
ORIGINAL ARTICLE

Testing effort based modeling to determine optimal release
and patching time of software

Anshul Tickoo1 • P. K. Kapur2 • A. K. Shrivastava3 • Sunil K. Khatri4

Received: 18 March 2016 / Revised: 27 April 2016 / Published online: 14 May 2016

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2016

Abstract In this era of information technology, our

dependence on software systems is increasing day by day.

This dependence on software systems has increased the

pressure on software firms to fulfill the customer’s demand

for highly reliable software. On the other hand, for ensur-

ing high reliability of the software prolonged testing is

required, which consumes large amount of resources hence

not feasible in the current stiff market competition. Further

delay in release can cost a lot in terms of market oppor-

tunity. Therefore, to sustain in the market, firms are

releasing the software early and removing the remaining

number of bugs by updating with patches. A patch is a

piece of software designed to update a computer program

or its supporting data, to fix or improve it. With such

patches usually called bug fixes, firms improve the

usability or performance of the software. Providing patches

needs extra amount of effort and manpower which costs

high. Also early patch release may result in improper

removal of bugs and late release can increase the risk of

more of failures in the operational phase To overcome the

above issues we have proposed a testing effort based cost

model to determine the optimal release and patch time of a

software so that the total cost is minimized. In the proposed

cost model developing team continues removing the faults

even after software release. Further, we have taken dif-

ferent distribution function in pre and post release phase

(before and after patching) to develop the proposed cost

model. Numerical illustration is provided at the end of the

paper for validation of the proposed cost model.

Keywords Software reliability growth model (SRGM) �
Testing effort � Release � Patch � Testing

1 Introduction

Information technology is playing a crucial role in today’s

fast moving life. Almost everything is more or less

dependent on software or driven by software technology.

This dependence on software has increased the demand of

reliable software in no time. Reliability of software is

governed by the amount of testing time and resources

(effort) consumed during the software development phase.

Software testing is one of the most important phase of

software development life cycle as it generally consumes

more than 50 % of the total budget. Also release and

quality of the software is dependent on the testing phase.

Measuring the quality of software is a very difficult job in

the software industry. It is important to measure reliability

of software before release, also quantifying reliability help

software firms in quantifying the behaviour of the system

and allocate testing resources. More is the testing greater is

the chance of getting a reliable software. But on the other

hand to match with the pace of market firms don’t want to

spend too much of time on software testing. Software

failure is said to be occurred if on giving a specific input

& Anshul Tickoo

anshultickoo@hotmail.com

1 Amity School of Engineering, Amity University, Noida, U.P.,

India

2 Amity Center for Interdisciplinary Research, Amity

University, Noida, U.P., India

3 Research Development Center, Asia Pacific Institute of

Management, Delhi, India

4 Amity Institute of Information Technology, Amity

University, Noida, U.P., India

123

Int J Syst Assur Eng Manag (December 2016) 7(4):427–434

DOI 10.1007/s13198-016-0470-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-016-0470-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-016-0470-y&domain=pdf

we don’t get the desired output, on the other hand software

fault is incorrect code, data definition or statement in a

program that has affected the program in such a way so that

it will not give the desired output Musa (Musa 2004).

During the testing phase of software development life

cycle, testers learn and improve their skills. This phe-

nomenon of learning is the result of familiarity of the

testers with the software program. Testing team finds faults

and developers remove them during testing phase but this

phase consumes large amount of testing resources i.e. CPU

hours, manpower etc. To find out the relationship between

faults detected and removed during testing various testing

resources (effort) based software reliability growth models

(SRGMs) have been proposed under different set of

assumptions in the last four decades (Goel and Okumoto

1979; Huang et al. 2007; Kapur et al. 2011; Kuo et al.

2001; Lin and Huang 2008; Musa 2004; Pham 2006;

Chatterjee and Singh 2014). Yamada et al. (1986) first

introduced effort based SRGM. Huang and Kuo (2002)

developed a SRGM by incorporating logistic testing effort

function. Kapur et al. proposed (Kapur et al. 2007, 2008)

proposed a SRGM with testing effort based learning pro-

cess. They further extended their concept to propose a

flexible SRGM with testing effort based learning process.

Kapur et al. (2009) proposed a unified framework for

modelling testing effort based SRGM. Ahmad et al. (2010)

proposed a S- shaped SRGM with testing effort under

imperfect debugging phenomenon. Inoue and Yamada

(2013) proposed a testing effort based lognormal SRGM.

Zhao et al. (2005, 2012) proposed a testing effort based

SRGM with imperfect debugging. Zhang et al. (2012)

proposed a queuing theory based SRGM incorporating

testing effort. They further proposed a two-step fault

detection and correction model for testing effort based on

queuing approach Zhang (2015) and Zhang et al. (2013).

Peng et al. (2014) proposed a two stage detection correc-

tion based SRGM with testing effort under imperfect

debugging environment. Zhang et al. (2014) proposed a

unified framework for modelling SRGM with testing effort

under the effect of imperfect debugging. Recently Li et al.

(2015) incorporated S-shaped testing-effort functions into

software reliability model with imperfect debugging.

Software reliability modelling with testing effort is not

limited to single version only. Researchers are working on

to include testing effort in software reliability growth

modelling for multiple versions of a software. The study of

software reliability modelling with testing effort for mul-

tiple version is proposed by Singh et al. (2012). Recently

Kapur et al. (2015) proposed generalized framework for a

software up-gradation model with testing effort and two

types of imperfect debugging.

Testing is done to remove faults from the software and

hence ensuring reliability. But it consumes large amount of

resources such as manpower, CPU hours etc. which incurs

cost to the developer. On the other hand if faults are not

removed in the testing phase, then users will face failures

during the operational phase and the cost of debugging

faults in the operational phase is much higher than that in

the testing phase (Musa 2004; Singh et al. 2015). Pro-

longed testing increase the software reliability but increa-

ses the software development cost and also delays the

software release which causes loss in terms of market

opportunity. However spending insignificant amount test-

ing time for error removal reduces the software develop-

ment cost, but increases the risk of higher number of

failures in the operational phase. Hence determining the

optimal release time is very important from developer’s

perspective. Literature available in this field, concentrates

mainly on minimizing the total expected cost, satisfying

the reliability requirement at the lowest total cost as well as

sensitivity analysis of the optimal release time (Huang and

Lin 2010; Huang and Lyu 2005; Kapur et al. 2011; Kapur

and Garg 1990; Li et al. 2010; Lo et al. 2005; Pasquini

et al. 1996; Pham 2006; Zachariah 2015).

Although it is impossible for a testing team to come out

with software which is completely free of errors. But in

order to ensure that users face least number of errors during

operation phase, now software firms continue removing the

faults even after release (Apple 2015; HP 2015). During

this post release phase software firms update the software

by providing patches to users. A patch, sometimes also

called a fix, is a small program of software that is used to

fix errors that successfully deceived the testing team during

pre-release testing phase of software. After software

release, there is either a decrease in the failure rate function

or it remains constant, depending on whether there is a

growth in software reliability during the operational phase

or not (see Figs. 1, 2). This phenomenon can be understood

 0 τ T

Fig. 1 Software reliability growth without patching

428 Int J Syst Assur Eng Manag (December 2016) 7(4):427–434

123

as follows. If the removal of detected faults was not pos-

sible during the operational phase then the failure rate

remains constant. On the other hand if the detected faults

during testing phase are removed and similar failures do

not occur again, then the software reliability increases.

Yang and Xie (2000) emphasize that the latter is more

likely in practice where errors encountered are corrected,

bundled as a software patch and presented to the user.

The topic of security patch management is closely

related to general software update management, which has

received attention. Cavusoglu and Zhang (2008) studied

the security patch release and management problems from

the perspective of both vendor and the firm. A game-the-

oretic model was developed by them to study how the

interaction between vendor and firm balances the cost and

benefits of patch management. Subsequently, Okamura

et al. (2009) and Luo et al. (2015) considered a non-ho-

mogeneous bug-discovery process and studied both the

periodic and aperiodic patch/update management models.

Recently a cost model for finding optimal release policies

for security patch management was developed by Dey et al.

(2015). Arora et al. (2006, 2008) proposed a cost model in

which the trade-off between releasing a buggy software

product and investments in patching it later is shown. They

also show the benefit of releasing the software early and

patching it later. Jiang et al. (2012) also proposed a soft-

ware scheduling policy where they show the advantage of

releasing the software early and to continue testing after the

release. The idea was to increase the testing base from a

limited number of testers to significantly large number of

testers which contributes to customer side testing of the

software. Kapur and Shrivastava (2015) proposed a

generalized framework to determine the optimal release

and testing stop time and showed the benefit of early

release and continuing testing even after release.

Practically it is not feasible to release an update every time

a fault is reported by the end user. Therefore an important

problem for the developer is to determine how and when to

release updates and stop testing to remedy faults in its soft-

ware. Also the existing literature in software release time

problems (Kapur et al. 2011; Peng et al. 2014) did not take

account the difference between the user’s operational envi-

ronment and the software testing phase for determining

optimal release time of software. However several authors

have worked on the reliability modelling in different phases

of a software and various reliability assessment methods

have been proposed for the operational phase (Huang et al.

2005; Huang and Lin 2010; Jain and Priya 2005; Pasquini

et al. 1996). A generalized framework was proposed by

Huang et al. (2000) to prove that fault detection rate changes

from testing to operational phase. A SRGMwas proposed by

Zhao et al. (2012) to show that due to environmental changes

and inherent fault detection rate there is a change in software

reliability from testing to operational phase.

The above literature review shows that academic

research on software update/patch management is still at an

early stage. However, the current software industry has

started implementing the concept of releasing early and

updating the software by providing patch release. The

biggest advantage of early release is capitalizing market

opportunity while post release testing ensures higher soft-

ware reliability. Although software testing and updating

activities are very common in practice, not many attempts

can be found on modeling their effects on total cost

incurred during the lifecycle of software in an integrated

manner. In this paper we have taken the first step towards

filling this gap by considering both software testing and

updating activities jointly to propose a generalized frame-

work for developing a testing effort based cost model to

determine the optimal release and patching time of soft-

ware to minimize the total expected cost. Rest of the paper

is organized as follows. Section 2 deals with model

assumptions, notations and formulation of the proposed

cost model. Section 3 deals with the modeling of the

testing effort based cost function with patching. In Sect. 4,

numerical example is provided using a real life data set to

validate the proposed work. Finally conclusion has been

drawn in Sect. 5.

2 Model formulation

This section deals with model formulation. The applied

SRGM and its assumptions are firstly described to provide

a basis for the model of software failure process. Then, the

0 τ 1τ 2τ nτ T lcT

Fig. 2 Software reliability growth with patching

Int J Syst Assur Eng Manag (December 2016) 7(4):427–434 429

123

software testing procedure and updating policies are

described in order to minimize the total expected cost.

Section 2.1 describes the notations that are used in mod-

eling the proposed framework.

2.1 Notations

m(W(t)) Expected number of faults removed in the time

interval (0,t]

W(t) Cumulative testing effort in the interval (0.t]

w(t) Current testing-effort expenditure rate at testing

time t. i.e. d
dt
WðtÞ ¼ wðtÞ

b Constant

bi Fault detection rate in ith phase

a Constant, representing the number of faults

lying dormant in the software at the beginning

of testing

m, k Parameter of Weibull distribution

F(W(t)) Failure distribution function

Fi(W(t)) Failure distribution function in ith phase

W Amount of testing-effort eventually consumed

Wi(t) Amount of testing effort consumed in ith phase

m(Tlc) Number of faults removed during the lifecycle

of the software

s Release Time of the software

si ith patch release time

c1 Cost of testing per unit testing effort

expenditure

c2 Market opportunity cost

c3 Cost of detection and removal of faults by

testers and developers respectively before the

release of the software

c4 Cost of removing faults reported by user after

software release in pre patching period

c5 Cost of removing faults reported by user after

patch release in post patching period

2.2 Assumptions

The proposed model is based upon the following basic

assumptions:

1. The process of fault removal follows non-homoge-

neous Poisson process(NHPP) throughout the soft-

ware lifecycle.

2. The software system might fail at random owing to

the faults lying in it.

3. The expected number of faults detected in the time

interval (t, t ? Dt) is directly proportional to average
number of faults remaining in the software.

4. Fault detection leads to its immediate correction.

5. The fault detection/correction rate with respect to

testing effort intensity follows independent and

identically distribution function, where

FðWðtÞÞ ¼
ZWðtÞ

0

f ðxÞdx

6. All faults are removed perfectly.

7. Total numbers of faults lying dormant in the

software are finite.

8. Lifecycle of the software is finite.

9. Cost of patching is negligible.

10. Market opportunity cost which is assumed to be

monotonically increasing, twice continuously differ-

entiable convex function ofs. Since the qualitative

conclusion of the study is not much affected by the

actual functional form of market opportunity cost,

therefore we will use the form used by Jiang and

Sarkar (Jiang et al. 2012).

2.3 Effort based software reliability growth model

The SRGM developed in this paper considers the time

dependent variation in the consumption of testing resour-

ces. To elucidate the testing effort in this study, we used

Weibull function. The underlying assumption is described

as, ‘‘The testing effort rate is proportional to the testing

resources available’’.

i:e:
dWðtÞ
dt

¼ vðtÞ W �WðtÞ
� �

ð1Þ

where m(t) is the time dependent rate of consumption of

testing resources, with respect to remaining available

resources.

If v(t) = v.k � t.k-1, we get Weibull function as:

WðtÞ ¼ W 1� e�vt k
� �

ð2Þ

dmðWðtÞÞ
dt

�
dWðtÞ
dt

¼ bðWðtÞÞða� mðWðtÞÞÞ

where bðWðtÞÞ ¼ f ðWðtÞÞ=ð1� FðWðtÞÞ is the failure

detection (fault removal) rate.On solving the above equa-

tion under the initial conditions of m(t = 0) = 0 and

W(t = 0) = 0 we get

mðWðtÞÞ ¼ aFðWðtÞÞ ð3Þ

Here F(W(t)) is the testing effort dependent probability

distribution function for fault correction times. It can be

noted that F(W(t)) so defined satisfy all the properties of

probability distribution functions.

430 Int J Syst Assur Eng Manag (December 2016) 7(4):427–434

123

1. In this paper, we have used Weibull type testing effort

function which satisfies the property that, at

t ¼ 0; WðtÞ ¼ 0 and FðWðtÞÞ ¼ 0:

2. For t[0; WðtÞ[0 and FðWðtÞÞ[0:

3. As t increases, W(t) also increases indicating mono-

tonically increasing nature of F(W(t)). Similarly the

continuity of F(W(t)) can also be explained.

4. As testing continues for an infinitely large time i.e.

t ! 1; WðtÞ ! W ; the corresponding value of distri-

bution function F(W(t)) is Fð �WÞ. Here W is very large

positive number representing the upper bound on the

availability of the amount of testing resources avail-

able. Therefore, Fð �WÞ can be assumed to be of order 1.

3 Effort based cost model for single patching

In this case lifecycle of the software is divided into three

phases viz. pre release testing phase [0, s], post release pre
patching phase [s, s1] and operational phase after patch

release [s1, Tlc] as shown in Fig. 3 below. Also it is to be

noted that since we have assumed that fault detection

process follows NHPP throughout the software lifecycle,

hence it will follow NHPP in each phase.

Here s1 ¼ sþ s01; where s
0
1 is the time duration between

release and first patch time.

In this section we will discuss the total cost incurred for

detecting/removing ‘a’ number of bugs which were found

during the software lifecycle. The total cost is sum of

testing cost, market opportunity cost and the cost incurred

for removing faults in each phase which are described

below.

Testing cost Testing cost associated with testing effort

expenditure is given by

c1W sð Þ ð4Þ

Market opportunity cost The market opportunity cost

refers to the market related cost-or the opportunity loss cost

due to late entry into the market.

Market opportunity cost is given by

c2s
2 ð5Þ

where s2is the functional form of market opportunity cost

c2 as in Jiang et al. (2012).

Phase 1: [0, s] (Pre-release testing phase) In this phase

testing team works to detect failure/fault, i.e. this is the

testing period before the release of the software. The tester

detects the faults and notifies about it to the developing

team for removal process. The total number of faults

removed in this interval is given by

mðWðsÞÞ ¼ a F1ðW1ðsÞÞ ð6Þ

Cost incurred due to detection and removal of the faults in

this phase it is given by

c3 m W sð Þð Þ ð7Þ

where F1(W1(s))is the rate by which the faults are removed

from the software in the interval [0, s].

Phase 2: [s, s1] (Post release phase before patching) This

period refers to the post release phase before patching

where bugs are reported by the users and fixed by the

developing team of the software company. Total number of

faults detected in this phase is given by

mðWðs1 � sÞÞ ¼ ða� mðWðsÞÞÞF2ðW2ðs1 � sÞÞ
¼ að1� F1ðW1ðsÞÞÞF2ðW2ðs1 � sÞÞ

ð8Þ

where a(1-F1(W1(s))) represents the remaining number of

faults that are left undetected in pre-release testing phase

and F2(W2(s1 - s)) is the fault removal rate in post

release phase i.e. in the interval [s, s1].
Cost incurred in this phase is given by

c4 m W s1 � sð Þð Þ ð9Þ

Phase 3: [s1, Tlc] (Post patching phase) This interval

refers to the post patching period till the life cycle of the

software. Here we have considered a situation where firm

signs a bond with the user that they will remove the bugs

throughout the software lifecycle. In this interval, users

face the failure in the software due to remaining number of

faults which remain undetected even after patching period.

Total number of faults detected in this phase is given by

mðWðTlc � s1ÞÞ ¼ ða� mðWðs1ÞÞÞF3ðW3ðTlc � s1ÞÞ
¼ að1� F1ðW1ðsÞÞÞ ð1� F2ðW2ðs1 � sÞÞÞ

� F3ðW3ðTlc � s1ÞÞ ð10Þ

where, s1 denotes the optimal patch release time and Tlc
refers to the life cycle of the software. Here a(1-F1(W1

(s)))(1–F2(W2(s1-s))) represents the remaining number of

faults which are left undetected in first and second phase

and F3(W3(Tlc - s1)) is the fault removal rate in post

patching phase i.e. in interval [s1, Tlc].
Cost incurred in this phase is given by

c5 m W Tlc � s1ð Þð Þ ð11Þ

It may be noted that we do not release patch to the users

during the last interval [s1, Tlc], since at some point

0 τ 1τ lcT

1 'τ

Fig. 3 software cycle with single patching

Int J Syst Assur Eng Manag (December 2016) 7(4):427–434 431

123

management needs to release a new version of the soft-

ware. On combining cost incurred in each phase we get

total cost incurred is given by

Cðs; TlcÞ ¼ c1 WðsÞ þ c2 s
2 þ c3 mðWðsÞÞ

þ c4 mðWðs1 � sÞÞ þ c5 mðWðTlc � s1ÞÞ
ð12Þ

4 Numerical example

Based on our assumption that all the faults are identically

and independently distributed we get that the cumulative

fault distribution function follows exponential distribution

in each phase given by FiðWiðtÞÞ ¼ 1� e�biWiðtÞ, where i

denotes the ith phase of software lifecycle. This analysis

can be similarly carried out using any other distribution

function. Also the effort function follows Weibull distri-

bution given by WðtÞ ¼ W 1� e�vt k
� �

. For estimation of

parameter of the effort function and mean value function,

we have used data set provided by Obha (1984). This data

set contains 328 number of faults which were removed in

19 weeks by consuming 47 h of CPU time. The parameter

estimation values obtained by using statistical package for

social sciences (SPSS) software are described below.

Total amount of testing effort eventually consumed

(W) = 715.7, scale parameter (v) = 0.003, shape

parameter (k) = 1.116, total number of faults

(a) = 570.9, fault detection rate (b) = 0.017, software

lifecycle (Tlc) = 100. It is important to note here that

WðTlcÞ ¼ W . For numerical illustration purpose we have

assumed that the fault detection rate in each phase is equal

i.e. bi = b and testing effort function has equal rate in

each phase i.e. Wi(t) = W(t). Based on the experience of

the testing team we assume cost parameters as follows:

Cost of testing per unit testing effort expenditure c1 = 5,

market opportunity cost c2 = 1, Cost of debugging during

testing phase c3 = 3, Cost of debugging during patching

phase c4 = 8 and cost of debugging a fault after patching

(operational phase) c5 = 8. These values can be changed

for different scenarios. In general cost per unit fault

during a given period is directly proportional to the ratio

of resources consumed to the fault removed in that period.

It is to be noted that since support cycle of software is

much longer as compared to any other phases of software

lifecycle, hence it consumes high amount of resources.

Also the number of faults removed during this period is

low, as maximum number of faults is debugged during

testing and patching phase. Hence cost per unit fault

removal during post release period is highest. Based on

the similar arguments magnitude of cost per unit fault

removal in different phases can be described. Now based

on the above assumptions we will describe the phase wise

fault detection with the associated cost.

Phase 1: [0, s] This is the testing period before the

release of the software. Total number of faults removed in

pre-release testing phase [0, s] are given by

m W sð Þð Þ ¼ a F1 W1 sð Þð Þ ¼ a 1� e�bWðsÞ
� �

ð13Þ

where F1(W1(s)) is the fault removal rate in pre-release

testing phase.

Therefore cost of removing m(W(s))number of faults is

given by

c3 mðWðsÞÞ ¼ c3 að1� e�bWðsÞÞ

Phase 2: [s, s1] (Post release phase before patching) This

period refers to the post release phase before patching

where bugs are reported by the users and fixed by the

developing team of the software company. Total number of

faults detected in this phase is given by

mðWðs1 � sÞÞ ¼ a ð1� F1ðW1ðsÞÞÞF2ðW2ðs1 � sÞÞ
¼ a e�bWðsÞð1� e�bWðs1�sÞÞ

ð14Þ

where F2(W2(s1 - s)) is the fault removal rate in post

release phase.

Cost incurred in this phase is given by

c4 mðWðs1 � sÞÞ ¼ c4 ae
�bWðsÞð1� e�bWðs1�sÞÞ

Phase 3: [s1, Tlc] This interval refers to the post patching

period till the life time of the software.Number of faults

removed in [s1, Tlc] is given by

mðWðTlc � s1ÞÞ ¼ að1� F1ðW1ðsÞÞÞ ð1� F2ðW2ðs1 � sÞÞÞ
� F3ðW3ðTlc � s1ÞÞ ¼ a e�bWðsÞe�bWðs1�sÞð1� e�bWðTlc�s1ÞÞ

ð15Þ

where, s1 denotes the optimal patch release time and Tlc
refers to the life cycle of the software. F3(W3(Tlc - s1)) is
the fault removal rate in post patching phase i.e. in interval

[s1, Tlc].
Cost incurred in this phase is given by

c5 mðWðTlc � s1ÞÞ ¼ c5 ae
�bWðsÞe�bWðs1�sÞð1

� e�bWðTlc�s1ÞÞ

On combining cost associated in each phase with testing

and opportunity costs, we have the total cost function given

by

Totalcost¼Cðs;TlcÞ¼c1WðsÞþc2 s
2þc3að1�e�bWðsÞÞ

þc4ae
�bWðsÞð1�e�bWðs1�sÞÞ

þc5ae
�bWðsÞe�bWðs1�sÞð1�e�bWðTlc�s1ÞÞ

ð16Þ

Using the cost parameter values defined above for each

phase in Eq. (16) we get total cost function which is a

432 Int J Syst Assur Eng Manag (December 2016) 7(4):427–434

123

function of two variables i.e. s and s1. On optimizing the

total cost function by using MAPLE software we obtain the

optimal cost incurred is 3411.675, release time

(s) = 19.9 weeks and s01 ¼ 3:14 hence, optimal patch time

(s1 ¼ sþ s01) = 23.04 weeks. The graph for optimal release

and patching time is given below in Fig. 4. According to the

testing data set (19 weeks) used for numerical illustration

and optimal results we can infer that firm should test for one

more week before release of the software and release the

first patch after 3 weeks. In Table 1 we have summarized

the number of faults removed and effort consumed in each

phase by using the above mentioned values.

Table 1 shows that out of 570 faults 359 faults are

removed by developing team in pre release phase which is

of 19.9 weeks. Out of the remaining number

(570-359 = 211) faults, 30 are removed during the post

release before patching phase which is of 3 weeks. We can

say that the first patch is released for 30 faults. The

remaining number (211-30 = 181) of faults are removed

during post patching period, this phase is the longest of all

as it extends up to software lifecycle. In the current work

we have discussed the cost model for single patching but

on the similar lines of the proposed model we can extend it

for ‘n’ number of patches. Faults remaining after the

release of first patch can be removed by releasing more

patches.

5 Conclusion

Decisions related to software release and testing are some

of the most important aspects of policy making in software

industry. Generally firms release their software after

spending significant amount of time on testing so as to

ensure that software has achieved a specified reliability

level which in turn reduces the chance of software failure

in field. But delay in release of software results in loss of

market opportunity. In the current market situation firms

are releasing early to gain high market potential and fixing

the faults later in the post release phase. Keeping this in

mind in our proposed work we formulated a generalized

testing effort based cost model under different testing

environment to determine the optimal release and patch

time of software. Based on the proposed policy, project

managers can plan the release and testing time of software.

This additional flexibility can help firms significantly to

gain an advantageous position in a competitive market-

place. Future work may include other factors like change-

point, error generation and warranty in the proposed

framework to make it more practical.

Acknowledgments Authors express their deep sense of gratitude to

The Founder President of Amity Universe, Dr. Ashok K. Chauhan for

his keen interest in promoting research in the Amity Universe and

always being an inspiration for achieving greater heights.

References

Ahmad N, Khan MGM, Rafi LS (2010) A study of testing-effort

dependent inflection S-shaped software reliability growth models

with imperfect debugging. Int J Qual Reliab Manag

27(1):89–110

Apple (2015) https://www.apple.com/softwareupdate. Accessed 24

Sept 2015

Arora A, Caulkins JP, Telang R (2006) Research note: sell first, fix

later: impact of patching on software quality. Manag Sci

52(3):465–471

Arora A, Telang R, Xu H (2008) Optimal policy for software

vulnerability disclosure. Manag Sci 54:642–656

Fig. 4 Graph for optimal release and patching time

Table 1 Phase wise

faults removed and effort

consumed

Phase Mean value

function

No. of faults

removed

Effort consumed (in

CPU h)

Pre-release phase [0, s] m(W(s)) 359 58.2

Post release before patching phase

[s, s1]
m(W(s1 - s)) 30 7.6

Post patching phase [s1, Tlc] m(W(Tlc - s1)) 181 227

Int J Syst Assur Eng Manag (December 2016) 7(4):427–434 433

123

https://www.apple.com/softwareupdate

Cavusoglu H, Zhang J (2008) Security patch management: Share the

burden or share the damage? Manag Sci 54:657–670

Chatterjee S, Singh JB (2014) A NHPP based software reliability

model and optimal release policy with logistic–exponential test

coverage under imperfect debugging. Int J Syst Assur Eng

Manag 5(3):399–406

Dey D, Lahiri A, Zhang G (2015) Optimal policies for security patch

management. INFORMS J Comput 27(3):462–477

Goel AL, Okumoto K (1979) Time-dependent error-detection rate

model for software reliability and other performance measures.

IEEE Trans Reliab R-28:206–211

HP (2015) http://www.zdnet.com/hp-to-begin-charging-for-firmware-

updates-and-service-packs-for-servers-7000026110. Accessed

24 July 2015

Huang CY, Kuo SY, Lyu MR, Lo JH (2000) Quantitative software

modeling from testing to operation. In: Proceedings of 11th

international symposium on software reliability engineering, San

Jose, California, 9–11 Oct 2000

Huang CY, Kuo SY (2002) Analysis of incorporating logistic testing-

effort function into software reliability modeling. IEEE Trans

Reliab 51(3):261–270

Huang CY, Lin CT (2010) Analysis of software reliability modeling

considering testing compression factor and failure-to-fault

relationship. IEEE Trans Comput 59(2):283–288

Huang C-Y, Lyu MR (2005) Optimal release time for software

systems considering cost, testing-effort, and test efficiency. IEEE

Trans Reliab 54:583–591

Huang CY, Lin CT, Su YS (2005) Modeling and prediction of software

operational reliability. Int J Technol Eng Educ 2(2):91–100

Huang CY, Kuo SK, Lyu MR (2007) An assessment of testing-effort

dependent software reliability growth models. IEEE Trans

Reliab 56(2):198–211

Inoue S, Yamada S (2013) Lognormal process software reliability

modeling with testing-effort. J Softw Eng Appl 6:8–14

Jain M, Priya K (2005) Software reliability issues under operational

and testing constraints. Asia Pac J Oper Res 22(1):33–49

Jiang Z, Sarkar S, Jacob VS (2012) Post-release testing and software

release policy for enterprise-level systems. Inf Syst Res

23(3):635–657

Kapur PK, Garg RB (1990) Optimal release policies for software

systems with testing effort. Int J Syst Sci 22(9):1563–1571

Kapur PK, Singh O, Shrivastava AK, Singh JNP (2015) A software

up-gradation model with testing effort and two types of

imperfect debugging. In: IEEE Xplore conference proceedings

of international conference on futuristic trends in computational

analysis and knowledge management, held at Amity University

Greater Noida Campus, UP on 25–27 Feb 2015, pp 613–618

Kapur PK, Goswami DN, Bardhan A (2007) A general software

reliability growth model with testing effort dependent learning

process. Int J Model Simul 27(4):340–346

Kapur PK, Goswami DN, Bardhan A, Singh O (2008) Flexible

software reliability growth model with testing effort dependent

learning process. Appl Math Model 32(7):1298–1307

Kapur PK, Ompal S, Aggarwal AG, Kumar R (2009) Unified

framework for developing testing effort dependent software

reliability growth models. WSEAS Trans Syst 4(8):521–531

Kapur PK, Pham H, Gupta A, Jha PC (2011) Software reliability

assessment with OR applications. Springer, London

Kapur PK, Shrivastava AK (2015) When to release and stop testing of

a software: a new insight, international conference on reliability,

Infocom Technology and Optimization (trends and future

directions), held during 2–4 Oct 2015 at Amity University,

Noida, Uttar Pradesh, pp 1–6

Kuo SY, Huang CY, Lyu MR (2001) Framework for modeling

software reliability, using various testing-efforts and fault-

detection rates. IEEE Trans Reliab 50(3):310–321

Li X, Xie M, Ng SH (2010) Sensitivity analysis of release time of

software reliability models incorporating testing effort with

multiple change-points. Appl Math Model 34(11):3560–3570

Li Q, Li H, Lu M (2015) Incorporating S-shaped testing-effort

functions into NHPP software reliability model with imperfect

debugging. J Syst Eng Electron 26(1):190–207

Lin CT, Huang CY (2008) Enhancing and measuring the predictive

capabilities of testing-effort dependent software reliability

models. J Syst Softw 81:1025–1038

Lo JH, Huang CY, Chen IY, Kuo SY, Lyu MR (2005) Reliability

assessment and sensitivity analysis of software reliability growth

modeling based on softwaremodule structure. J Syst Softw 76:3–13

Luo C, Okamura H, Dohi T (2015) Optimal planning for open source

software updates. Proc IMechE Part O J Risk Reliab. doi:10.

1177/1748006x15586507

Musa JD (2004) Software reliability engineering: more reliable

software, faster and cheaper, 2nd edn, McGraw-Hill, New Delhi

Obha M (1984) Software reliability analysis models. IBM J. Research

Devlopment 28(4):428–443

Okamura H, Tokuzane M, Dohi T (2009) Optimal security patch

release timing under non-homogeneous vulnerability-discovery

processes. In: Proceedings of the 20th international symposium

on software reliability engineering (ISSRE ‘09), Mysuru, India,

2009, pp 120–128

Pasquini A, Crespo A, Matrella P (1996) Sensitivity of reliability-

growth models to operational profile errors vs testing accuracy.

IEEE Trans Reliab 45(4):531–540

Peng R, Li YF, Zhang WJ, Hu QP (2014) Testing effort dependent

software reliability model for imperfect debugging process

considering both detection and correction. Reliab Eng Syst Saf

126:37–43

Pham H (2006) System software reliability. Springer, London

Singh J, Singh O, Aggrawal D, Anand A, Singh I (2012) A flexible

reliability growth model for various releases of software under

the influence of testing resources. J Pure Appl Sci Technol NLSS

2(2):23–35

Singh O, Kapur PK, Shrivastava AK, Kumar V (2015) Release time

problem with multiple constraints. Int J Syst Assur Eng Manag

6(1):83–91

Yamada S, Ohtera H, Narihisa H (1986) Software reliability growth

models with testing-effort. Reliab IEEE Trans 35(1):19–23

Yang B, Xie M (2000) A study of operational and testing reliability in

software reliability analysis. Reliab Eng Syst Saf 70:323–329

Zachariah B (2015) Optimal stopping time in software testing based

on failure size approach. Ann Oper Res. doi:10.1007/s10479-

015-1959-5

Zhang N (2015) Queue-based FDP and FCP analysis with detection

effort and correction effort. J Inf Comput Sci 12(1):21–29

Zhang N, Cui G, Liu H (2012) Considering detection effort and

correction effort for software reliability analysis. J Comput Inf

Syst 8(19):7991–8000

Zhang N, Cui G, Liu H (2013) Software reliability analysis using

queuing based model with testing effort. J Softw 8(6):310–317

Zhang C, Cui G, Liu H (2014) A unified And flexible framework of

imperfect debugging dependent SRGMs with testing-effort.

J Multimed 9(2):310–317

Zhao J, Liu H, Cui G, Yang XZ (2005) Software reliability growth

model from testing to operation. In: Proceedings of the 21st IEEE

international conference on software maintenance (ICSM’05),

26–29 Sept 2005, pp 691–694. doi:10.1109/ICSM.2005.82

Zhao Q, Zheng J, Li J (2012) Software reliability modeling with

testing-effort function and imperfect debugging. TELKOM-

NIKA 10(8):1992–1998

434 Int J Syst Assur Eng Manag (December 2016) 7(4):427–434

123

http://www.zdnet.com/hp-to-begin-charging-for-firmware-updates-and-service-packs-for-servers-7000026110
http://www.zdnet.com/hp-to-begin-charging-for-firmware-updates-and-service-packs-for-servers-7000026110
http://dx.doi.org/10.1177/1748006x15586507
http://dx.doi.org/10.1177/1748006x15586507
http://dx.doi.org/10.1007/s10479-015-1959-5
http://dx.doi.org/10.1007/s10479-015-1959-5
http://dx.doi.org/10.1109/ICSM.2005.82

	Testing effort based modeling to determine optimal release and patching time of software
	Abstract
	Introduction
	Model formulation
	Notations
	Assumptions
	Effort based software reliability growth model

	Effort based cost model for single patching
	Numerical example
	Conclusion
	Acknowledgments
	References

