden layer. Each neuron stores

the value of the predictors for the case along with the

value of target variable. This hidden neuron when

given a vector of input values from the input layer,

calculates the Euclidean distance of the test case from

the center point of the neuron and then applies the

Create Initial Population

Execute each program and
evaluate its fitness

Iterate or
Terminate? END

Find best program and select
programs to reproduce

Reproduction: Combination of
Replication, Mutation, Transposition

and Recombination

Develop new programs for next
generation.

Iterate

Terminate

Fig. 6 Simplified algorithm of GEP

Input Layer Hidden Layer Summation
Layer

Decision Layer

a1

a2

a3

h1

h2

h3

h4

n

d

z

Fig. 7 GRNN architecture

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616 S607

123

kernel function to compute its weightage. This value is

passed into the summation layer.

3. Summation layer Summation layer consists of only two

neurons, namely the denominator summation unit and

the numerator summation unit. The denominator

summation unit sums up the weightage value calcu-

lated by each of the hidden neuron. While the

numerator summation unit sums up the product of

weightage values and the actual value of the target

variable for each of the hidden neuron.

4. Decision layer The decision layer calculates the

predicted value of target variable by dividing the

value calculated in the numerator summation unit by

the value calculated in the denominator summation

unit.

GRNN is implemented using DTREG (Predictive

Modeling Software) tool. The tool provides a choice of two

kernel functions: Gaussian and Reciprocal. The perfor-

mance of GRNN for predicting bugs using Entropy of

changes is recorded for both kernel functions.

5.3 Locally weighted regression (LWR)

Locally Weighted Learning (LWL) (Atkeson et al. 1997)

employs a lazy learning method since the processing is

deferred unless a query needs to be answered. This is a

local method in the sense that it attempts to fit the training

data only about the query point. The weights for the

training instances are calculated using a distance function.

The nearby points have greater weight. The weighting

function is also called the Kernel function (K).

In general, there are two methods of weighting:

• Weighting the error criterion In this method the error

criterion is assigned weights. The aim is to minimize

the error criterion given in (8).

C qð Þ ¼
X

i

ðŷi � yiÞ2K d xi; qð Þð Þ ð8Þ

• Direct Data Weighting In this method the weights are

directly assigned to the training data using the Kernel

function as specified in (9).

ŷ qð Þ ¼
P

yiK d xi; qð Þð ÞP
Kðd xi; qð ÞÞ ð9Þ

where, xi is the ith input vector, yi is the ith training data

and d(xi, q) is the distance function.

The tool used to implement LWR is Weka (Witten et al.

2011). Weka provides six kernel functions for LWR

namely, Linear, Epanechnikov, Tricube, Inverse-distance,

Gaussian and Constant weighting. The performance of

LWR for predicting bugs using Entropy of changes is

analyzed for all six kernel functions.

5.4 Support vector regression (SVR)

The goal of SVR is to estimate the function f(x) specified in

(10) for the training dataset {xi,di}where xi is the ith input

vector and di is the ith target value, such that it predicts the

actual target value as closely as possible and is also as flat

as possible in order to provide good generalization.

f xð Þ ¼ w:u xð Þ þ b ð10Þ

where, b denotes the bias andw denotes the coefficient vector.

Also, z = u(x) specifies the feature space vector. All com-

putations are done using the Kernel function defined in (11)

K x; x̂ð Þ ¼ u xð Þ:u x̂ð Þ ð11Þ

where � represents the dot product in feature space. The

primal optimization problem of SVR given e-intensive loss
function is to minimize Eq. (12).

1

2
w2 þ C

X
ni þ n̂i

	

ð12Þ

such that: di � w:zi � b� eþ ni, w:zi þ b� di � eþ n̂i and

ni; n̂i � 0.

It is difficult to solve the primal optimization problem

due to the fact z and w are infinite-dimensional. Hence, a

finite-dimensional optimization known as the dual opti-

mization problem is defined as in (13) using Lagrange

multipliers (ai, .âi).

Maximize
X

i

di ai � âið Þ � e
X

i

ai þ âi �
1

2
w a; âið Þ2

ð13Þ

where, w a; âið Þ ¼
P
i

ai � âið Þzi such that:
P
i

ai � âið Þ ¼ 0

and ai, .âi 2 0;C½ � for each i. C denotes the coefficient of

smoothness.

Weka (Witten et al. 2011) is used to implement SVR. It

uses SMOReg to implement SVR, the explanation of which

is given by Shevade et al. (2000). Weka provides four

different kernels for numeric data in SVR: PolyKernel,

NormalizedPolyKernel, Puk and RBFKernel and which

have been used to perform the analysis.

5.5 Least median square regression (LMSR)

Least Median Square Regression (LMSR) generates func-

tions from random samples of data. The final model is the

least squared regression with the lowest median squared

error. Consider the data generation process given by (14).

Yi ¼ b0 þ b1Xi þ ei ð14Þ

S608 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616

123

where ei is independently and identically distributed. So

when a realization of n observations is given in X, Y pairs

called the sample, the aim is to estimate the parameters b0
and b1. This is done by fitting a line to the observations in

the sample. The fitted line’s intercept is b0 and slope is b1.
Least Square fits the line by finding the intercept and slope

that minimizes the sum of squared residuals. This tech-

nique is also implemented using Weka (Witten et al. 2011)

based on the algorithm given by Leroy and Rousseeu

(1987).

6 Result analysis

This section presents the result of performance of the

machine learning techniques described in the previous

section in software entropy based bug prediction. The

machine learning techniques are compared for each of the

four selected subsystems and then general conclusions are

derived.

Performance of machine learning techniques is com-

pared using Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE). These measures are defined in

Witten et al. (2011) as follows:

• Mean Absolute Error (MAE):

jp1 � a1j þ j � � � j þ jpn � an

n
ð15Þ

• Root Mean Square Error (RMSE):
ffi
p1 � a1ð Þ2þ � � � þ pn � anð Þ2

n

s

ð16Þ

where pn predicted number of bugs and an actual number of

bugs.

The results of the regression techniques for each sub-

system are presented in Tables 3, 4, 5 and 6. The best

results for each technique are highlighted.

Table 3 presents the results for the mozilla/lay-

out/generic subsystem. The best cases are compared for

each of the techniques. The best case MAE and RMSE

values are plotted in Fig. 8. It is noticed that SVR gives

least MAE (125.089) followed by LWR and then LMSR,

GEP and GRNN respectively. Also based on RMSE the

best results are obtained by LWR followed by SVR, GEP,

LMSR and GRNN in that order.

The results for the mozilla/layout/forms subsystem are

presented in Table 4. The best cases are compared for each

of the techniques. It is noticed that LMSR gives least MAE

(65.518) followed by GEP, SVR, GRNN and LWR

respectively. The least RMSE is observed for LMSR

(95.694) followed by SVR, GEP, GRNN and LWR

respectively. These best case MAE and RMSE values are

plotted in Fig. 9.

Table 5 lists out the results for the apache/httpd/mod-

ules/ssl subsystem. The best cases are compared for each of

the techniques. It is observed that GEP gives least MAE

(12.995) followed by LWR, SVR, GRNN and LMSR in

that order. The least value of RMSE is obtained using GEP

(19.039) followed by GRNN, LWR, SVR and LMSR in

that order. These best case MAE and RMSE values are

plotted in Fig. 10.

Table 6 shows the results for the apache/httpd/modules/

mappers subsystem. The best cases are compared for each

of the techniques. The best case MAE and RMSE values

are plotted in Fig. 11.The least values of both MAE and

RMSE are obtained using GRNN (MAE = 10.343 and

RMSE = 12.951) followed by SVR, LWR, GEP and

LMSR in that order.

Although it is difficult to conclude which machine

learning based regression technique performs best it is

noticed LMSR performs worst for both the Apache Http

Server subsystems. Also the techniques that give adequate

performance for all the subsystems are GEP and SVR.

Thus, it is our suggestion to employ GEP and SVR for

predicting bugs using Entropy of changes.

7 Threats to validity

Empirical studies in bug prediction are subject to factors

that affect the correctness of results. These are called

threats to validity. Broadly there are two kinds of threats-

internal and external validity threats. Threats to internal

validity occur if there is misinterpretation of true causes

that affect the experimental results. External validity refers

to ability to generalize results of a study. For this purpose,

we include multiple data sets extracted from four open-

source software subsystems and performing empirical

analysis on them. This study does not take into consider-

ation the bugs that are reported but not corrected while

counting the year-wise number of bugs. But since there are

hardly any bugs that are not fixed, the results of this study

stand justified. Also the tool we developed and deployed,

matches keyword substrings in the extracted reason of

change from the repository, and hence it does not apply any

human like reasoning for classification of the change. The

tool uses a simple, but robust keyword matching algorithm

to classify the changes with least possible chances of

misclassification. Since the number of studies on applica-

bility of machine learning in entropy based bug prediction

is very few, it is suggested that more studies be carried out

on various application domain, industrial settings and

programming languages to obtain better generalization of

results. Another threat to validity is that the four software

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616 S609

123

Table 3 Results for mozilla/layout/generic

Regression technique Parameters Kernel function Metric MAE RMSE

Gene Expression Programming (GEP) Population size = 50

Gene per chromosome = 4

Generations required to train the model = 246

Generations required for simplification = 29

Gene head length = 8

– HCM1 163.405 178.449

HCM2 217.889 268.594

HCM3 236.283 261.558

General Regression Neural Network

(GRNN)

Min sigma = 0.0001

Max sigma = 10

Number of search steps = 20

Gaussian HCM1 175.377 201.549

HCM2 187.563 213.904

HCM3 194.614 250.483

Reciprocal HCM1 268.639 312.131

HCM2 227.751 262.109

HCM3 227.658 262.064

Locally Weighted Regression (LWR) Classifier = decision stump Search algorithm = nearest

neighbor

Linear HCM1 135.910 177.004

HCM2 136.630 171.991

HCM3 136.623 171.974

Epanechnikov HCM1 136.802 178.251

HCM2 135.159 172.05

HCM3 135.149 172.025

Tricube HCM1 136.292 178.071

HCM2 132.311 166.870

HCM3 132.305 166.847

Inverse-distance HCM1 137.006 177.976

HCM2 138.705 177.556

HCM3 138.704 177.555

Gaussian HCM1 136.962 178.344

HCM2 136.793 174.941

HCM3 136.792 174.933

Constant

weighting

HCM1 137.952 179.348

HCM2 137.952 179.348

HCM3 137.952 179.348

Support Vector Regression (SVR) Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Poly HCM1 125.089 173.618

HCM2 186.815 199.650

HCM3 186.708 199.507

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

NormalizedPoly HCM1 687.686 719.967

HCM2 591.696 656.849

HCM3 682.933 718.99

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Puk HCM1 172.609 196.124

HCM2 228.223 260.065

HCM3 227.806 259.581

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Gamma = 0.01

RBF HCM1 577.473 604.443

HCM2 579.861 606.200

HCM3 579.852 606.191

Least Median Square Regression (LMSR) Random seed = 0

Sample size = 4

– HCM1 274.021 309.012

HCM2 152.085 180.249

HCM3 151.812 180.025

S610 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616

123

Table 4 Results for mozilla/layout/forms

Regression technique Parameters Kernel function Metric MAE RMSE

Gene Expression Programming (GEP) Population size = 50

Gene per chromosome = 4

Generations required to train the model = 246

Generations required for simplification = 29

Gene head length = 8

– HCM1 88.178 112.841

HCM2 85.309 122.702

HCM3 85.181 122.423

General Regression Neural Network (GRNN) Min sigma = 0.0001

Max sigma = 10

Number of search steps = 20

Gaussian HCM1 91.412 114.228

HCM2 97.939 123.631

HCM3 97.939 123.631

Reciprocal HCM1 99.934 121.089

HCM2 92.615 122.551

HCM3 88.923 119.178

Locally Weighted Regression (LWR) Classifier = decision stump

Search algorithm = nearest neighbor

Linear HCM1 133.576 144.736

HCM2 116.176 135.249

HCM3 116.176 135.249

Epanechnikov HCM1 137.331 146.672

HCM2 117.165 135.673

HCM3 117.165 135.673

Tricube HCM1 133.703 143.335

HCM2 131.320 141.551

HCM3 131.320 141.551

Inverse-distance HCM1 117.189 136.183

HCM2 102.299 118.591

HCM3 102.299 118.591

Gaussian HCM1 116.047 135.004

HCM2 102.700 118.810

HCM3 102.700 118.810

Constant weighting HCM1 114.786 134.520

HCM2 101.286 117.456

HCM3 101.286 117.456

Support Vector Regression (SVR) Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Poly HCM1 104.146 124.597

HCM2 87.298 111.946

HCM3 87.298 111.945

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

NormalizedPoly HCM1 186.019 204.127

HCM2 204.724 216.43

HCM3 201.848 219.735

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Puk HCM1 92.948 121.102

HCM2 89.323 119.047

HCM3 89.457 119.097

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Gamma = 0.01

RBF HCM1 168.285 195.022

HCM2 169.196 195.566

HCM3 169.196 195.566

Least Median Square Regression (LMSR) Random seed = 0

Sample size = 4

– HCM1 84.161 110.690

HCM2 65.518 95.694

HCM3 65.518 95.694

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616 S611

123

Table 5 Results for apache/httpd/modules/ssl

Regression technique Parameters Kernel function Metric MAE RMSE

Gene Expression Programming (GEP) Population size = 50

Gene per chromosome = 4

Generations required to train the model = 246

Generations required for simplification = 29

Gene head length = 8

– HCM1 18.283 24.432

HCM2 12.995 19.039

HCM3 12.995 19.039

General Regression Neural Network (GRNN) Min sigma = 0.0001

Max sigma = 10

Number of search steps = 20

Gaussian HCM1 24.564 39.526

HCM2 23.270 42.942

HCM3 24.443 39.007

Reciprocal HCM1 24.198 44.652

HCM2 22.207 42.622

HCM3 24.289 43.137

Locally Weighted Regression (LWR) Classifier = decision stump

Search algorithm = nearest neighbor

Linear HCM1 24.049 39.886

HCM2 24.046 39.788

HCM3 24.046 39.788

Epanechnikov HCM1 23.771 39.856

HCM2 23.991 39.877

HCM3 23.991 39.877

Tricube HCM1 23.857 39.817

HCM2 23.794 39.819

HCM3 23.794 39.819

Inverse-distance HCM1 22.105 39.334

HCM2 22.084 39.323

HCM3 22.084 39.323

Gaussian HCM1 22.083 39.407

HCM2 22.036 39.399

HCM3 22.036 39.399

Constant weighting HCM1 22.392 39.368

HCM2 22.392 39.368

HCM3 22.392 39.368

Support Vector Regression (SVR) Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Poly HCM1 24.926 50.754

HCM2 24.873 50.072

HCM3 24.873 50.072

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

NormalizedPoly HCM1 25.448 49.259

HCM2 25.172 49.734

HCM3 25.172 49.734

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Puk HCM1 23.565 44.759

HCM2 22.101 43.704

HCM3 22.101 43.704

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Gamma = 0.01

RBF HCM1 24.898 49.639

HCM2 24.958 49.628

HCM3 24.958 49.628

Least Median Square Regression (LMSR) Random seed = 0

Sample size = 4

– HCM1 27.039 52.581

HCM2 27.204 52.686

HCM3 27.204 52.686

S612 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616

123

Table 6 Results for apache/httpd/modules/mappers

Regression technique Parameters Kernel function Metric MAE RMSE

Gene Expression Programming (GEP) Population size = 50

Gene per chromosome = 4

Generations required to train the model = 246

Generations required for simplification = 29

Gene head length = 8

– HCM1 14.432 17.135

HCM2 16.388 21.752

HCM3 17.220 22.571

General Regression Neural Network (GRNN) Min sigma = 0.0001

Max sigma = 10

Number of search steps = 20

Gaussian HCM1 11.061 14.477

HCM2 11.479 13.931

HCM3 10.343 12.951

Reciprocal HCM1 11.160 15.799

HCM2 13.214 16.994

HCM3 14.834 18.378

Locally Weighted Regression (LWR) Classifier = decision stump

Search algorithm = nearest neighbour

Linear HCM1 11.253 14.840

HCM2 11.689 15.381

HCM3 11.689 15.381

Epanechnikov HCM1 11.457 15.132

HCM2 11.803 15.565

HCM3 11.803 15.565

Tricube HCM1 11.173 14.806

HCM2 11.830 15.567

HCM3 11.830 15.567

Inverse-distance HCM1 11.598 15.317

HCM2 11.711 15.487

HCM3 11.711 15.487

Gaussian HCM1 11.561 15.270

HCM2 11.793 15.579

HCM3 11.793 15.579

Constant weighting HCM1 11.831 15.702

HCM2 11.831 15.702

HCM3 11.831 15.702

Support Vector Regression (SVR) Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Poly HCM1 13.268 15.393

HCM2 17.534 21.052

HCM3 17.534 21.052

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

NormalizedPoly HCM1 22.776 34.350

HCM2 23.449 34.922

HCM3 24.955 35.264

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Puk HCM1 10.734 14.526

HCM2 12.079 15.391

HCM3 12.084 15.401

Complexity parameter c = 1.0

Cache size = 250,007

Exponent value = 1.0

Epsilon = 1.0E-12

Gamma = 0.01

RBF HCM1 23.437 33.468

HCM2 23.222 33.375

HCM3 23.222 33.375

Least Median Square Regression (LMSR) Random seed = 0

Sample size = 4

– HCM1 25.211 30.760

HCM2 24.046 32.172

HCM3 24.046 32.172

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616 S613

123

subsystems considered in this study mozilla/layout/generic,

mozilla/layout/forms, apache/httpd/modules/ssl, apache/

httpd/modules/mappers cannot be considered representa-

tive of systems written in programming languages different

from C and C??.

8 Conclusions and Future direction

Empirical software engineering is concerned with devel-

oping accurate models to support various phases of soft-

ware development. Bug prediction models support the

testing phase by helping to optimize software testing costs

through early identification of modules that require more

rigorous testing. It is encouraged to build replicable and

refutable models in empirical software engineering (Men-

zies et al. 2016). The contribution of this study is two-fold

for research community and industry practitioners. This

study proposes and implements an algorithm that auto-

mates the data extraction process for conducting software

entropy based bug prediction studies. The concept of

software entropy is grounded in information theory prin-

ciples which is both intuitive and has a strong mathematical

foundation (Hassan 2009). It is evident from three recent

systematic literature reviews (Catal 2011; Radjenovic et al.

2013; Malhotra 2015) that there are no benchmarking

studies till date that evaluate the applicability of machine

learning in software entropy based bug prediction. The

second important contribution of this study is that com-

pares machine learning based regression techniques for

predicting bugs using entropy of changes. The study

explains how entropy of changes is calculated for a soft-

ware system/subsystem, how metrics are derived using it

and finally compares results obtained by using the five

regression techniques namely: Gene Expression Program-

ming (GEP), General Regression Neural Network

(GRNN), Locally Weighted Regression (LWR), Support

Vector Regression (SVR) and Least Median Square

Regression (LMSR). Even though a single best technique

that performs better than all regression techniques for every

case is not observed, nevertheless it is noticed that GEP

Fig. 8 Best case MAE and RMSE values for mozilla/layout/generic

subsystem

Fig. 9 Best case MAE and RMSE values for mozilla/layout/forms

subsystem

Fig. 10 Best case MAE and RMSE values for apache/httpd/modules/

ssl subsystem

Fig. 11 Best case MAE and RMSE values for apache/httpd/modules/

mappers subsystem

S614 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616

123

and SVR give adequate results in all cases. Hence it is

suggested that GEP and SVR should be employed for bug

prediction using Entropy of changes. An important exten-

sion of our work will be to extract software entropy data for

large scale software systems developed using other pro-

gramming languages such as Java, python and other

modern and upcoming programming languages such as Go,

Rust and Ruby.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

Afzal W, Torkar R (2008) A comparative evaluation of using genetic

programming for predicting fault count data. In: The third

international conference on software engineering advances

(ICSEA’08), pp 407–414

Aggarwal KK, Singh Y, Kaur A, Malhotra R (2009) Empirical

analysis for investigating the effect of object-oriented metrics on

fault proneness: a replicated case study. Softw Process Improv

Pract 14:39–62

Atkeson CG, Moore AW, Schaal SA (1997) Locally weighted

learning. AI Rev 11:75–113

Basili VR, Briand LC, Melo WL (1996) A validation of object-

oriented design metrics as quality indicators. IEEE Trans Softw

Eng 22(10):751–761. doi:10.1109/32.544352

Catal C (2011) Software fault prediction: a literature review and

current trends. Expert Syst Appl 38:4626–4636

Catal C, Banerjee S (2010) Application of artificial immune systems

paradigm for developing software fault prediction models. In:

Evolutionary computation and optimization algorithms in soft-

ware engineering Hershey, USA: IGI Global, pp 76–93

D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect

prediction approaches: a benchmark and an extensive compar-

ison. Empir Softw Eng 17(4–5):531–577

Dejaeger K, Verbraken T, Baesens B (2013) Toward comprehensible

software fault prediction models using Bayesian network

classifiers. IEEE Trans Softw Eng 39:237–257

Ekanayake J, Tappolet J, Gall HC, Bernstein A (2012) Time variance

and defect prediction in software projects. Empir Softw Eng

17(4–5):348–389. doi:10.1007/s10664-011-9180-x

Fenton N, Ohlsson N (2000) Quantitative analysis of faults and

failures in a complex software system. IEEE Trans Softw Eng

26(8):797–814. doi:10.1109/32.879815

Fenton N, Neil M, Marsh W, Hearty P, Radlinski L, Krause P (2007)

Project data incorporating qualitative factors for improved

software defect prediction. In: Proceedings of the 29th interna-

tional conference on software engineering workshops, IEEE

computer society, Washington, DC, USA (ICSEW’07), pp 69.

doi:10.1109/ICSEW.2007.171

Ferreira C (2001) Gene expression programming a new adaptive

algorithm for solving problems. Complex Syst 13(2):87–129

Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting fault

incidence using software change history. IEEE Trans Softw Eng

26(7):653–661. doi:10.1109/32.859533

Gyimothy T, Ferenc R, Siket I (2005) Empirical validation of object-

oriented metrics on open source software for fault prediction.

IEEE Trans Software Eng 31:897–910

Hassan AE (2009) Predicting faults using the complexity of code

changes. In: 31st international conference on software engineer-

ing, IEEE computer society pp 78–88

Kanmani S, Uthariaraj VR, Sankaranarayanan V, Thambidurai P

(2007) Object-oriented software fault prediction using neural

networks. Inf Softw Technol 49(5):483–492

Kaur A, Kaur K (2014) An empirical study of robustness and stability

of machine learning classifiers in software defect prediction. Adv

Intell Inf 320:383–397

Khoshgoftaar TM, Allen EB, Goel N, Nandi A, McMullan J (1996)

Detection of software modules with high debug code churn in a

very large legacy system. In: Proceedings of seventh international

symposium on software reliability engineering, pp 364–371

Khoshgoftaar TM, Allen EB, Hudepohl JP, Aud SJ (1997) Applica-

tion of neural networks to software quality modeling of a very

large telecommunications systems. IEEE Trans Neural Netw

8(4):902–909

Khoshgoftaar TM, Allen EB, Jones WD, Hudepohl JP (1999) Data

mining for predictors of software quality. Int J Softw Eng Knowl

Eng 9(5):547–563

Leroy AM, Rousseeu PJ (1987) Robust regression and outlier

detection. Wiley, New York

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking

classification models for software defect prediction: a proposed

framework and novel findings. IEEE Trans Softw Eng

34:485–496

Malhotra R (2014) Comparative analysis of statistical and machine

learning methods for predicting faulty modules. Appl Soft

Comput 21:286–297

Malhotra R (2015) A Systematic literature review of machine

learning techniques for software fault prediction. Appl Soft

Comput 27:504–518

Mende T, Koschke R (2009) Revisiting the evaluation of defect

prediction models. In: Proceedings of the 5th international

conference on predictor models in software engineering. doi:10.

1145/1540438.1540448

Mende T, Koschke R (2010) Effort-aware defect prediction models.

In: 14th European conference on software maintenance and

reengineering (CSMR), pp 107–116

Menzies T, Jeremy G, Frank A (2007) Data mining static code

attributes to learn defect predictors. IEEE Trans Softw Eng

33(1):2–13

Menzies T, Krishna R, Pryor D (2016) The promise repository of

empirical software engineering data. North Carolina State

University, Department of Computer Science [Online]. http://

openscience.us/repo

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the

efficiency of change metrics and static code attributes for defect

prediction. In: Proceedings of the 30th international conference

on software Engineering, ACM, New York, NY, USA,

pp 181–190. doi:10.1145/1368088.1368114

Nagappan N, Ball T (2005) Use of relative code churn measures to

predict system defect density. In: Proceedings of 27th interna-

tional conference on software engineering pp 284–292

Okutan A, Yildiz OT (2014) Software defect prediction using

Bayesian networks. Empir Softw Eng 19(1):154–181

Radjenovic D, Herico M, Torkar R et al (2013) Software fault

prediction metrics: a systematic literature review. Inf Softw

Technol 55:1397–1418

Rodriguez D, Ruiz R, Riqelme JC, Harrison R (2013) A study of

subgroup discovery approaches for defect prediction. Inf Softw

Technol 55 (10):1810–1822

Shevade SK, Keerthi SS, Bhattacharyya C, Murthy KRK (2000)

Improvements to the SMO algorithm for SVM regression. IEEE
Trans Neural Netw 11(5):1188–1193

Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616 S615

123

http://dx.doi.org/10.1109/32.544352
http://dx.doi.org/10.1007/s10664-011-9180-x
http://dx.doi.org/10.1109/32.879815
http://dx.doi.org/10.1109/ICSEW.2007.171
http://dx.doi.org/10.1109/32.859533
http://dx.doi.org/10.1145/1540438.1540448
http://dx.doi.org/10.1145/1540438.1540448
http://openscience.us/repo
http://openscience.us/repo
http://dx.doi.org/10.1145/1368088.1368114

Singh VB, Chaturvedi KK (2012) Entropy based bug prediction using

support vector regression. In: Proceedings of 12th international

conference on intelligent systems design and applications,

pp 746–751

Singh Y, Kaur A, Malhotra R (2010) Empirical validation of object-

oriented metrics for predicting fault proneness models. Softw

Qual J 18(1):3–35

Specht DF (1991) A general regression neural network. IEEE Trans

Neural Netw 2(6):568–576

Thwin MMT, Quah TS (2005) Application of neural networks for

software quality prediction using OO metrics. J Syst Softw

76(2):147–156

Tosun MA, Bener AB, Turhan B (2011) An industrial case study of

classifier ensembles for locating software defects. Software Qual

J 19(3):515–536

Witten IH, Frank E, Hall MA, Holmes G (2011) Data mining practical

machine learning tools and techniques. Morgan Kaufmann,

Burlington

Predictive Modeling Software-DTREG- https://www.dtreg.com/

download

Zhou Y, Leung H (2006) Empirical analysis of object-oriented design

metrics for predicting high and low severity faults. IEEE Trans

Softw Eng 32(10):771–789

S616 Int J Syst Assur Eng Manag (November 2017) 8(Suppl. 2):S599–S616

123

https://www.dtreg.com/download
https://www.dtreg.com/download

	An empirical study of software entropy based bug prediction using machine learning
	Abstract
	Introduction
	Related work
	Entropy of changes
	Measurement of entropy
	History Complexity Metric

	Empirical data
	Data sources
	Automating data extraction
	Metrics calculation
	Independent and dependent variables

	Machine learning based regression techniques
	Gene expression programming (GEP)
	General regression neural network (GRNN)
	Locally weighted regression (LWR)
	Support vector regression (SVR)
	Least median square regression (LMSR)

	Result analysis
	Threats to validity
	Conclusions and Future direction
	References

