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Abstract In real-life decisions usually we have to suffer

through different states of uncertainties. In this article, we

formulate a transportation problem in which costs, supplies

and demands all are different types of real, fuzzy or intu-

itionistic fuzzy numbers that is the data has different types

of uncertainties. We propose a ranking procedure for

intuitionistic fuzzy numbers. Using the proposed ranking

function intuitionistic fuzzy methods are proposed to find

starting basic feasible solution in terms of trapezoidal

intuitionistic fuzzy numbers. Intuitionistic fuzzy modified

distribution method is proposed to find optimal solution.

We illustrate the methodology by numerical examples.

Keywords Trapezoidal intuitionistic fuzzy number �
Accuracy function � Integral value � Mixed intuitionistic

fuzzy transportation problem

1 Introduction

In most of the cases of judgements, evaluation is done by

human beings where certainly there are limitations of

knowledge, intellectual functionaries or availability of data

due to some uncontrollable factors. Naturally, every deci-

sion-maker hesitates more or less on every evaluation

activity. This is the concept of intuitionistic fuzzy set (IFS)

theory introduced by Atanassov (1986). The major

advantage of IFS over fuzzy set is that IFS separates the

degree of membership (belongingness) and the degree of

non-membership (non-belongingness) of an element in the

set. IFS theory is one of the interesting generalizations of

the fuzzy set theory introduced by Zadeh (1965). Because

of this generalization IFS theory has much wider scope of

applicability than the usual fuzzy set theory in solving

various kinds of real physical problems.

The concept of mathematical programming was intro-

duced by Bellman and Zadeh (1970). Then many

researchers move towards fuzzy optimization and now it is

an active area of research. Nagoorgani and Razak (2006)

presented a two stage cost minimizing fuzzy transportation

problem in which supplies and demands are trapezoidal

fuzzy numbers. Dinager and Palanivel (2009) investigated

a method to solve fuzzy transportation problem (FTP) by

taking trapezoidal fuzzy numbers. Pandian and Natarajan

(2010) presented a new algorithm for finding a fuzzy

optimal solution for fuzzy transportation problem. Ismail

and Kumar (2010) did a comparative study on transporta-

tion problem in fuzzy environment. Zangiabadi and Maleki

(2013) developed fuzzy goal programming technique to

solve multi-objective transportation problems with some

non-linear membership functions. Singh and Yadav

(2014a, b) developed algorithms to solve intuitionistic

fuzzy transportation problems of type-1 and type-2.

In real life transportation problems some data may be

exact that is a crisp value, some may be in fuzzy form and

some may be in intuitionistic fuzzy form due to different

reasons of uncertainties and hesitations. Therefore to deal

with such types of data, we have developed the notion of

mixed intuitionistic fuzzy transportation problem. In this

paper, we have developed a new ordering procedure using
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accuracy function of intuitionistic fuzzy numbers (IFN)

and used to obtain optimal solution of mixed intuitionistic

fuzzy transportation problem (MIFTP).

The paper is organized as follows: Sect. 2 deals with

some definitions and arithmetic operations on TrIFNs from

literature (Kumar et al. 2011; Singh and Yadav 2014a, b).

In Sect. 3, we have proposed some propositions to find the

accuracy functional value of an IFN. In Sect. 4, we have

defined score function and accuracy function of an IFN. In

Sect. 5, we have proposed some definitions required to

develop the solution algorithm for MIFBTP. Section 6

deals with MIFBTP. Section 7 deals with the proposed

methods to find the starting basic feasible solution (BFS) of

MIFBTP. Section 8 deals with methodology to find the

optimal solution of MIFBTP. In Sect. 9, numerical exam-

ples are given to illustrate the methodology to get optimal

solution for different ranking functions with results and

discussion of the findings followed by conclusion in the

last.

2 Some definitions

Definition 2.1 Let X be a universal set. Then a fuzzy set
~A in X is defined by

~A ¼ ðx; l ~AðxÞÞ : x 2 X
� �

;where l ~A : X ! ½0; 1�:

Definition 2.2 A fuzzy set ~A ¼
\x; l ~AðxÞ [ : x 2 R

� �
is called a fuzzy number (FN) if

the following hold:

1. There exists m 2 R such that l ~AðmÞ ¼ 1 (m is called

the mean value of ~A),
2. l ~A is piecewise continuous function from R to the

closed interval [0, 1], where

l ~AðxÞ ¼

gðxÞ; m� a� x\m;
1; x ¼ m;
hðxÞ; m\x�mþ b;
0; otherwise,

8
>><

>>:

Here, g is piecewise continuous and strictly increasing

function in [m - a, m); h is piecewise continuous and

strictly decreasing function in (m, m ? b]. This FN ~A is

denoted by ~A ¼ ðm; a; bÞ:

Definition 2.3 Let X be a universe of discourse. Then an

intuitionistic fuzzy set (IFS) ~AI in X is defined by a set of

ordered triples

~AI ¼ \x; l ~AI ðxÞ; t ~AI ðxÞ [ : x 2 X
� �

;

where l ~AI ; t ~AI : X ! ½0; 1� are functions such that

0� l ~AI ðxÞ þ t ~AI ðxÞ � 1; 8x 2 X: The value l ~AI ðxÞ

represents the degree of membership and t ~AI ðxÞ represents

the degree of non- membership of the element x 2 X being

in ~AI :

Definition 2.4 An IFS ~AI ¼ \x; l ~AI ðxÞ; t ~AI

�
ðxÞ [ :

x 2 Rg is called an IFN if the following hold:

1. There exists m 2 R such that l ~AI ðmÞ ¼
1 and t ~AI ðmÞ ¼ 0 (m is called the mean value of ~AI),

2. l ~AI and m ~AI are piecewise continuous functions from

R to the closed interval [0, 1] and

0� l ~AI ðxÞ þ t ~AI ðxÞ � 1; 8x 2 R, where

l ~AI ðxÞ ¼

g1ðxÞ; m� a� x\m;
1; x ¼ m;
h1ðxÞ; m\x�mþ b;
0; otherwise;

8
>><

>>:

and

t ~AI ðxÞ ¼

g2ðxÞ; m� a0 � x�m; 0� g1ðxÞ þ g2ðxÞ� 1;
0; x ¼ m;
h2ðxÞ; m� x�mþ b0; 0� h1ðxÞ þ h2ðxÞ� 1;
1; otherwise:

8
>><

>>:

Here m is the mean value of ~AI ; a and b are left and right

spreads of membership function l ~AI respectively; a0 and b0

are left and right spreads of non-membership function t ~AI

respectively; where g1 and h1 are piecewise continuous,

strictly increasing and strictly decreasing functions in

[m - a, m) and (m, m ? b] respectively; g2 and h2 are

piecewise continuous, strictly decreasing and strictly

increasing functions in [m - a, m] and [m, m ? b] re-

spectively. The IFN ~AI is represented by
~AI ¼ ðm; a; b; a0; b0Þ:

Definition 2.5 A Trapezoidal Intuitionistic Fuzzy Num-

ber (TrIFN) ~AI is an IFN with the membership function l ~AI

and non-membership function m ~AI given by

l ~AI ðxÞ ¼

lL~AI ðxÞ ¼
x� a

b� a
; a\x� b;

1; b� x� c;

lR~AI ðxÞ ¼
d � x

d � c
; c� x\d;

0; otherwise;

8
>>>>><

>>>>>:

and

m ~AI ðxÞ ¼

mL~AI ðxÞ ¼
b0 � x

b0 � a0
; a0\x� b0;

0; b0 � x� c0;

mR~AI ðxÞ ¼
x� c0

d0 � c0
; c0 � x\d0;

1; otherwise;

8
>>>>>><

>>>>>>:

where a0 B a B b0 B b B c B c0 B d B d0 (Fig. 1).

This TrIFN is denoted by ~AI ¼ ða; b; c; d; a0; b0; c0; d0Þ:
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2.1 Particular cases

Case 1 If b0 = b, c0 = c, then ~AI also represents a TrIFN.

It is denoted by ~AI ¼ ða; b; c; d; a0; b; c; d0Þ:

Case 2 If b0 = b = c = c0, then ~AI represents a Trian-

gular Intuitionistic Fuzzy Number (TIFN). It is denoted by
~AI ¼ ða; b; d; a0; b; d0Þ:

Case 3 If a0 = a, b0 = b, c0 = c, d0 = d, then ~AI rep-

resents Trapezoidal Fuzzy Number (TrFN). It is denoted by
~AI ¼ ða; b; c; dÞ:

Case 4 If a0 = a, b0 = b = c = c0, d0 = d, then ~AI

represents a Triangular Fuzzy Number (TFN). It is denoted

by ~AI ¼ ða; b; dÞ:

Case 5 If a0 = a = b0 = b, c = c0 = d = d0, then ~AI

represents the crisp interval [b, c].

Case 6 If a0 = a = b0 = b = c = c0 = d = d0 = m,

then ~AI represents a real number m.

2.2 Arithmetic operations on TrIFNs

If ~AI
1 ¼ ða1; b1; c1; d1; a01; b01; c01; d01Þ and ~AI

2 ¼ ða2; b2; c2;
d2; a

0
2; b

0
2; c

0
2; d

0
2Þ are two TrIFNs. Then

Addition : ~Ai
1� ~Ai

2 ¼ a1þ a2;b1þ b2;c1þ c2;d1ð
þd2;a

0
1þ a02;b

0
1þ b02;c

0
1þ c02;d

0
1þ d02

�

Subtraction : ~Ai
1H~Ai

2¼ a1�d2;b1�b2;c1�c2;d1ð
�a2;a

0
1�d02;b

0
1�b02;c

0
1�c02;d

0
1�a02

�

Scalar multiplication: k ~AI
1

¼
ðka1; kb1; kc1; kd1; ka01; kb01; kc01; kd01Þ; k[ 0;

ðkd1; kc1; kb1; ka1; kd01; kc01; kb01; ka01Þ; k\0:

(

3 Propositions

Proposition 3.1 The left membership function lL~AI and the

right membership function lR~AI are invertible.

Proof The left membership function lL~AI : ½a; b� ! ½0; 1�
is continuous and strictly increasing, the inverse function of

lL~AI will exists name it by gL~AI : ½0; 1� ! ½a; b�: Similarly, the

right membership function lR~AI : ½c; d� ! ½0; 1� is continu-

ous and strictly decreasing, the inverse function of lR~AI will

exists name it by gR~AI : ½0; 1� ! ½c; d�:

Fig. 1 Membership and non-

membership functions of TrIFN

Multiplication: ~AI
1 � ~AI

2 ¼ ðl1; l2; l3; l4; l01; l02; l03; l04Þ; where
l1 ¼ minfa1a2; a1d2; d1a2; d1d2g; l01 ¼ minfa01a02; a01d02; d01a02; d01d02g
l2 ¼ minfb1b2; b1c2; c1b2; c1c2g; l02 ¼ minfb01b02; b01c02; c01b02; c01c02g;
l3 ¼ maxfb1b2; b1c2; c1b2; c1c2g; l03 ¼ maxfb01b02; b01c02; c01b02; c01c02g;
l4 ¼ maxfa1a2; a1d2; d1a2; d1d2g; l04 ¼ maxfa01a02; a01d02; d01a02; d01d02g:
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Proposition 3.2 The left non-membership function mL~AI

and the right non-membership function mR~AI are invertible.

Proof The left non-membership function mL~AI : ½a0; b0� !
½0; 1� is continuous and strictly decreasing, the inverse

function of mL~AI will exists name it by hL~AI : ½0; 1� ! ½a0; b0�:
Similarly, the right non-membership function mR~AI : ½c0; d0� !
½0; 1� is continuous and strictly increasing, the inverse

function of mR~AI will exists name it by hR~AI : ½0; 1� ! ½c0; d0�:

Proposition 3.3 The functions gL~AI ,g
R
~AI , h

L
~AI and hR~AI are

also continuous and monotonic.

Proof Since lL~AI , lR~AI , mL~AI and mR~AI are continuous and mono-

tonic, therefore their respective inversesgL~AI ,g
R
~AI ,h

L
~AI andh

R
~AI are

also continuous and monotonic in the closed interval [0, 1].

Proposition 3.4 The functions gL~AI , g
R
~AI , h

L
~AI and hR~AI are

integrable.

Proof Since gL~AI , g
R
~AI , h

L
~AI and hR~AI are continuous in the

closed interval [0, 1], these are integrable on [0, 1]. That

is,
R1

0

gL~AI ðyÞdy,
R1

0

gR~AI ðyÞdy,
R1

0

hL~AI ðyÞdy and
R1

0

hR~AI ðyÞdy exist.

4 Score function and accuracy function of a TrIFN

Let ~AI ¼ ða; b; c; d; a0; b0; c0; d0Þ be a TrIFN.

Definition 4.1 The left integral and right integral values

of ~AI for the membership function l ~AI are denoted by

ILðl ~AI Þ and IRðl ~AI Þ and defined by ILðl ~AI Þ ¼
R1

0

gL~AI ðyÞdy

and IRðl ~AI Þ ¼
R1

0

gR~AI ðyÞdy respectively.

Definition 4.2 The left integral and right integral values

of ~AI for the non-membership function m ~AI are denoted by

ILðm ~AI Þ and IRðm ~AI Þ and defined by ILðm ~AI Þ ¼
R1

0

hL~AI ðyÞdy and

IRðm ~AI Þ ¼
R1

0

hR~AI ðyÞdy respectively.

Definition 4.3 The generalized score function for the

membership function l ~AI is denoted by Saðl ~AI Þ with index

of optimism a 2 [0, 1] and is defined by

Saðl ~AI Þ ¼ afIRðl ~AI Þ þ ILðl ~AI Þg:

Definition 4.4 The generalized score function for the

non-membership function m ~AI is denoted by Saðm ~AI Þ with

index of optimism a and is defined by

Saðm ~AI Þ ¼ ð1� aÞfILðm ~AI Þ þ IRðm ~AI Þg:

Definition 4.5 The generalized accuracy function of ~AI is

denoted by f að~AIÞ and is defined by f að~AIÞ ¼ Saðl ~AI Þþ Saðm ~AI Þ
2

¼ afIRðl ~AI ÞþILðl ~AI Þgþð1�aÞfILðm ~AI ÞþIRðm ~AI Þg
2

:

In case of TrIFN ~AI , we have lL~AI ðxÞ ¼ x�a
b�a

)
gL~AI ðyÞ ¼ ½aþ ðb� aÞy�:

So, ILðl ~AI Þ¼
R1

0

gL~AI ðyÞdy¼
R1

0

½aþðb�aÞy� dy¼ 1
2
ðaþbÞ:

Similarly, IRðl ~AI Þ ¼ 1
2
ðcþ dÞ, ILðm ~AI Þ ¼ 1

2
ða0 þ b0Þ and

IRðm ~AI Þ ¼ 1
2
ðc0 þ d0Þ:

Hence,

f að~AIÞ ¼ afðcþ dÞ þ ðaþ bÞg þ ð1� aÞfða0 þ b0Þ þ ðc0 þ d0Þg
4

ð1Þ

This gives

f 0ð~AIÞ ¼ a0 þ b0 þ c0 þ d0

4
ð2Þ

f 0:5ð~AIÞ ¼ fðcþ dÞ þ ðaþ bÞg þ fða0 þ b0Þ þ ðc0 þ d0Þg
8

ð3Þ

f 1ð~AIÞ ¼ aþ bþ cþ d

4
ð4Þ

Theorem The generalized accuracy function fa is a lin-

ear function.

Proof Let ~AI ¼ ða1; a2; a3; a4; a
0
1; a

0
2; a

0
3; a

0
4Þ and ~BI ¼

ðb1; b2; b3; b4; b
0
1; b

0
2; b

0
3; b

0
4Þ be two TrIFNs. Then

f að~AI � ~BIÞ ¼ f a½ða1; a2; a3; a4; a
0

1; a
0

2; a
0

3; a
0

4Þ � ðb1; b2; b3; b4; b
0

1; b
0

2; b
0

3; b
0

4Þ�
¼ f aða1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4; a

0

1 þ b
0

1; a
0

2 þ b
0

2; a
0

3 þ b
0

3; a
0

4 þ b
0

4Þ

¼ afða1 þ b1Þ þ ða2 þ b2Þ þ ða3 þ b3Þ þ ða4 þ b4Þg þ ð1� aÞfða0

1 þ b
0

1Þ þ ða0

2 þ b
0

2Þ þ ða0

3 þ b
0

3Þ þ ða0

4 þ b
0

4Þg
4

¼ aða1 þ a2 þ a3 þ a4Þ þ ð1� aÞða0

1 þ a
0

2 þ a
0

3 þ a
0

4Þ
4

þ aðb1 þ b2 þ b3 þ b4Þ þ ð1� aÞðb0

1 þ b
0

2 þ b
0

3 þ b
0

4Þ
4

¼ f að~AIÞ þ f að~BIÞ: Proved
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Remark a represents the degree of optimism of a decision

maker (DM) (Liou and Wang 1992). A larger a indicates a

higher degree of optimism because when a increases we see

that theweightage of the acceptance level of the transportation

cost increases. a = 0 gives non-membership value which

represents a pessimistic decision maker’s viewpoint as DM is

curious about the non-acceptance level of the transportation

cost. a = 1 gives membership value of the transportation cost

which represents an optimistic decision maker’s viewpoint as

DM is curious about the acceptance level of the transportation

cost. For a = 0.5, the score functional value represents a

moderate decision maker’s viewpoint because the DM gives

equal importance to the acceptance and non-acceptance level

of the transportation cost.

5 Proposed definitions

Now, we define zero, non-negative, positive and negative

TrIFNs. Ordering of TrIFNs based on accuracy function is

also given here.

Definition 5.1 ATrIFN ~AI ¼ ða; b; c; d; a0; b0; c0; d0Þ is

said to be zero TrIFN if f að~AIÞ ¼ 0:

Definition 5.2 A TrIFN ~AI ¼ ða; b; c; d; a0; b0; c0; d0Þ is

said to be non-negative TrIFN if f að~AIÞ � 0:

Definition 5.3 ATrIFN ~AI ¼ ða; b; c; d; a0; b0; c0; d0Þ is

said to be positive TrIFN if f að~AIÞ [ 0:

Definition 5.4 ATrIFN ~AI ¼ ða; b; c; d; a0; b0; c0; d0Þ is

said to be negative TrIFN if f að~AIÞ\0:

Definition 5.5 Let ~AI
1 ¼ ða1; b1; c1; d1; a01; b01; c01; d01Þ and

~AI
2 ¼ ða2; b2; c2; d2; a02; b02; c02; d02Þ be two TrIFNs. Then

a) ~AI
1 � ~AI

2 if f að~AI
1Þ� f að~AI

2Þ
b) ~AI

1 � ~AI
2 if f að~AI

1Þ� f að~AI
2Þ

c) ~AI
1 ¼ ~AI

2 if f að~AI
1Þ ¼ f að~AI

2Þ
d) Min ð~AI

1;
~AI
2Þ ¼ ~AI

1 if
~AI
1 � ~AI

2 or
~AI
2 � ~AI

1

e) Max ð~AI
1;
~AI
2Þ ¼ ~AI

1 if
~AI
1 � ~AI

2 or
~AI
2 � ~AI

1:

Example 1

~AI ¼ ð2; 3; 4; 5; 1; 2; 4; 5Þ; ~BI ¼ ð0; 4; 5; 6; 0; 2; 5; 7Þ

f að~AIÞ ¼ 2aþ 12

4
; f að~BIÞ ¼ aþ 14

4

) f 0ð~AIÞ ¼ 12=4; f 0:5ð~AIÞ ¼ 26=8; f 1ð~AIÞ ¼ 14=4;

and f 0ð~BIÞ ¼ 14=4; f 0:5ð~BIÞ ¼ 29=8; f 1ð~BIÞ ¼ 15=4:

Hence f 0ð~AIÞ\f 0ð~BIÞ; f 0:5ð~AIÞ\f 0:5ð~BIÞ and f 1ð~AIÞ\f 1ð~BIÞ
Thus in each case we have, ~AI\~BI :

Example 2

~AI ¼ ð2; 3; 7; 8; 2; 2; 8; 9Þ; ~BI ¼ ð2; 4; 5; 7; 1; 4; 5; 8Þ

f að~AIÞ ¼ 21� a
4

; f að~BIÞ ¼ 18

4

) f 0ð~AIÞ ¼ 21=4; f 0:5ð~AIÞ ¼ 41=8; f 1ð~AIÞ ¼ 20=4 and

f 0ð~BIÞ ¼ 18=4; f 0:5ð~BIÞ ¼ 36=8; f 1ð~BIÞ ¼ 18=4:

Hence f 0ð~AIÞ[ f 0ð~BIÞ; f 0:5ð~AIÞ[ f 0:5ð~BIÞ and f 1ð~AIÞ
[ f 1ð~BIÞ

Thus in each case ~AI [ ~BI :

6 Balanced mixed intuitionistic fuzzy
transportation problem (BMIFTP)

Usually, it is assumed that transportation costs are exactly

known. However, these costs depend, in reality, on many

factors, e.g., on the travelling time, which depends also on

weather, on the present traffic, on the current situation of the

road (traffic jams, road works etc.), Weight of the load etc.

This means that in many situations such costs cannot be

exactly known, but they are estimated (Dempe andStarostina

2006). Thus in estimating the transportation cost the decision

maker (DM) is not very much sure. He may hesitate in pre-

dicting the transportation cost. Also, in a transportation

problem the DM or the expert hesitates due to many factors

from both sides that is from supplier side and demand side.

Sometimes a DM is not sure that how much quantity of a

particular product is available at his warehouse at a particular

time by different reason. Such that, he has not a good com-

munications to his fellows or he is not sure that how much

quantity of particular product can be produced by the

available row materials by that particular time. Similarly, he

may hesitate from demand side. Suppose some new product

is to be launch in a market then he cannot decide exactly that

how much quantity of this product should transport to a

particular destination. Thismay be due to unawareness of the

customers about this product or difference in price and utility

of the product to the similar one. Thus the uncertainty may

occur in various parameters of a transportation problem.

Also the parameters may have different types of uncertain-

ties. So, here we consider a problem having different forms

of intuitionistic fuzzy parameters to deal efficiently with the

uncertainty as well as hesitation arising in prediction of

transportation cost.

Let us consider a transportation problem with m origins

and n destinations. Let ~cIij ¼ ðc1ij; c2ij; c3ij; c4ij; c1
0

ij ; c
20

ij ; c
30

ij ; c
40

ij Þ
be the IF cost of transporting one unit of the product from

the ith origin to the jth destination.

Let ~aIi ¼ ða1i ; a2i ; a3i ; a4i ; a1
0

i ; a
20
i ; a

30
i ; a

40
i Þ be the IF quan-

tity (IFQ) available at the ith origin, ~bIj ¼
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ðb1j ; b2j ; b3j ; b4j ; b1
0
j ; b

20
j ; b

30
j ; b

40
j Þ be the IFQ needed at the jth

destination and ~XI
ij ¼ ðx1ij; x2ij; x3ij; x4ij; x1

0
ij ; x

20
ij ; x

30
ij ; x

40
ij Þ be the

IFQ transported from the ith origin to the jth destination.

Here ~cIij, ~a
I
i ,
~bIj and ~XI

ij may be any of the particular forms

discussed in Definition 2.5. Then the BMIFTP is given

by

Min ~ZI ¼
Xm

i¼1

Xn

j¼1
~cIij � ~XI

ij

s:t:
Xn

j¼1
~XI
ij ¼ ~aIi ; i ¼ 1; 2; . . .;m;

Xm

i¼1
~XI
ij ¼ ~bIj ; j ¼ 1; 2; . . .; n;

~XI
ij � ~0I ; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n:

7 Proposed methods to find starting basic feasible
solution (BFS)

First of all we transform the entries of the problem into

equivalent TrIFN format. Then the following methods can

be utilized to find the starting BFS of the given BMIFTP.

7.1 Intuitionistic fuzzy North West corner method

(IFNWCM) for BMIFTP

The following steps are to be taken while finding the

starting BFS by this method.

Step 1 Select the North West Corner Cell (NWCC) of the

BMIFTP table (BMIFTPT) and find the minimum of ~aIi
and ~bIj using Definition 5.4. One of the following three

cases will arise:

Case 1 If Min ð~aIi ; ~bIj Þ ¼ ~aIi , then allocate ~XI
ij ¼ ~aIi in the

NWCC of m 9 n BMIFTPT. Delete the ith row to obtain a

new BMIFTPT of order (m - 1) 9 n. Replace ~bIj by
~bIjH~aIi

in the new BMIFTPT and then go to Step 2.

Case 2 If Min ð~aIi ; ~bIj Þ ¼ ~bIj , then allocate ~XI
ij ¼ ~bIj in the

NWCC of m 9 n BMIFTPT. Delete the jth column to

obtain a new MIFTPT of order m 9 (n - 1). Replace ~aIi by

~aIiH~bIj in the new BMIFTPT and then go to Step 2.

Case 3 If ~aIi ¼ ~bIj , then follow either Case 1 or Case 2 but

not both together.

Step 2 Repeat Step 1 for new BMIFTPT until the

BMIFTPT reduces to a table of order 1 9 1.

Step 3 The starting BFS and intuitionistic fuzzy trans-

portation cost (IFTC) are given by ~XI
ij and

PP
~cIij � ~XI

ij

respectively.

7.2 Intuitionistic fuzzy least cost method (IFLCM)

for BMIFTP

The following steps are involved in this method.

Step 1 Determine the smallest cost in the BMIFTPT

using Definition 5.4. Let it be ~cIij: Find ~XI
ij ¼ Minð~aIi ; ~bIj Þ:

One of the following three cases will arise:

Case 1 If Minð~aIi ; ~bIj Þ ¼ ~aIi , then allocate ~XI
ij ¼ ~aIi in the

(i, j)th cell of m 9 n BMIFTPT. Ignore the ith row to

obtain a new BMIFTPT of order (m - 1) 9 n. Replace ~bIj

by ~bIjH~aIi in the new BMIFTPT and then go to Step 2.

Case 2 If Minð~aIi ; ~bIj Þ ¼ ~bIj , then allocate ~XI
ij ¼ ~bIj in the

(i, j)th cell of m 9 n BMIFTPT. Ignore the jth column to

obtain a new BMIFTPT of order m 9 (n - 1). Replace ~aIi
by ~aIiH~bIj in the new BMIFTPT and then go to Step 2.

Case 3 If ~aIi ¼ ~bIj , then follow either Case 1 or Case 2 but

not both together.

Step 2 Repeat Step1 for the new BMIFTPT until it

reduces to an 1 9 1 BMIFTPT.

Step 3 The starting BFS and IFTC are given by ~XI
ij andPP

~cIij � ~XI
ij respectively.

7.3 Intuitionistic fuzzy Vogel’s approximation

method (IFVAM) for BMIFTP

The following steps are involved in this method

Step 1 Start by taking the first row and choose its

smallest cost using Definition 5.4 and subtract it from the

next smallest entry. The difference is called the IF

penalty (IFP) for the first row. Write it in front of the row

on right. Similarly, compute the IFP for each row and

write it in front of the corresponding row. In a similar

fashion find the IFPs for all columns and write them in

the bottom of the BMIFTPT below the corresponding

columns.

Step 2 Select the largest IFP using Definition 5.4 and find

the row or column to which it corresponds. Determine

the smallest cost in the selected row or column using

Definition 5.4. Let it be ~cIij: Find ~XI
ij ¼ Minð~aIi ; ~bIj Þ: Again

one of the following three cases will arise:

Case 1 If Minð~aIi ; ~bIj Þ ¼ ~aIi , then allocate ~XI
ij ¼ ~aIi in the

(i, j)th cell of m 9 n BMIFTPT. Delete the ith row to

obtain a new BMIFTPT of order(m - 1) 9 n. Replace ~bIj

by ~bIjH~aIi in the new BMIFTPT and then go to Step 3.
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Case 2 If Minð~aIi ; ~bIj Þ ¼ ~bIj , then allocate ~XI
ij ¼ ~bIj in the

(i, j)th cell of m 9 n BMIFTPT. Ignore the jth column to

obtain a new BMIFTPT of order m 9 (n - 1). Replace ~aIi
by ~aIiH~bIj in the new BMIFTPT and then go to Step 3.

Case 3 If ~aIi ¼ ~bIj , then either follow Case 1 or Case 2 but

not both together.

Step 3 Calculate the IFP for the reduced table obtained in

Step 2. Repeat Step 2 until BMIFTPT reduces into

1 9 1.

Step 4 The starting BFS and IFTC are given by ~XI
ij andPP

~cIij � ~XI
ij respectively.

8 Intuitionistic fuzzy modified distribution method
(IFMODIM) to find optimal solution of BMIFTP

In this section, we develop a method based on modified

distribution method (MODIM) to find optimal solution of

BMIFTP. We call it as IFMODIM.

The following steps are to be taken while finding the

optimal solution.

Step 1 Find the starting BFS using any method discussed

in Sect. 7.

Step 2 Define IF dual variables ~uIi ¼ ðui1; ui2; ui3; ui4;
ui

0

1 ; u
i0

2 ; u
i0

3 ; u
i0

4Þ and ~vIj ¼ ðv j
1; v

j
2; v

j
3; v

j
4; v

j0

1 ; v
j0

2 ; v
j0

3 ; v
j0

4Þ cor-
responding to the ith row and the jth column respectively

such that ~uIi ¼ ~cIijH~vIj or ~vIj ¼ ~cIijH~uIi for the basic cell

(i, j).

Step 3 Define ~zIij ¼ ~uIi � ~vIj : Find
~dIij ¼~zIijH~cIij for all non-

basic variables. Determine the values of f að~dIijÞ and write

them in the right lower corner of the concerned cell. Any

one of the following two cases will arise:

Case 1 If f að~dIijÞ� 0 for all i, j. Then the starting BFS is

optimal and stop.

Case 2 If there exists at least one ~dIij such that f að~dIijÞ[ 0,

then the BFS is not optimal. Go to step 4.

Step 4 In MIFBTPT, choose that f að~dIijÞ which is the

most positive. Let it occur for i = r and j = k.

Step 5 Assign ~hI quantity in the (r, k)th cell. Now make a

loop as follows:

Rule for making the loop Start from the (r, k)th cell. Then

move horizontally and vertically to the nearest basic cell

with the restriction that the end of the loop must not lie in

any non-basic cell except the (r, k)th cell. In this way

return to the (r, k)th cell to complete the loop.

Step 6 Add and subtract ~hI in concerned cell of the loop

maintaining feasibility and define the value of ~hI as the

minimum of ~XI
ij from which ~hI is subtracted.

Step 7 Inserting the value of ~hI the next BFS is obtained

which improves the IF transportation cost. While

inserting the value of ~hI , one cell assumes zero value,

i.e., this cell becomes non-basic. This gives the

improved BFS.

Step 8 Repeat steps 1–7 until f að~dIijÞ� 0 8 i; j:
Step 9 The optimal solution and IFTC are given by ~XI

ij

and
PP

~cIij � ~XI
ij respectively, i = 1, 2, 3,…, m and

j = 1, 2, 3,…, n.

9 Numerical examples

Example 1 Consider the BMIFTP given in Table 1. In

this table costs, availabilities and demands are different

types of numbers (crisp, fuzzy, intuitionistic fuzzy).

Changing the entries of the problem into equivalent

TrIFNs, the problem is transformed as follows (Table 2).

Now to find the starting BFS we can apply any one of

the methods discussed in Sect. 7. Here we have applied

IFNWCM to find the starting BFS. The BFS obtained is

given in Table 3.

Now we apply IFMODIM to test the optimality of the

obtained starting BFS for pessimistic, moderate and opti-

mistic decision maker’s viewpoint.

~dI12 ¼ ð�2; 2; 5; 9;�4; 1; 5; 11ÞHð7; 8; 8; 9; 6; 8; 8; 9Þ
¼ ð�11;�6;�3; 2;�13;�7;�3; 5Þ;

Table 1 BMIFTP

Table 2 BMIFTP in symmetric form
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~dI13 ¼ ð�2; 3; 6; 10;�5; 1; 6; 13ÞHð5; 5; 5; 5; 5; 5; 5; 5Þ
¼ ð�7;�2; 1; 5;�10;�4; 1; 8Þ;

~dI31 ¼ ð�1; 4; 7; 13;�3; 4; 8; 15ÞHð6; 8; 8; 9; 6; 8; 8; 9Þ
¼ ð�10;�4;�1; 7;�12;�4; 0; 9Þ;

~dI32 ¼ ð�1; 3; 6; 11;�2; 3; 7; 12ÞHð7; 7; 7; 7; 7; 7; 7; 7Þ
¼ ð�8;�4;�1; 4;�9;�4; 0; 5Þ;

Now finding the score functional values of these devi-

ations, we have

f 0ð~dI12Þ ¼ �9=2; f 0:5ð~dI12Þ ¼ �9=2; f 1ð~dI12Þ ¼ �9=2:

f 0ð~dI13Þ ¼ �5=4; f 0:5ð~dI13Þ ¼ �1; f 1ð~dI13Þ ¼ �3=2:

f 0ð~dI31Þ ¼ �7=4; f 0:5ð~dI31Þ ¼ �15=8; f 1ð~dI31Þ ¼ �2:

f 0ð~dI32Þ ¼ �2; f 0:5ð~dI32Þ ¼ �17=8; f 1ð~dI32Þ ¼ �9=4:

In Table 4, we find that the BFS is optimal, through each

viewpoint as f að~dIijÞ\0; a ¼ 0; 0:5 ; 1:

The IFTC is ~ZI = (3,4,5,6;2,3,5,7) � (3,4,4,6; 2,4,4,8)

� (-3,0,2,5;-6,-1,3,7) � (2,4,5,7;1,4,5,8) � (2,3,4,5;2,

3,4,5) � (2,4,6,8;2,4,6,0) � (-7,-1,3,9;-11,-2,4,12) �
(2,4,5,6;1,3,5,7) � (2,3,7,8;2,2,8,9) � (3,5,6,8;3,5,6,8) =

(-44,38,111,229;-111,19,127,318).

9.1 Results and discussion

The IFTC ~ZI of the given BMIFTP is a TrIFN as given

below:

~ZI ¼ �44; 38; 111; 229;�111; 19; 127; 318ð Þ: ð5Þ

The result in (5) can be explained (Refer to Fig. 2) as

follows:

‘‘The degree of acceptance of the transportation cost

for the DM increases if the cost increases from -44 to

38; The DM is totally satisfied or the transportation cost

is totally acceptable if the cost lie in [38, 111]. While it

decreases if the cost increases from 111 to 229. Beyond

(-44, 229), the level of acceptance or the level of sat-

isfaction for the DM is zero i.e. he is not satisfied. The

degree of non-acceptance of the transportation cost for

the DM decreases if the cost increases from -111 to 19

while it increases if the cost increases from 127 to 318.

Beyond (-111, 318), the cost is totally un-acceptable’’

(Table 5).

Assuming that l ~ZI ðcÞ is membership (acceptance) and

m ~ZI ðcÞ is non-membership (non-acceptance) value of the

transportation cost c. Then the degree of acceptance of the

Table 3 The starting BFS

– – – – – – –

Table 4 Optimality test of the

starting BFS = (–4,–1,1,4; 

–6,–2,1,6)

(3,4,5,6;2,3,5,7)
(3,4,4,6;2,4,4,8)

(7,8,8,9;6,8,8,9) (5,5,5,5;5,5,5,5)

= (0,0,0,0;

0,0,0,0)

(2,4,5,7;1,4,5,8)
(–3,0,2,5;–6,–1,3,7)

(2,3,4,5;2,3,4,5)
(2,4,6,8;2,4,6,10)

(2,4,5,6;1,3,5,7)
(–7,–1,3,9;–11,–2,4,12)

= (–3,0,2,6;

–4,0,3,7)

(6,8,8,9; 6,8,8,9) (7,7,7,7;7,7,7,7) (3,5,6,8; 3,5,6,8)
(2,3,7,8;2,2,8,9)

= (2,4,5,7;1,4,5,8) = (2,3,4,5;2,3,4,5) = (2,4,5,6;1,3,5,7)

Fig. 2 Intuitionistic fuzzy

transportation cost
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transportation cost c is 100l ~ZI ðcÞ % for the DM and the

degree of non-acceptance is 100m ~ZI ðcÞ % for the DM. DM

is not sure by 100ð1� l ~ZI ðcÞ � m ~ZI ðcÞÞ % that he/she

should accept the transportation cost c or not (Table 6).

Values of l ~ZI ðcÞ and m ~ZI ðcÞ at different values of c can

be evaluated using Eqs. (5a) and (5b) respectively.

l ~ZI ðcÞ ¼

cþ 44

82
; �44\c� 38;

1; 38� c� 111;
229� c

118
; 111� c\229;

0; otherwise,

8
>>>><

>>>>:

ð5aÞ

m ~ZI ðcÞ ¼

19� c

130
; 7� 111\c� 19;

0; 19� c� 127;
c� 127

191
; 127� c\318;

1; otherwise:

8
>>>><

>>>>:

ð5bÞ

Example 2 Let us consider the following problem as in

Table 5:

Writing the data into symmetric form we have following

BFS as in Table 6.

~dI13 ¼ ð�1; 0; 1; 2;�2; 0; 2; 3ÞHð2; 4; 4; 6; 2; 4; 4; 6Þ
¼ ð�7;�4;�3; 0;�8;�4;�2; 1Þ;

~dI21 ¼ ð1; 4; 6; 9;�1; 2; 6; 9ÞHð3; 4; 5; 6; 3; 4; 5; 6Þ
¼ ð�5;�1; 2; 6;�7;�3; 2; 8Þ;

~dI31 ¼ ð1; 5; 7; 11;�2; 3; 7; 14ÞHð2; 3; 3; 5; 1; 3; 3; 6Þ
¼ ð�4; 2; 4; 9;�8; 0; 4; 13Þ;

~dI32 ¼ ð4; 6; 7; 9; 2; 5; 7; 11ÞHð1; 4; 4; 6; 1; 4; 4; 6Þ
¼ ð�2; 2; 3; 8;�4; 1; 3; 10Þ;

Now finding the score functional values, we have

f 0ð~dI13Þ ¼ �13=4; f 0:5ð~dI13Þ ¼ �27=8; f 1ð~dI13Þ ¼ �13=4:

f 0ð~dI21Þ ¼ 0; f 0:5ð~dI21Þ ¼ 2=8; f 1ð~dI21Þ ¼ 2=4:

f 0ð~dI31Þ ¼ 9=4; f 0:5ð~dI31Þ ¼ 20=8; f 1ð~dI31Þ ¼ 11=4:

f 0ð~dI32Þ ¼ 10=4; f 0:5ð~dI32Þ ¼ 21=8; f 1ð~dI32Þ ¼ 11=4:

In Table 7, we found that the starting BFS is not opti-

mal, through any viewpoint as some f að~dIijÞ[ 0; for a ¼
0; 0:5 or 1:

In each case we see that f að~dI32Þ is most positive so

making a closed loop starting from (3, 2) cell and then

improving the solution we have following table.

Here we have

f 0ð~dI13Þ ¼ �3=4; f 0:5ð~dI13Þ ¼ �6=8; f 1ð~dI13Þ ¼ �3=4:

f 0ð~dI21Þ ¼ �10=4; f 0:5ð~dI21Þ ¼ �19=8; f 1ð~dI21Þ ¼ �9=4:

f 0ð~dI22Þ ¼ �10=4; f 0:5ð~dI31Þ ¼ �21=8; f 1ð~dI31Þ ¼ �11=4:

f 0ð~dI31Þ ¼ �1=4; f 0:5ð~dI32Þ ¼ �1=8; f 1ð~dI32Þ ¼ 0:

Thus in Table 8 f að~dIijÞ� 0; for a ¼ 0; 0:5; 1: So we

reached the optimal solution.

The IFTC is ~ZI = (1,3,4,6;0,2,4,7) � (2,3,4,5;1,2,4,6)

� (4,4,4,4;4,4,4,4) � (-3,1,3,5; -4,0,4,6) � (2,2,2,2;2,

2,2,2) � (-5,3,9,17; -7,1,11,19) � (1,4,4,6; 1,4,4,6)

Table 5 BMIFTP

Table 6 The starting BFS

––

–

–

–

–

Table 7 Optimality test for

staring BFS =(0,0,0,0;

0,0,0,0)

(1,3,4,6;0,2,4,7)
(2,3,4,5;1,2,4,6)

(4,4,4,4;4,4,4,4)
(–3,1,3,5;–4,0,4,6)

(2,4,4,6;2,4,4,6)

= (0,1,2,3;

–1,0,2,4)

(3,4,5,6;3,4,5,6) (4,5,6,7; 3,4,6,8)
(–3,1,4,8;–4,0,5,9)

(2,2,2,2;2,2,2,2)
(–2,2,5,9;–3,1,6,10)

= (0,2,3,5;

–2,1,3,7)

(2,3,3,5;1,3,3,6) (1,4,4,6;1,4,4,6) (2,3,3,4;1,3,3,5)
(3,4,5,7;2,4,6,8)

= (1,3,4,6;

0,2,4,7)

= (4,4,4,4;

4,4,4,4)

= (–1,0,1,2;

–2,0,2,3)
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� (-3,1,4,8;-4,0,5,9) � (2,3,3,4;1,3,3,5) � (-5,0,4,10;

-7,-1,6,12) = (-58,23,74,172;-68,3,92,218).

9.2 Results and discussion

The IFTC ~ZI of the givenBMIFTP is a TrIFN as given below:

~ZI ¼ �58; 23; 74; 172;�68; 3; 92; 218ð Þ: ð6Þ

The result in (6) can be explained (Refer to Fig. 3) as

explained in Example 1.

Values of l ~ZI ðcÞ and m ~ZI ðcÞ at different values of c can

be evaluated using Eqs. (6a) and (6b) respectively.

l ~ZI ðcÞ ¼

cþ 58

81
; �58\c� 23;

1; 23� c� 74;

172� c

98
; 74� c\172;

0; otherwise,

8
>>>>>><

>>>>>>:

ð6aÞ

m ~ZI ðcÞ ¼

3� c

71
; �68\c� 3;

0; 3� c� 92;

c� 92

126
; 92� c\218;

1; otherwise:

8
>>>>>><

>>>>>>:

ð6bÞ

10 Conclusion

The increasing complexity of the real world and the

fuzziness of human thinking make it difficult to express the

decision maker’s preferences over alternatives as exact

numerical values. However, it is very convenient and

suitable to express the preferences into FN or IFN. To

express the uncertain data we have utilized different types

of fuzzy numbers, which is more reliable to the real world

transportation problems.

In this paper new methods are proposed to find the

starting BFS and optimal solution of BMIFTP in which

availabilities, demands and costs all are different types of

numbers. So, the methods can be applied to solve real

world transportation problems where data is not in sym-

metric form.
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