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Abstract Testing plays a vital role in the evolution and

establishment of any quality product as well as any quality

system. Testing is essential to prove the correctness (valid

output when input is valid, and proper handling techniques

when input is invalid) of the system and it is crucial to

prove the compatibility of the system with the operating

environment. In component-based software systems, vari-

ous components interact with each other to access as well

as provide required functionalities. In such complex sys-

tems testing is one of the most important activities. Since

component-based software engineering relies on the con-

cept of ‘‘use of pre-built and pre-tested components’’, our

focus here, is on functional testing rather than structural

testing. Functional testing emphasizes the behavioural

attributes of the components when they interact with each

other. Components interact through operands and param-

eters. In this paper we suggest functional testing strategy

and test case generation technique for component-based

software. When two components are integrated then they

generate some specific effect. This strategy is named

Integration-effect graph. This strategy is a black-box

technique as it covers the input and output domains only.

We have used the graph theory notations to show the

integration and interaction among the components.

Keywords Black box � Component � Component-based

software � Correctness � Functional testing � Pre-built �
Pre-tested � Structural testing

1 Introduction

Component-based software development (CBSD) (Koza-

czynski and Booch 1998), emphasizes the concept of

reusability. Reusability offers software development team to

focus on the new and innovative solutions of the problem rather

than concentrating on coding (Pressmen 2001). A software

component should be designed and implemented in such a way

that it can be reused in similar as well as different contexts

(Pressmen 2001). To provide and access services in a prede-

fined architecture as well as in different contexts components

have explicit and well defined interfaces (Senthil et al. 2007).

The goal of CBSD is to buy or develop such components

which can be used in various systems and the same system

can be deployed in many optimized ways, that is, devel-

opment through reusability and development for reusabil-

ity. A component- based software system can be developed

by the composition of existing and newly developed

components with defined interfaces (Shepperd 1998;

Capretz 2005). Components are the basic building blocks

of CBSD. Bennatan (Bennatan 1992) has categorized

components on the basis of their reusability as off-the shelf

components, adaptable components, and new components.

1.1 Off-the-shelf components

These are the pre-built, pre-tested components. They are

either provided by the third party or developed by the

development team as part of the previous software.
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1.2 Adaptable components

These are the components which can accommodate with

existing requirements, design, code, or test cases with minor

or major modifications. These components are selected

from the component repository and can be used by making

minor or major modifications. On the basis of the degree of

modifications, adaptable components are divided into two

categories: fully qualified components and partially quali-

fied components. Fully qualified components are the com-

ponents which require no modification or a small degree of

modification, and partially qualified components are the

components which require major degree of modification.

1.3 New components

These components are developed by the development team

itself from the scratch according the specifications and

requirements for the particular project.

2 Component-based software testing

Whether it is traditional, object-oriented or component-

based software, testing plays a vital role. According to

studies and researches (Elberzhager et al. 2012; Tsai et al.

2003) inadequate testing leads to unreliable software prod-

ucts. When we use third party commercially off-the-shelf

components, we have no access to the source code. This

makes testing such components more difficult and chal-

lenging (Gao et al. 2003; Weyuker 1998). Testing is the set

of activities that starts with the culmination of requirement

elicitation. It can be planned in the early phases of devel-

opment and conducted through out the lifecycle of the

software development. In the context of CBS, testing begins

at the individual component level and progresses towards

outwards the integration of the entire CBS system (Pressmen

2001). Testing is the oldest and the most widely used tech-

nique for verification and validation (Myers 2004). In CBS,

component verification can be defined as the set of activities

to ensure that each individual component is implemented

and deployed according to its intended functionality and

each component plays its specified role. Component vali-

dation can be defined as the set of activities to ensure that the

integrated components are compatible with the design

architecture and are traceable to customer’s requirement.

3 Black box testing and related work

To maintain the reliability of software, testing is must. It is

a process done with the goal of finding all the possible

errors in the software. Black box testing is a technique used

to test the software based on its behaviour, rather testing its

structure or the internal code. In black box testing, our

focus is on testing the software on the basis of inputs

provided and the outputs achieved. Here the internal code

is treated as black box and the behaviour of the software is

captured on similar basis.

Achieving highly reliable software is a difficult task,

even when quality, pre-tested and trusted software com-

ponents are combined (Tyagi and Sharma 2014). Several

techniques have therefore emerged to analyze the relia-

bility of component based applications. These techniques

mainly fall under two categories (Tyagi and Sharma 2014):

System Level System level reliability is estimated for the

application as a whole.

Component Level Component level reliability of the

application is estimated on the basis of reliability of the

individual component and their interaction mechanism.

In the literature (Ramamoorthy et al. 1976; Voas 1992;

Voas and Miller 1992; Ntafos 1988; Ostrand and Balcer

1988; Voas and Miller 1995; Weyukar 1993), the following

strategies of black box testing have been proposed and are

in wide use. This testing only takes the external view of the

software. This testing is categorized into four different

types.

• Boundary value analysis

• Equivalence class partitioning

• Decision Table-Based testing

• Cause-effect graphing

3.1 Boundary value analysis

Boundary value analysis is a black box testing technique to

ensure that the software works correctly at the boundary

values. As inputs and outputs of the software tend to

behave more abruptly at the boundary values when put to

test, as compared to the values that are in the center or the

limits of the conditions (Ramamoorthy et al. 1976; Voas

1992). One of the other reason of the boundary value

analysis is that defects and errors are easier to be depicted

and caught at the boundary lines than in the middle of the

range of the test cases. It focuses on data at the ‘‘edges’’ of

an equivalence class (Voas and Miller 1992).

3.2 Equivalence class partitioning

In Equivalence Class Partitioning (ECP) the input data of a

software unit is divided into number of equivalence classes

or partitions assuming that the test of a value of each class

is equivalent to a test of other values. In ECP, input domain

is partitioned as valid and invalid classes. The validity of
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each value of the valid class is equivalent; similarly each

value of invalid class is equivalently invalid. Equivalence

class partitioning is always implemented to the inputs of an

already tested component, but in rare cases it may be

implemented to the outputs also (Ntafos 1988; Ostrand and

Balcer 1988).

3.3 Decision table-based testing

One problem with boundary value analysis and equiva-

lence class portioning is that they are applied on individual

conditions. Decision tables are used to evaluate and ana-

lyze the combinations of complex input conditions. Deci-

sion tables are typically split into four quadrants, Condition

stub, Action stub, Condition Entries and Action Entries, as

shown below in Table 1.

Each decision corresponds to a variable, relation or

predicate whose possible values are listed among the

condition alternatives. Each action is a procedure or

operation to perform, and the entries specify whether (or in

what order) the action is to be performed for the set of

condition alternatives the entry corresponds to (Voas and

Miller 1995; Weyukar 1993).

3.4 Cause-effect graphing

In cause effect-graphing, input conditions are identified as

causes and outputs are denoted as effects. Then these

causes and effects are analysed and transformed into a

Boolean graph, linking the causes and effects.

4 Motivation

The problem with boundary value analysis, equivalence

class partitioning, cause-effect graphing and decision table-

based testing technique is that they are well suited for

standalone programs or the software where interaction and

integrations take place within the single component. These

methods are effective for single component software,

where interactions occur within a component. But as

software system is divided into multiple components, the

design as well as the behaviour of the software system

changes. To accommodate these changes in design and

behaviour, different types of components are developed in

different contexts. Then these newly developed compo-

nents as well as the existing components are integrated.

None of these techniques are applicable in the scenarios

where we have two or more than two components. To

calculate the number of test cases in white box testing we

have some techniques like Cyclomatic complexity in the

context of individual components as well as for CBS

(McCabe 1976; Tiwari and Kumar 2014). But in the con-

text of black-box testing, we have no such technique that

can calculate the number of test cases for component-based

software.

In this paper, we propose a testing technique and a test

case generation method for component-based software,

where two or more than two components are integrated.

We have compared this method with the Boundary value

analysis method and shown that this method is quite suit-

able for CBS.

5 Components integration-effect graph

To represent the integration of components, at least two

components are required. Figure 1 shows the base case of

the proposed technique. Components are interacting with

each other through request and response edges. Request

and response edges correspond to interacting and returning

parameters.

5.1 Flow graph notations

Two or more components can interact to access and pro-

vide services to each other (Gill and Balkishan 2008;

Tiwari and Kumar 2014). To draw the flow graph diagram

we use graph theory notations (Berge 1973). A component

can make a request for some service to another component,

which has been shown as request edge, and the component

can respond through the response edge as shown in Fig. 1.

In coding, these interactions take place through some

parameters or operands. The calling component passes

some parameter(s) to the called component and in response

Table 1 Decision table

The four quadrants

Condition Stub Condition entries

Action Stub Action entries

Component 
C1

Component 
C2

Interacting Parameters (x1, x2, x3 ,……...xn)
Request Edge

Response Edge
Returning Parameters (y1, y2, y3,……..yn)

Fig. 1 Interaction between two components
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the called component will return some parameter(s) to the

calling one. This scenario is shown in the Fig. 1.

In this paper, we suggest Components Integration-Effect

Graph strategy for software where more than one compo-

nent is involved to provide and access their services as per

the specification and architecture document (Gill and

Balkishan 2008). When two or more than two components

are assembled they must share some sort of information to

each other through well defined interfaces (Basili 2001;

Chen 2011). In CBS, we have some third party components

for which the code is not available. So it is difficult to apply

rigorous testing, structural testing or exhaustive testing on

such software. Black box strategy is quite suitable for such

software.

5.2 Method

Usually on the basis of the architectural design of the

software, we draw a control flow graph to show the inter-

action among the components, as shown in Fig. 1. But here

in Integration-Effect graph, we introduced the effect of

their integration via an interface. Integration-Effect graph

based on the control flow graph is shown in Fig. 2.

With the help of this Integration-Effect graph we can

draw an Integration-Effect Matrix as discussed in Table 2.

This matrix contains two types of values:

(a) Integration values among components, and

(b) Effect values, generated due to the integration of

different components.

Integration-Effect values among components can be

computed as:

5.2.1 Effects of individual components ^ effects generated

due to the integration of components

Where, these Effects are the Boolean values, either 0 or 1.

On the basis of these values and the above defined

formula, we can draw an Integration-effect matrix. From

the Integration-effect matrix, we can define the number of

test cases in two steps:

Step1. Number of ‘1 s’ under ‘Effect’ column in each

row will specify the number of test cases for corre-

sponding component.

Step2. Calculate the total number of test cases achieved

in step 1. This specifies the total number of test cases for

the given software.

In this paper, we use four cases to analyse our proposed

method. In case 1, the graph consists of two components.

Case 2 involves three components. Case 3 has four com-

ponents. Case 4 consists of five components.

5.2.2 Case 1: when we have two components

This case is shown in Fig. 1; here we have two components

C1 and C2. These components can communicate through

some interaction and returning parameters. This is shown

as an edge from C1 to C2 and C2 to C1. To integrate C1

and C2, we need an interface. This interface will be com-

patible with C1 and C2.

5.2.3 Integration-effect graph

When we integrate these components, they will generate

some effect. If the effect is in specified way, we say that

components are working as per the requirement. But if the

effect is not as per our intention, we need to test these

components. We draw integration-effect graph to show the

integration of components and the effects of these inte-

grations as shown in Fig. 2.

We represent the component Integration-effect graph as:

The output of integration of component C1 and C2 is 1

(without any error) if, the effect of component C1 (denoted

as Eff(C1)) is 1, effect of component C2 (Eff(C2)) is 1 and

the integration effect of C1 and C2 is error free. To gen-

erate the true Integration-effect of component C1 and C2,

we have to take into account the individual as well as

combined effects generated due to component C1 and

component C2 and the integrated effects of C1 and C2.

That is,

Int C1 ^ C2ð Þ ¼ Eff C1ð Þ ^ Eff C2ð Þ ^ Eff C1 ^ C2ð Þ

C1

C2

Int Effect

Component C1

Component C2

stceffEnoitargetnIecafretnI

Fig. 2 Integration-effect graph for two components

Table 2 Integration-effect matrix for two components

Components C1 Effect C2 Effect

C1 1 Eff(C1): 0/1 0/1 Eff(C1 ^ C2): 0/1

C2 0/1 Eff(C2 ^ C1): 0/1 1 Eff(C2): 0/1
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where, Int C1 ^ C2ð Þ represents integration of components

C1 and C2, Eff C1ð Þ represents the effect generated due to

component C1, Eff C2ð Þ represents the effect generated due

to component C2, Eff C1 ^ C2ð Þ represents the effect

generated due to the integration of the components C1 and

C2, ^ denotes the AND operation and _ denotes the OR

operation.

If the effect is true that is without any error it is denoted

as 1, and if it is negative that is, it having error, it is

denoted as 0.

For Int C1 ^ C2ð Þ to be true, Eff ðC1Þ; Eff ðC2Þ;
and Eff ðC1 ^ C2Þ all must be true, that is, 1. That is,

component C1, C2 and integration of C1 and C2 must be

error free.

5.2.4 Integration-effect matrix

Integration-effect matrix is a row-column matrix. If two

components are connected through an edge, then they are

represented as 1, otherwise 0. Component C1 is connected

with component C2, so the value in the matrix C1 to C2 is

1. Each component is connected to itself by the property of

cohesion, so we have used 1 to show their connectivity.

Component C1 is connected to itself; therefore C1 to C1

has value 1.

If the component C1 is error free, the value of Eff(C1) is

1, otherwise it is 0. If the component C2 is error free the

value of Eff(C2) is 1, otherwise it is 0. If the integration of

component C1 and C2 is error free the value of

Eff(C1 ^ C2) is 1, otherwise it is 0.

Possible values of integration-effect matrix for two

components is given in Table 2.

5.2.5 Integration-effect matrix when no error

in integration

Table 3 shows the Integration-effect matrix for the case

where all the integrated components are error free and their

integration-effects are also error free.

Row C1 has all the values as 1 which represents that C1

is connected with every other component of the graph and

the integration effect of C1 with every other component is

error free.

Row C2 has all the values as 1 which represents that C2

is connected with every other component of the graph and

the integration effect of C1 with every other component is

error free.

Row C1 has all the values as 1 which represents that C1

is connected with every other component of the graph.

In row C2, the corresponding value of C1 is 1, means

there is an interaction between C2 and C1, but their inte-

gration-effect value is 0, means there is an error in their

interaction. And this integration needs retesting (Table 4).

5.2.6 Number of test cases through Integration-effect

method (Table 5)

Number of test cases where C1 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C1ð Þ � 1

¼ 2 � 1

¼ 1

Number of test cases where C2 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C2ð Þ�1

¼ 2 � 1

¼ 1

Totalnumberof testcasesderivedfromthismatrix

¼Numberof testcasesforC1þNumberof TestcasesforC2

¼1þ1

¼2:

5.2.7 Number of test cases through boundary value

analysis method

Assuming that ‘n’ is the number of components then, the

minimum number of test cases are 4n ? 1.

We have two components in this case, therefore n = 2.

Number of test cases ¼ 4n þ 1

¼ 4 � 2 þ 1

¼ 9

Table 3 Integration-effect matrix for two components

Table 4 Integration-effect matrix for two components
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5.2.8 Case 2: when we have three components

This case is shown in Fig. 3, where we have three com-

ponents C1, C2 and C3. These components can commu-

nicate to each other to provide and access services.

Component C1 is communicating with component C2 and

component C3. This is shown as an edge from C1 to C2

and C1 to C3. There is no interaction between components

C2 and C3.

To integrate C1 and C2, we need an interface; similarly

we need interface to integrate C1 and C3.

Now to show the effects of their integration we draw the

Integration-Effect graph. When we integrate these com-

ponents, they will generate some effect. If the effect is true

it is denoted as 1, otherwise 0. This is shown in Fig. 4.

From the Fig. 4, we note that atmost two components

interact at a time through some interface. So during inte-

gration testing we need to focus on atmost two components

at a time.

We represent the component Integration-effect graph as:

The output of integration of component C1, C2 and C3

is 1 (i.e., true or without any error) if the effect of com-

ponent C1 (Eff(C1)) is 1 (without any error), effect of

component C2 (Eff(C2)) is 1 (without any error), effect of

component C3 (Eff(C3)) is 1 (without any error), and the

integration effect of C1, C2 and C3 is error free. To gen-

erate the true Integration-effect of component C1, C2 and

C3, we have to take into account the individual as well as

combined effects generated due to component C1, C2 and

component C3.

Int C1 ^ C2 ^ C3ð Þ
¼ Eff C1ð Þ ^ Eff C2ð Þ ^ Eff C3ð Þ
^ Eff C1 ^ C2ð Þ ^ Eff C2 ^ C3ð Þ
^ Eff C1 ^ C3ð Þ

where, Int C1 ^ C2 ^ C3ð Þ represents integration of com-

ponents C1, C2 and C3, Eff C1ð Þ represents the effect

generated due to component C1, effect is 1 if C1 is error

free and 0 if C1 have an error. Eff C2ð Þ represents the

effect generated due to component C2, effect is 1 if C2 is

error free and 0 if C2 have an error. Eff C3ð Þ represents the

effect generated due to component C3, effect is 1 if C3 is

error free and 0 if C3 is having error. Eff C1 ^ C2ð Þ rep-

resents the effect generated due to the components C1 and

C2. The integrated effect of C1and C2 is 1 if the inte-

gration is error free, otherwise the effect is 0.

Eff C2 ^ C3ð Þ represents the effect generated due to the

components C2 and C3. The integrated effect of C2 and

C3 is 1 if the integration is error free, otherwise the effect

is 0. Eff C1 ^ C3ð Þ represents the effect generated due to

the components C1 and C3. The integrated effect of C1

and C3 is 1 if the integration is error free, otherwise the

effect is 0. ^ denotes the AND operation and _ denotes

the OR operation.

If the effect is positive that is without any error it is

denoted as 1, and if it is negative that is, the having error, it

is denoted as 0.

For Int C1 ^ C2 ^ C3ð Þ to be true, Eff C1ð Þ; Eff C2ð Þ;
Eff C3ð Þ; and EffðC1 ^ C2 ^ C3Þ all must be true, that

is, 1.

Table 5 Integration-effect matrix for two components

Fig. 3 Interaction among three components

C2

C3

Int e2

C1

Int e1C1 C2

C1 C3

Fig. 4 Integration-effect graph for three components
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5.2.9 Possible values of integration-effect matrix for three

components (shown in Table 6)

Table 7 shows the integration-effect matrix (Fig. 4):

5.2.10 Number of test cases derived from the matrix

Number of test cases where C1 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C1ð Þ�1

¼ 3�1

¼ 2

Number of test cases where C2 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C2ð Þ�1

¼ 2�1

¼ 1

Number of test cases where C3 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C3ð Þ�1

¼ 2�1

¼ 1

Total number of test cases derived from this matrix

¼ Number of test cases for C1

þ Number of test cases for C2

þ Number of test cases for C3

¼ 2 þ 1 þ 1

¼ 4:

5.2.11 Number of test cases through boundary value

analysis method

Assuming that ‘n’ is the number of components then, the

minimum number of test cases are 4n ? 1.

We have 3 components in this case, therefore n = 3.

Number of test cases ¼ 4n þ 1

¼ 4 � 3 þ 1

¼ 13

5.2.12 Case 3: when we have four components

This is the case when we have four components C1, C2,

C3, and C4. This case is shown in Fig. 5. Component C1

is communicating with component C2, C3 and compo-

nent C4. Component C2 is integrated with C1 and C4

and C3 in integrated with C1 and C4. And finally C4 is

interacting with C1, C2, and C3. Every requesting

component gets a response. This is shown as an edge

from C1 to C2 and C2 to C1. Similarly an edge from C1

to C3 and C3 to C1, and so on. Here outgoing edges

from the components are used to show the request by the

component to other components and the incoming edges

to the component are used to show the response of

requests by some other components.

Integration of these components will produce some

effect. As the previous cases when these compo-

nents are integrated they will generate some effect.

Figure 6 shows the Integration-effect graph of four

components.

We represent the component Integration-effect graph

as:

Table 6 Integration-effect

matrix for three components
Components C1 Effect C2 Effect C3 Effect

C1 1 Eff(C1): 0/1 1 Eff(C1 ^ C2): 0/1 1 Eff(C1^ C3): 0/1

C2 1 Eff(C2 ^ C1): 0/1 1 Eff(C2): 0/1 0 Eff(C2 ^ C3): 0/1

C3 1 Eff(C3 ^ C1): 0/1 0 Eff(C3 ^ C2): 0/1 1 Eff(C3): 0/1

Table 7 Integration-effect matrix for three components

Components C1 Effect C2 Effect C3 Effect

C1 1 1 1 1 1 1

C2 1 1 1 1 0 0

C3 1 1 0 0 1 1

C2C1

C3 C4

Fig. 5 Interaction among four components
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The output of integration of component C1, C2, C3 and C4

is 1 (i.e., true or without any error) if the effect of

component C1 (Eff(C1)) is 1 (without any error), effect of

component C2 (Eff(C2)) is 1 (without any error), effect of

component C3 (Eff(C3)) is 1 (without any error), effect of

component C4 (Eff(C4)) is 1 (without any error) and the

integration effect of C1, C2, C3 and C4 is error free.

To generate the true Integration effect of component C1,

C2, C3 and C4, we have to take into account the

individual as well as combined effects generated due to

component C1, C2, C3 and component C4.

Int C1 ^ C2 ^ C3 ^ C4ð Þ
¼ Eff C1ð Þ ^ Eff C2ð Þ ^ Eff C3ð Þ ^ Eff C4ð Þ
^ Eff C1 ^ C2ð Þ ^ Eff C1 ^ C3ð Þ
^ Eff C1 ^ C4ð Þ ^ Eff C2 ^ C1ð Þ
^ Eff C2 ^ C3ð Þ ^ Eff C2 ^ C4ð Þ
^ Eff C3 ^ C1ð Þ ^ Eff C3 ^ C2ð Þ
^ Eff C3 ^ C4ð Þ ^ Eff C4 ^ C1ð Þ
^ Eff C4 ^ C2ð Þ ^ Eff C4 ^ C3ð Þ

where, Int C1 ^ C2 ^ C3 ^ C4ð Þ represents integration of

components C1, C2, C3 and C4, Eff C1ð Þ represents the

effect generated due to component C1, effect is 1 if C1 is

error free and 0 if C1 is having error. Eff C2ð Þ represents

the effect generated due to component C2, effect is 1 if C2

is error free and 0 if C2 is having error. Eff C3ð Þ represents

the effect generated due to component C3, effect is 1 if C3

is error free and 0 if C3 is having error. Eff C4ð Þ represents

the effect generated due to component C4, effect is 1 if C4

is error free and 0 if C4 is having error. Eff C1 ^ C2ð Þ
represents the effect generated due to the components C1

and C2. The integrated effect of C1 and C2 is 1 if the

integration is error free, otherwise the effect is 0.

5.2.13 Possible values of integration-effect matrix for four

components (shown in Table 8)

Table 9 shows the integration-effect matrix (Fig. 6):

Eff C1 ^ C3ð Þ represents the effect generated due to the

components C1 and C3. The integrated effect of C1 and C3

is 1 if the integration is error free, otherwise the effect is 0.

Eff C1 ^ C4ð Þ represents the effect generated due to the

components C1 and C4. The integrated effect of C1 and C4

is 1 if the integration is error free, otherwise the effect is 0.

Eff C2 ^ C1ð Þ represents the effect generated due to the

components C2 and C1. The integrated effect of C2 and C1

is 1 if the integration is error free, otherwise the effect is 0.

In the same manner values of the other components can be

derived. ^ denotes the AND operation and _ denotes the

OR operation.

If the effect is positive that is without any error it is

denoted as 1, and if it is negative that is, the having error, it

is denoted as 0.

For Int C1 ^ C2 ^ C3 ^ C4ð Þ to be true, Eff C1ð Þ;
Eff C2ð Þ; Eff C3ð Þ; Eff C4ð Þ and Eff C1 ^ C2 ^ C3 ^ C4ð Þ
all must be true, that is, 1.

C2

C3

Int e2

C1
Int e1

C4

Int

Int

Int

e4

e3

e5

C1 C2

C2 C4

C3 C4

C2 C4

C1 C3

Fig. 6 Components integration-effect graph for four components

Table 8 Integration-effect matrix for four components

Components C1 Effect C2 Effect C3 Effect C4 Effect

C1 1 Eff(C1): 0/1 1 Eff(C1 ^ C2): 0/1 1 Eff(C1 ^ C3): 0/1 0 Eff(C1 ^ C4): 0/1

C2 0 Eff(C2 ^ C1): 0/1 1 Eff(C2): 0/1 0 Eff(C2 ^ C3): 0/1 1 Eff(C2 ^ C4): 0/1

C3 0 Eff(C3 ^ C1): 0/1 0 Eff(C3 ^ C2): 0/1 1 Eff(C3): 0/1 1 Eff(C3 ^ C4): 0/1

C4 1 Eff(C4 ^ C1): 0/1 0 Eff(C4 ^ C2): 0/1 0 Eff(C4 ^ C3): 0/1 1 Eff(C4): 0/1

Table 9 Integration-effect matrix for four components

Components C1 Effect C2 Effect C3 Effect C4 Effect

C1 1 1 1 1 1 1 1 1

C2 1 1 1 1 0 0 1 1

C3 1 1 0 0 1 1 1 1

C4 1 1 1 1 1 1 1 1
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5.2.14 Findings and the number of test cases derived

from the matrix

Number of test cases where C1 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C1ð Þ�1

¼ 4�1

¼ 3

Number of test cases where C2 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C2ð Þ�1

¼ 3�1

¼ 2

Number of test cases where C3 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C3ð Þ�1

¼ 3�1

¼ 2

Number of test cases where C4 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C4ð Þ�1

¼ 4�1

¼ 3

Total number of test cases derived from this matrix

¼ Number of test cases for C1

þ Number of Test cases for C2

þ Number of Test cases for C3

þ Number of Test cases for C4

¼ 3 þ 2 þ 2 þ 3

¼ 10:

5.2.15 Number of test cases through boundary value

analysis method

Assuming that ‘n’ is the number of components then, the

minimum number of test cases are 4n ? 1.

We have 2 components in this case, therefore n = 2.

Number of test cases ¼ 4n þ 1

¼ 4 � 4 þ 1

¼ 17

5.2.16 Case 4: when we have five components

This is the case where we have five components C1, C2,

C3, C4 and C5. This case is shown in Fig. 7. Component

C1 is communicating with component C2, C3 and

component C4. Component C2 in integrated with C1, C3

and C4. Component C3 is communicating with C1, C2, C4

and C5. Component C4 is sharing information with C1, C2,

C3 and C5. Component C5 is having interaction with C3

and C4. All the interacting components have request and

response edges. This is shown as an edge from C1 to C2

and C2 to C1.

Similarly edges from C1 to C3 and C3 to C1 are drawn

to show the communication. To show the interaction

between C3, C4 and C5 we have used edges between them.

There is a request edge and response edge from C4 to

C1and C1 to C4, and finally edges from C5 to C4 to show

the interaction between them.

When we integrate these components, they will produce

some effect. If the effect is in specified way we say that

components are working as per the requirement. But if the

effect is not as per our intention, we need to test these

components. This is shown in Fig. 8.

From Fig. 8, it is noted that the output of integration of

component C1, C2, C3, C4 and C5 is 1 (i.e., true or without

any error) if the effect of component C1 (Eff(C1)) is 1

(without any error), effect of component C2 (Eff(C2)) is 1

(without any error), effect of component C3 (Eff(C3)) is 1

(without any error), effect of component C4 (Eff(C4)) is 1

(without any error), effect of component C5 (Eff(C5)) is 1

(without any error), and the integration effect of C1, C2,

C3, C4 and C5 is error free.

To generate the true Integration effect of component C1,

C2, C3, C4 and C5, we have to take into account the

individual as well as combined effects generated due to

component C1, C2, C3, C4 and component C5.

We represent the component Integration-effect graph as:

C2C1

C3 C4

C5

Fig. 7 Interaction between five components
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Int C1 ^ C2 ^ C3 ^ C4 ^ C5ð Þ
¼ Eff C1ð Þ ^ Eff C2ð Þ ^ Eff C3ð Þ ^ Eff C4ð Þ
^ Eff C5ð Þ ^ Eff C1 ^ C2ð Þ ^ Eff C1 ^ C3ð Þ
^ Eff C1 ^ C4ð Þ ^ Eff C1 ^ C5ð Þ
^ Eff C2 ^ C1ð Þ ^ Eff C2 ^ C3ð Þ
^ Eff C2 ^ C4ð Þ ^ Eff C2 ^ C5ð Þ
^ Eff C3 ^ C1ð Þ ^ Eff C3 ^ C2ð Þ
^ Eff C3 ^ C4ð Þ ^ Eff C3 ^ C5ð Þ
^ Eff C4 ^ C1ð Þ ^ Eff C4 ^ C2ð Þ
^ Eff C4 ^ C3ð Þ ^ Eff C4 ^ C5ð Þ
^ Eff C5 ^ C1ð Þ ^ Eff C5 ^ C2ð Þ
^ Eff C5 ^ C3ð Þ ^ Eff C5 ^ C4ð Þ

where, Int C1 ^ C2 ^ C3 ^ C4 ^ C5ð Þ represents Integra-

tion of components C1, C2, C3, C4 and C5, Eff C1ð Þ rep-

resents the effect generated due to component C1, effect is

1 if C1 is error free and 0 if C1 is having error. Eff C2ð Þ
represents the effect generated due to component C2, effect

is 1 if C2 is error free and 0 if C2 is having error.

Eff C1 ^ C3ð Þ represents the effect generated due to the

components C1 and C3. The integrated effect of C1 and C3

is 1 if the integration is error free, otherwise the effect is 0.

Eff C1KC4ð Þ represents the effect generated due to the

components C1 and C4. The integrated effect of C1 and C4

is 1 if the integration is error free, otherwise the effect is 0.

Eff C1 ^ C5ð Þ represents the effect generated due to the

components C1 and C5. The integrated effect of C1 and C5

is 1 if the integration is error free, otherwise the effect is 0.

In the same manner other components value can be

derived. ^ denotes the AND operation and _ denotes the

OR operation.

If the effect is positive that is without any error it is

denoted as 1, and if it is negative that is, the having error, it

is denoted as 0.

For Int C1 ^ C2 ^ C3 ^ C4 ^ C5ð Þ to be true,Eff C1ð Þ;
Eff C2ð Þ; Eff C3ð Þ; f C4ð Þ; Eff C5ð Þ and Eff ðC1 ^ C2 ^ C3

^C4 ^ C5Þ all must be true, that is, 1. Eff C3ð Þ represents

the effect generated due to component C3, effect is 1 if C3

is error free and 0 if C3 is having error. Eff C4ð Þ represents

the effect generated due to component C4, effect is 1 if C4

is error free and 0 if C4 is having error. Eff C5ð Þ represents

the effect generated due to component C5, effect is 1 if C5

is error free and 0 if C5 is having error. Eff C1 ^ C2ð Þ
represents the effect generated due to the components C1

and C2. The integrated effect of C1and C2 is 1 if the

integration is error free, otherwise the effect is 0.

C2

C3

Int e2

C1

Int e1

C4

Int

Int

Int

e4

e3

e5

C1 C2

C2 C3

C1 C4

C2 C4

C1 C3

C5

Int

Int

Int

e7

e6

e8

C3 C5

C4 C5

C3 C4

Fig. 8 Components

integration-effect graph for five

components
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5.2.17 Possible values of integration-effect matrix for five

components (shown in Table 10)

Table 11 shows the integration-effect matrix (Fig. 8):

5.2.18 Findings and the number of test cases derived

from the matrix

Number of test cases where C1 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C1ð Þ�1

¼ 4�1

¼ 3

Number of test cases where C2 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C2ð Þ�1

¼ 4 � 1

¼ 3

Number of test cases where C3 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C3ð Þ � 1

¼ 5 � 1

¼ 4

Number of test cases where C4 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C4ð Þ � 1

¼ 5 � 1

¼ 4

Number of test cases where C5 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C5ð Þ � 1

¼ 3 � 1

¼ 2

Total number of test cases derived from this matrix

¼ Number of test cases for C1

þ Number of test cases for C2

þ Number of test cases for C3

þ Number of test cases for C4

¼ 3 þ 3 þ 4 þ 4 þ 2

¼ 16:

5.2.19 Number of test cases through boundary value

analysis method

Assuming that ‘n’ is the number of components then, the

minimum number of test cases are 4n ? 1.

We have 2 components in this case, therefore n = 2.

Number of test cases ¼ 4n þ 1

¼ 4 � 5 þ 1

¼ 21

Table 10 Integration-effect matrix for five components

Components C1 Effect C2 Effect C3 Effect C4 Effect C5 Effect

C1 1 Eff(C1): 0/1 1 Eff(C1 ^ C2): 0/1 1 Eff(C1 ^ C3): 0/1 0 Eff(C1 ^ C4): 0/1 0 Eff(C1^ C5): 0/1

C2 0 Eff(C2 ^ C1): 0/1 1 Eff(C2): 0/1 0 Eff(C2 ^ C3): 0/1 1 Eff(C2 ^ C4): 0/1 0 Eff(C2 ^ C5): 0/1

C3 0 Eff(C3 ^ C1): 0/1 0 Eff(C3 ^ C2): 0/1 1 Eff(C3): 0/1 1 Eff(C3 ^ C4): 0/1 1 Eff(C3 ^ C5): 0/1

C4 1 Eff(C4 ^ C1): 0/1 0 Eff(C4 ^ C2): 0/1 0 Eff(C4 ^ C3): 0/1 1 Eff(C4): 0/1 0 Eff(C4 ^ C5): 0/1

C5 0 Eff(C5 ^ C1): 0/1 0 Eff(C5 ^ C2): 0/1 0 Eff(C5 ^ C3): 0/1 0 Eff(C5 ^ C4): 0/1 1 Eff(C5 ^ C5): 0/1

Table 11 Integration-effect matrix for five components

Components C1 Effect C2 Effect C3 Effect C4 Effect C5 Effect

C1 1 1 1 1 1 1 1 1 0 0

C2 1 1 1 1 1 1 1 1 0 0

C3 1 1 1 1 1 1 1 1 1 1

C4 1 1 1 1 1 1 1 1 1 1

C5 0 0 0 0 1 1 1 1 1 1
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6 Case study

To analyze the proposed technique, we are taking the

case study of Request Redirection Model for JSP

(Fig. 9). In this model the client’s request reaches an

initial JSP page.

The page may start generating some results but at

some point it may want to dynamically include the

contents of some other page. These contents may be

static but may also be dynamically generated by some

other JSP page, servlet class, or some legacy mechanism

like ASP.

Here we have five components interacting with each

other to fulfill the client’s request. If the client’s request

fulfils successfully without any error then we can generate

test cases using the proposed technique.

When we integrate these components, they will produce

some effect. If the effect is in specified way we say that

components are working as per the requirement. But if the

effect is not as per our intention, we need to test these

components. This is shown in Fig. 10.

From Fig. 10, it is noted that the output of integration of

component C1, C2, C3, C4 and C5 is 1 (i.e., true or without

any error) if the effect of component C1 (Eff(C1)) is 1

(without any error), effect of component C2.

(Eff(C2)) is 1 (without any error), effect of component

C3 (Eff(C3)) is 1 (without any error), effect of component

C4 (Eff(C4)) is 1 (without any error), effect of component

C5 (Eff(C5)) is 1 (without any error), and the integration

effect of C1, C2, C3, C4 and C5 is error free.

To generate the true Integration effect of component

C1, C2, C3, C4 and C5, we have to take into account

the individual as well as combined effects generated

due to component C1, C2, C3, C4 and component

C5.

Int C1 ^ C2 ^ C3 ^ C4 ^ C5ð Þ
¼ Eff C1ð Þ ^ Eff C2ð Þ ^ Eff C3ð Þ ^ Eff C4ð Þ
^ Eff C5ð Þ ^ Eff C1 ^ C2ð Þ ^ Eff C1 ^ C3ð Þ
^ Eff C1 ^ C4ð Þ ^ Eff C1 ^ C5ð Þ
^ Eff C2 ^ C1ð Þ ^ Eff C2 ^ C3ð Þ
^ Eff C2 ^ C4ð Þ ^ Eff C2 ^ C5ð Þ
^ Eff C3 ^ C1ð Þ ^ Eff C3 ^ C2ð Þ
^ Eff C3 ^ C4ð Þ ^ Eff C3 ^ C5ð Þ
^ Eff C4 ^ C1ð Þ ^ Eff C4 ^ C2ð Þ
^ Eff C4 ^ C3ð Þ ^ Eff C4 ^ C5ð Þ
^ Eff C5 ^ C1ð Þ ^ Eff C5 ^ C2ð Þ
^ Eff C5 ^ C3ð Þ ^ Eff C5 ^ C4ð Þ

where, Int C1 ^ C2 ^ C3 ^ C4 ^ C5ð Þ represents Integra-

tion of components C1, C2, C3, C4 and C5, Eff C1ð Þ
represents the effect generated due to component C1,

effect is 1 if C1 is error free and 0 if C1 is having error.

Eff C2ð Þ represents the effect generated due to compo-

nent C2, effect is 1 if C2 is error free and 0 if C2 is

having error. Eff C3ð Þ represents the effect generated due

to component C3, effect is 1 if C3 is error free and 0 if

C3 is having error. Eff C4ð Þ represents the effect gener-

ated due to component C4, effect is 1 if C4 is error free

and 0 if C4 is having error. Eff C5ð Þ represents the effect

generated due to component C5, effect is 1 if C5 is error

free and 0 if C5 is having error. Eff C1 ^ C2ð Þ represents

the effect generated due to the components C1 and C2.

The integrated effect of C1and C2 is 1 if the integration

is error free, otherwise the effect is 0. Eff C1 ^ C3ð Þ
represents the effect generated due to the components C2

and C3. The integrated effect of C2 and C3 is 1 if the

integration is error free, otherwise the effect is 0.

Eff C1 ^ C4ð Þ represents the effect generated due to the

Fig. 9 Request Redirection

Model for JSP
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components C1 and C3. The integrated effect of C1 and

C3 is 1 if the integration is error free, otherwise the

effect is 0. Eff C1 ^ C5ð Þ represents the effect generated

due to the components C1 and C4. The integrated effect

of C1 and C4 is 1 if the integration is error free,

otherwise the effect is 0. Eff C2 ^ C1ð Þ represents the

effect generated due to the components C2 and C1. The

integrated effect of C2 and C1 is 1 if the integration is

error free, otherwise the effect is 0. In the same manner

other components value can be derived. ^ denotes the

AND operation and _ denotes the OR operation.

6.1 Possible values of integration-effect matrix

(Request Redirection Model for JSP) for five

components (shown in Table 12)

Table 13 shows the tntegration-effect matrix (Request

Redirection Model for JSP) for Fig. 10.

Client
C1

JSP/Servlet
C3

JSP/Servlet
C2

Object 1
C4

Object 2
C5

Int

Int

Int

Int

Int

Int

Int

e5

e1

e2

e6

e4

e3

e7

C1 C2

C3 C1

C2 C3

                C2 C4

             C2 C5

       C3 C5

C3 C4

Fig. 10 Integration-effect graph for Request Redirection Model for JSP

Table 12 Integration-effect graph for Request Redirection Model for JSP

Components C1 Effect C2 Effect C3 Effect C4 Effect C5 Effect

C1 1 Eff(C1): 0/1 1 Eff(C1 ^ C2): 0/1 1 Eff(C1 ^ C3): 0/1 0 Eff(C1 ^ C4): 0/1 0 Eff(C1^ C5): 0/1

C2 0 Eff(C2 ^ C1): 0/1 1 Eff(C2): 0/1 0 Eff(C2 ^ C3): 0/1 1 Eff(C2 ^ C4): 0/1 0 Eff(C2^ C5): 0/1

C3 0 Eff(C3 ^ C1): 0/1 0 Eff(C3 ^ C2): 0/0 1 Eff(C3): 0/1 1 Eff(C3 ^ C4): 0/1 1 Eff(C3^ C5): 0/1

C4 1 Eff(C4 ^ C1): 0/1 0 Eff(C4 ^ C2): 0/1 0 Eff(C4 ^ C3): 0/1 1 Eff(C4): 0/1 0 Eff(C4^ C5): 0/1

C5 0 Eff(C5 ^ C1): 0/1 0 Eff(C5 ^ C2): 0/1 0 Eff(C5 ^ C3): 0/1 0 Eff(C5 ^ C4): 0/1 1 Eff(C5): 0/1
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6.2 Findings and the number of test cases derived

from the matrix

Number of test cases where C1 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C1ð Þ � 1

¼ 2 � 1

¼ 1

Number of test cases where C2 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C2ð Þ � 1

¼ 4 � 1

¼ 3

Number of test cases where C3 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C3ð Þ � 1

¼ 4 � 1

¼ 3

Number of test cases where C4 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C4ð Þ � 1

¼ 3 � 1

¼ 2

Number of test cases where C5 is involved

¼ Number of 1s under ‘‘Effect’’ column in row C5ð Þ � 1

¼ 4 � 1

¼ 3

Total number of test cases derived from this matrix

¼ Number of test cases for C1

þ Number of test cases for C2

þ Number of test cases for C3

þ Number of test cases for C4

þ Number of test cases for C5

¼ 1 þ 3 þ 3 þ 2 þ 3

¼ 12:

6.3 Number of test cases through boundary value

analysis method

Assuming that ‘n’ is the number of components then, the

minimum number of test cases are 4n ? 1.

We have two components in this case, therefore n = 2.

Number of test cases ¼ 4n þ 1

¼ 4 � 5 þ 1

¼ 21

7 Conclusions

Boundary value analysis, Equivalence Class Partitioning,

Cause Effect graph and Decision table method, all are

intra- module methods that are applicable within the

module or component only. The proposed Integration-Ef-

fect matrix is an inter-module method that is applicable to

interaction among components.

Component-based software development emphasizes the

reusability of existing components available in the reposi-

tory, but it also supports the innovative solutions of the

problems. This proposed strategy is helpful to test and

record the effects of such components whose code is

accessible, and those third party components for which

code is not available. This strategy includes only the

interaction and integration attributes of the components. In

this paper we have not included the individual testing

techniques of the components as we are trying to develop

method to analyze the interaction among components only.

We get a greater degree of predictability in terms of costs,

effort, quality and risk if we can predict the testability of

the software properly and early.
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