
ORIGINAL ARTICLE

Generating and evaluating effectiveness of test sequences using
state machine

Vikas Panthi1 • Durga Prasad Mohapatra1

Received: 18 August 2015 / Revised: 19 January 2016 / Published online: 3 February 2016

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2016

Abstract The aim of this paper is to generate test

sequences for object-oriented software with composite

states using state machines. This experimental work in

software testing focuses on generating test sequences using

the proposed algorithm called SMTSG (State Machine to

Test Sequence Generation). This work also describes the

effectiveness of test sequences by using mutation analysis.

Our approach considers nine types of state faults for

checking the efficiency of the generated test sequences.

The effectiveness of the prioritized test sequences is shown

using Average Percentage Fault Detection (APFD) metric.

The experimental results show that the test sequences

generated using our proposed approach are more efficient

than the existing approaches.

Keywords Test sequences � Average Percentage Fault

Detection (APFD) Metric � State Machine Diagram (SMD)

1 Introduction

In a typical software project, more than 60 % of the effort

is spent on software testing to produce reliable software.

So, adequate testing is one of the most demanding activity

in software development process. This is the reason why it

is receiving increased attention for researchers. Test case

generation techniques, based on source code, are very

cumbersome. This is especially true for complex and large

projects. Further, test cases generated from source code, are

inadequate in case of component based software. Exhaus-

tive testing of software is very time-consuming and error-

prone. The design based test cases are used to overcome

the above mentioned limitations. Hence, model-based test

sequence generation is one of the emerging trends in

object-oriented software testing (Chen et al. 2008; Jor-

gensen 2008).

UML state machine diagrams are often used to describe

the behavior of a system. State machine diagram con-

tributes a significant role in system and integration testing.

Therefore, automatic test sequence generation using state

machine diagram is implemented for testing the system

requirements.

The problems: UML-based automatic test sequence

generation is both practically and theoretically challenging.

Test sequence generation and execution are time-consum-

ing and labor-intensive activities. Hence, automatic test

sequence generation is an imperative need among the

research community (Punuganti et al. 2007; Shirole and

Kumar 2013). Test sequences must be executed systemat-

ically to detect highest possible number of faults (Bernhard

et al. 2014; Elbaum et al. 2002; Gupta and Jalote 2008;

Pandey and Shrivastava 2011).

The presence of object-oriented features such as poly-

morphism, inheritance, dynamic binding, etc. enhance the

benefits of modeling, extensibility and usability (Jorgensen

2008). These features help in improving the quality of

software. On the other hand, these features introduce new

types of faults that do not exist in traditional procedural

software (Kim et al. 2001). Several faults in object-oriented

programs such as behavioral faults, interaction faults,

& Vikas Panthi

512CS103@nitrkl.ac.in; vpanthi@gmail.com

Durga Prasad Mohapatra

durga@nitrkl.ac.in

1 Department of Computer Science and Engineering, National

Institute of Technology, Rourkela, India

123

Int J Syst Assur Eng Manag (June 2017) 8(2):242–252

DOI 10.1007/s13198-016-0419-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-016-0419-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-016-0419-1&domain=pdf

polymorphic faults are extremely hard to detect using static

code analysis techniques (Bernhard et al. 2014; Pandey and

Shrivastava 2011). However, these faults are easily

detectable during the design phase. Generation of efficient

test sequences for detecting these faults is a demanding

requirement. Hence, the above problems in test sequence

generation are very crucial and challenging in software

development process.

The proposed solution: In this paper, we propose an

algorithm called SMTSG (State Machine to Test Sequence

Generation) for generating test sequences for object-ori-

ented software. This algorithm uses the state machine

diagram to generate test sequences and to verify the

behavior of object-oriented software. Then, it detects the

state faults which is discussed in Sect. 2. After that, we

have calculated the efficiency of the generated test

sequences using APFD (Average Percentage Fault Detec-

tion) Metric (Elbaum et al. 2002; Pandey and Shrivastava

2011; Punuganti et al. 2007; Rothermel et al. 2001). In the

rest of the paper, we use the terms test sequences and test

scenarios interchangeably.

The rest of the paper is structured as follows. Section 2

provides an overview of UML state machine diagrams,

state fault models, test case prioritization using APFD

Metric. Section 3 presents our proposed approach for test

scenario generation using state machine diagram. Section 4

discusses a case study named Bank ATM System. Sec-

tion 5 presents an empirical method for prioritization of

generated test sequences using APFD Metric. In Sect. 6 we

compare our work with some existing related works.

Finally, Sect. 7 concludes the paper with an insight to the

future work.

2 Preliminaries

In this section, we provide an overview of basic definitions

which are used in our proposed approach.

2.1 UML state machine models

State machine diagram is a combination of states, events,

transitions, guards, and actions. It represents the relation-

ship between many objects and also represents the

behavior of either an object or the entire system. There are

mainly two building blocks in state machine diagram:

states and transitions. A state is a condition of an instance

over the course of its life. It satisfies some conditions,

performs some action, or waits for some event. A state

may encapsulate one or many sub-states (Gerhard 2005;

Shirole and Kumar 2013). In such a case, a state is called a

composite state. A simple state does not have sub-states,

and the composite state has some nested or hierarchy of

states. A special state, namely starting state, shows the

first condition throughout the life cycle of an instance.

Another special state, namely end state, indicates the last

condition throughout the life cycle of an instance. An

object can reach its end state when it is destroyed. Sys-

tems without an end state run forever. Hence, the system

is said to be in the self-transition state. A transition shows

a change of state in response to an event. The event on

each transition occurs due to the change of state. In state

machine diagram, guard conditions are associated with the

transition. There are three kinds of actions: entry, exit, and

transition. A state machine model may also have some

pseudo states: initial state, fork, join, Junction and choice

state. The transition is shown as a directed edge from a

source state to a target state. A self-transition has same

state as source and target. A transition is labeled by a

sequence of actions, trigger event and a boolean guard.

The transition is defined in the form of trigger[guard]/

actions (Shirole and Kumar 2013). In a state machine

diagram, an event is defined as the occurrence of a stim-

ulus that can trigger a state transition. A detailed

description of a state machine diagram is available in

(Shirole and Kumar 2013). A state machine can be defined

as follows:

A state machine diagram is a tuple SD = (S, S0, E, T, Sf)

where,

– S is a finite set of states

– S0 [S is an initial state

– E is a finite set of events

– T (S 9 E 9 S is a finite set of transitions

– Sf (S is a finite set of final states

A state machine diagram represents the dynamic

behavior of individual class objects, use cases, and entire

system. For example, Fig. 2 represents a state machine

diagram of a Bank ATM system.

2.2 UML state faults

Some of the possible model-based faults (Ammar et al.

2001; Bernhard et al. 2014; Punuganti et al. 2007; Usman

and Peng 2008) are as follows:

– State machine based faults.

– Activity diagram based faults.

– Sequence diagram based faults.

This paper focuses only on the state machine based

faults. Some of these faults are given below:

1. State diagram based faults:

a. A missing state diagram:

b. Interchanged diagrams:

Int J Syst Assur Eng Manag (June 2017) 8(2):242–252 243

123

2. State based faults:

a. Incorrect initial state:

b. Incorrect final state(s):

c. Interchanged states:

d. Missing states:

3. Transition based faults:

a. Incorrect trigger:

b. Interchanged transitions:

c. Missing transitions:

4. Message based faults:

a. Missing send messages:

b. Corrupted attributes:

5. Variable based faults:

a. Corrupted initial value:

b. Corrupted dynamic value:

2.3 Test case prioritization using APFD metric

Test case prioritization schedules the test cases according

to their priorities. The test cases with highest priorities are

executed earlier in the regression testing process than the

test cases with lower priorities (Rothermel et al. 2001;

Srivastava 2008). Test case prioritization techniques

arrange test cases according to execution order on the basis

of some criterion. The purpose of these prioritization

techniques is to increase the efficiency of test cases for

regression testing method. Generally, test case prioritiza-

tion problem can be defined as follows:

Test case prioritization problem: Given T, a test suit;

PT, the set of permutations of T;. f, a function from PT to

the real numbers.

Problem: Find T00 [PT such that (VT00)(T00 [
PT)(T00 = T0)[f (T0) C f (T00)].

Here, PT represents the set of all possible orderings of T,

and f is a function which is applied to any such ordering.

There are many possible probabilities for prioritization

using the test suite for detecting the faults during the test

case execution (Rothermel et al. 2001; Srivastava 2003,

2008). Let Ts be a test suite which contains n test cases,

and let F be a set of m faults captured by Ts. Let TFi be

the first test case in scheduling T0 of T that detects the

fault i. According to (Rothermel et al. 2001; Srivastava

2008), the APFD for test suite T0 could be given by Eq. 1:

APFD ¼ 1� Tf1 þ Tf2 þ � � � þ Tfmð Þ=mnf g þ 1=2nð Þ
ð1Þ

APFD value ranges from 0 to 100. An ordered test suite

with higher APFD value has faster (better) fault detection

rates than those with lower APFD values.

Test case prioritization technique can address many

important objectives including the followings:

– To increase the average percentage of faults detection,

that is useful for revealing faults earlier for the

execution of regression tests.

– To increase the high-risk faults detection rate in the

testing process.

– To increase the probability of revealing regression

errors related to mutation fault detection techniques.

– To increase the percentage of code coverage in the SUT

(System Under Test) at a faster rate.

– To increase the percentage of confidence in the

reliability of the SUT (System Under Test) at a faster

rate.

2.4 XMI

XMI stands for XML Metadata Interchange. It is a standard

representation used for exchanging metadata information

by means of EXtensible Markup Language (XML). The

XML file is a very large file. XMill can transform XML

into XMI (XML Metadata Interchange) file and store it in

a compressed format. In this format, the XMI file size is

around half the size of other compression techniques. XMI

files can be decompressed using XMill or similar XML

compression software.1, 2

3 Proposed approach

In this section, we discuss our proposed approach for

automatically generating test sequences using state

machine diagram. We have named our scheme State

Machine based Test Sequence Generation (SMTSG). The

schematic representation of our approach is shown in

Fig. 1.

We explain all steps in detail in the following sections.

We also illustrate each step with a running example of

Bank ATM System given in Fig. 2.

3.1 Construct the state machine diagram

for the given system and export into XMI

representation

We consider an XMI representation of state machine dia-

gram as input to our approach SMTSG. The state machine

diagram is modeled using UML 2.0 metamodel specifica-

tion. We construct a state machine diagram of the given

1 http://whatis.techtarget.com/.
2 http://www.w3.org/XML/.

244 Int J Syst Assur Eng Manag (June 2017) 8(2):242–252

123

http://whatis.techtarget.com/
http://www.w3.org/XML/

system using IBM RSA (Rational Software Architecture)

tool and export it into an XMI file.

3.2 Convert the state machine diagram

to Composite Control Flow Graph (CCFG)

and Adjacency matrix

We extract different element tags such as states, transi-

tions, guard conditions, and composite states from Bank

ATM system. By using the extracted element tags, we

convert the state machine diagram into a CCFG (Com-

posite Control Flow Graph). The algorithm for CCFG

Generator is given in Algorithm 1. For implementing

this algorithm, we develop a XMLG (XML to Graph)

parser. This parser stores the above mentioned infor-

mation in graphical and matrix form. The CCFG depicts

the connectivity between the nodes. We have used

CCFG as the intermediate form of the parsed state

machine for our subsequent steps. Now, we explain our

proposed algorithm CCFG Graph Generator. We supply

the SMD (State Machine Diagram) in XMI format as

input. The algorithm generates CCFG and adjacency

matrix of state machine diagram as output. First, we

create the start node Sin. After that, we transfer the

Fig. 1 Activity diagram of our

proposed approach

Int J Syst Assur Eng Manag (June 2017) 8(2):242–252 245

123

current state of SMD into a temporary variable Xs. We

check if condition Xs = Sf i.e. current state Xs not equal

to final state. If the condition is true, then we add the

current state into Xs. If the condition (Xs == Cs) is true,

then we copy the current state into Xs. If (Xs == Sf) is

true, then control will be transferred to Step 2. Finally,

we display the CCFG using Graphviz and store the

adjacency matrix of CCFG.

3.3 Generate test sequences using SMTSG

algorithm and transform the test sequences

into independent paths

In this step, we generate all the possible test sequences using

SMTSG algorithm. The generated test sequences do not cover

repeated states. But, for the execution purpose, we need all the

repeated states. So, for this reason,we transform the generated

test sequences into independent paths. The generated test

sequences forATMstatemachine are given inTable 2 and the

transformed independent paths are given in Table 3.

Now,we explain our proposed algorithmSMTSG,which is

given in Algorithm 2. In this algorithm, we consider the

generated CCFG and Matrix as input. This algorithm gener-

ates test sequences as output. We initialize r, c, TS, where

r = no. of rows, c = no. of columns and TS = Test

Sequences. After that, we initialize rec[] a new array, with

boolean values false. We trace ar[r][c] adjacency matrix and

TS with current state of CCFG. Then, we check ar[r][c] row-

wise and insert the current state intoTS. Finally,we display the

generated test sequences using STS (Set of Test Sequences).

This approach considers the guard conditions, composite

states, and event with transitions, etc. for generating the

test sequences. It may be noted that path coverage is a

stronger coverage criterion than the state coverage and

transition coverage criteria (Swain et al. 2010). It is

Fig. 2 State machine of Bank

ATM system

246 Int J Syst Assur Eng Manag (June 2017) 8(2):242–252

123

ensured that all user inputs (covered solely by the transition

coverage criterion) and all object responses (covered solely

by the state coverage criterion) are covered by our

approach. Therefore, the generated test sequences confirm

the adequacy of state-transition path coverage.

3.4 Prioritize the test sequences by identifying

the model faults in the state machine diagram

In this step, first we execute the generated test sequences. In

this process, we find some model faults which are given in

Sect. 2.2. Test sequence prioritization includes scheduling

the test sequences in a sequential manner. It is used to

improve performance of the regression testing. After com-

pleting the process of test sequence generation, we prioritize

the test sequences according to their priorities. In this pro-

posed approach, we prioritize the test sequences according to

their fault detection capability. For prioritization, we execute

the test sequences and detect the faults. We find out, which

test sequences detect how many faults in state machine

diagram. If any test sequence detects more number of faults,

then, we give it the first priority. According to this method,

we prioritize all the generated test sequences. In the illus-

trated case study (Bank ATM System given in Fig. 2), It

contains nine faults (randomly we have taken), which are

detected by the generated test sequences. Prioritization of

test sequences according to detected faults for the given case

study (Bank ATM System given in Fig. 2) is given in

Table 4. The faults are incorrect initial state, incorrect final

state, interchanged state, missing states, interchanged dia-

gram, missing composite state, corrupted attribute, cor-

rupted transition values.

3.5 Find the APFD for the prioritized test sequences

We apply the generated test sequences on state machine

diagram and detect some significant faults which are given

in Sect. 2.2. We prioritize the test sequences according to

their fault detection capability. This approach measures the

effectiveness of generated prioritized test sequences. The

presented approach uses a metric, called Average Per-

centage Faults Detection (APFD), which measures the

weighted average of the percentage of faults in state

machine diagram. The detailed description with illustrated

case study is given in Sect. 5.

4 Case study

We consider the case study of a Bank ATM3 system to

explain our proposed approach. In Bank ATM system,

there are many use cases such as check balance, withdraw

cash, change PIN, transfer funds, maintenance, repair, etc.

ATM system is a very large and complex system. In our

case study, we consider Maintenance use case of ATM

system. The state machine diagram of our ATM system is

shown in Fig. 2. Below, we describe the state machine

diagram of our Bank ATM system involving Maintenance

use case.

Initially, ATM is in Turned off state. When the power

is turned on, ATM performs startup action through turn on

transition and enters into Self Test state. If turned on state

calls turn off transition, then, it performs Shut Down

action and enters into out of service state. According to

trigger, off state may be entered into Idle state through

Shut Down action. In Idle state, ATM waits for customer

interaction. When the customer inserts ATM debit card in

the card reader slot, the ATM state changes from Idle to

Serving Customer state. Serving customer state is a com-

posite state with sequential sub-states customer authenti-

cation, selecting transaction and performing transaction.

Customer authentication state can verify authenticity of

customer by the use of personal information and PIN

number which are stored in the ATM debit card. Selecting

transaction state gives the available options for customer

transaction. Performing transaction state performs the

transaction which is selected by customer. Selecting

transaction and Performing transaction states depend on

3 http://www.uml-diagrams.org/bank-atm-UML-state-machine-dia

gram-example.html.

Int J Syst Assur Eng Manag (June 2017) 8(2):242–252 247

123

http://www.uml-diagrams.org/bank-atm-UML-state-machine-diagram-example.html
http://www.uml-diagrams.org/bank-atm-UML-state-machine-diagram-example.html

the customer interaction. Customer authentication, se-

lecting transaction and performing transaction states are

composite sub-states. The composite states are indicated

with hidden decomposition icons. Serving customer state

is completed when end state is called in composite state. If

Serving customer state has performed action ejectCard,

then, ATM releases customer’s card on leaving the state.

On entering the serving customer state, the entry action is

performed, and read card transition is called. The serving

customer state, moves back to the Idle state, when cancel

transition called. The customer can cancel the trigger at

any time.

If any problem happens on Idle state, then service

transition is called and the system enters into Maintenance

state. Finally, if any problem happens, failure transition is

called and the system enters into out of service state.

The mapping table of alias names of different states of

Bank ATM system is given in Table 1. The CCFG of the

State Machine diagram given in Fig. 2 is shown in Fig. 3.

The mapping table of Bank ATM System represents the

alias name of states, transitions, events, etc. The mapping

table is useful for generating the CCFG graph and Adja-

cency matrix. In this table, states start from S0 to S6. There

are some sub-states in state machine diagram of Bank

ATM system, like customer authentication, selecting

transaction and performing transaction. These states are

sub-states of Serving Customer. So, we have given alias

name S61 to S63, for S6 (Serving Customer). In Table 1, we

have given the current state and next state.

First, we construct the state machine diagram of Bank

ATM System as shown in Fig. 2. After that, we export

XMI file of state machine diagram of Bank ATM System

using IBM RSA (Rational Software Architecture). XMI file

is the textual representation of state machine diagram. This

file stores all graphical information in text format. We store

states, transitions and actions in the form of ID number.

Source states and transitions states for every transition are

also stored in the form of ID number. We parse the XMI

file and calculate the number of nodes and edges. This

information is useful for connecting different states. Using

this information, we construct the CCFG (Composite

Control Flow Graph). We have developed a parser named

CCFG Generator. This parser generates CCFG of the state

machine diagram. The generated CCFG of Bank ATM

System is given in Fig. 3. The parser uses Algorithm 1 for

constructing the CCFG. After generating the CCFG, we

store it in an adjacency matrix. The adjacency matrix for

the CCFG given in Fig. 3 is shown in Fig. 4. The adja-

cency matrix is used for generating the test sequences using

SMTSG algorithm given Algorithm 2. The generated test

sequences from the adjacency matrix of Fig. 4 are shown in

Table 2. After generating the test sequences, we transform

them into independent test sequences. The converted

independent test sequences are given in Table 3. Besides,

the Bank ATM case study, we have taken five more case

studies to validate our approach. The characteristics of

these case studies are given in Table 5. The generated test

sequences for these case studies are shown in Table 6.

Table 1 Mapping table for the state machine of Bank ATM system

SI no. Current state Next state Transition

State Alias state State Alias state Transition Alias transition

1. Start S0 Off S1 – T0

2. Off S1 Self Test S2 Turn on/startup T1

3. Self Test S2 Idle S3 – T1

4. Idle S3 Serving Customer S6 CardInserted T3

5. Serving Customer S6 Idle S3 Cancel T4

6. Maintenance S3 Maintenance S4 Service T5

7. Out of Service S4 Out of Service S5 Failure T6

8. Self Test S5 Maintenance S4 Service T7

9. Serving Customer S2 Out of Service S5 Failure T8

10. Serving

Customer ? start

S6 Out of Service S5 Failure T9

11. Customer Authentication S6 Customer Authentication S61 – T10

12. Selecting Transaction S61 Selecting Transaction S62 – T11

13. Performing Transaction S62 Performing Transaction S63 – T12

14. Idle S63 Serving Customer S6 – T13

15. Out of Service S3 Off S1 Turn off/shutdown T14

16. Maintenance S5 Off S1 Turn off/shutdown T15

17. S4 Self Test S2 Turn on/startup T16

248 Int J Syst Assur Eng Manag (June 2017) 8(2):242–252

123

For the Bank ATM system given in Fig. 2, suppose the

system contains nine faults (randomly we have taken),

which are detected by the generated test sequences is

shown in Table 3. The faults are incorrect initial state,

incorrect final state, interchanged state, missing states,

interchanged diagram, missing composite state, corrupted

attribute, corrupted transition values. We have imple-

mented our approach using Java and snapshot of imple-

mentation given in Fig. 5. Figure 5 shows the generated test

sequences that detect these nine faults. Since the complete

test sequences are not clearly depicted in Fig. 5. So, we

have given a complete list of test sequences in Table 3.

Table 4 shows the number of faults detected by each test

sequence in the test suite for Bank ATM system. There are

seven test sequences, TS1 to TS7 in the test suite. In Table 4,

we assume that there are nine faults in the state machine

diagram of the Bank ATM system, which are detected by the

seven test sequences. From Table 4, according to faults

detection technique, it can be observed that the test

sequences can be prioritized in the following order:

TS7 ! TS6 ! TS5 ! TS3 ! TS4 ! TS2 ! TS1

After test sequence prioritization, we measure the

effectiveness of generated prioritized test sequences. The

presented approach uses a metric, called Average Per-

centage of Faults Detected (APFD), which measures the

weighted average of the percentage of faults in state

machine diagram. The detailed description of APFD with

the Bank ATM system case study is given in Sect. 5.

Table 2 Test sequences for state machine of Bank ATM system

generated from matrix shown in Fig. 4

TS Optimal test sequences (OTS)

TS1 S0 ? S1 ? S2 ? S3 ? S1

TS2 S2 ? S5 ? S1

TS3 S3 ? S6 ? S3

TS4 S4 ? S2

TS5 S4 ? S5 ? S4

TS6 S6 ? S5

TS7 S6 ? S61 ? S62 ? S63 ? S6

Table 3 Independent test sequences for Bank ATM System case

study

TS Independent test sequences

TS1 S0 ? S1 ? S2 ? S3 ? S1

TS2 S0 ? S1 ? S2 ? S4 ? S5 ? S4

TS3 S0 ? S1 ? S2 ? S3 ? S6 ? S5

TS4 S0 ? S1 ? S2 ? S3 ? S6 ? S3

TS5 S0 ? S1 ? S2 ? S3 ? S61 ? S62 ? S63

TS6 S0 ? S2 ? S4 ? S2 ? S5 ? S1

TS7 S0 ? S1 ? S2 ? S3 ? S6 ? S61 ? S62 ? S63 ? S6

Fig. 3 Composite control flow graph of Bank ATM system

Fig. 4 Adjacency matrix for the composite control flow graph in

Fig. 3

Int J Syst Assur Eng Manag (June 2017) 8(2):242–252 249

123

5 Finding APFD value of the prioritized test
sequences

Scheduling the test scenarios in execution order according

to some coverage criterion is called test case prioritization.

The criteria may be to record test cases in an execution

order that achieves maximum code coverage at the fastest

rate. Test sequence prioritization is a regression testing

approach. It aims at sorting and executing test cases in the

order of their potential abilities to achieve certain testing

objective. Rothermel et al. (2001) first introduced the pri-

oritization problem as a flexible method of regression

testing. In their technique, they selected test cases

according to the modified code coverage and prioritized

them. Now, let us apply Eq. 1 to the prioritized test

sequences to compute the value of APFD. From Table 4, it

is observed that, m = number of faults = 9, n = number

of test sequences = 7 and TFi = number of faults detec-

ted. Putting the values of m, n, and TFi (The position of the

first test scenario in the ordering T0 of T that exposes fault

i) in Eq. 1, we get,

Table 4 Prioritized test

sequences with the detected

faults

Test sequences/faults Priority F1 F2 F3 F4 F5 F6 F7 F8 F9

TS7 1 X X

TS6 2 X X

TS5 3 X X

TS3 4 X

TS4 5 X X

TS2 6 X

TS1 7 X X X X X

Table 5 Characteristics of the case studies

SI. no. Case study No. of

states

No. of

transitions

No. of

composite states

1. Cashier 12 21 1

2. Cruise control 5 17 1

3. Elevator system 6 12 1

4. TCP 12 56 3

5. Vending machine 7 28 1

6. ATM 10 17 1

Table 6 Number of test sequences for the different case studies

SI. no. Case study No. of generated test sequences

1. Cashier 11

2. Cruise control 14

3. Elevator system 8

4. TCP 46

5. Vending machine 23

6. ATM 7

Fig. 5 Test sequences for the

state machine diagram of Bank

ATM systems given in Fig. 2

250 Int J Syst Assur Eng Manag (June 2017) 8(2):242–252

123

APFD ¼ 1� ðð1þ 3þ 2þ 2þ 5þ 3þ 1þ 5þ 4Þ=
ð7 � 9ÞÞ þ 1=ð2 � 7Þ ¼ 0:6428571428571429

For the non-prioritized test sequences the APFD value is

computed as follows:

APFD ¼ 1� ðð7þ 1þ 6þ 1þ 4þ 1þ 7þ 1þ 1Þ=
ð7 � 9ÞÞ þ 1=ð2 � 7Þ ¼ 0:5952380952380953

We observed that the APFD value obtained for the

prioritized sequences (using our approach) is more than the

non-prioritized test sequences. Hence, for the given Bank

ATM system, this approach achieves a higher APFD value

than the other existing approaches. So, this approach

increases effectiveness of the prioritized test sequences.

6 Comparison with related work

In this section, we describe the related research work in

the area of UML-based testing. Most of the work on UML-

based testing are based on state machines. Usman and Peng

(2008) proposed an approach that used activity diagram for

introducing mutation analysis. Their objective was to per-

form mutation analysis for verification and validation of

applications based on activity diagrams. They defined

mutation operator as syntactic errors according to the

control flow and concurrency features. Pandey and Shri-

vastava (2011) proposed an integrated and costeffective

test case prioritization approach to detect software faults

during the maintenance phase. They considered three fac-

tors, Program Change Level (PCL), Test suite Change

Level (TCL) and Test suite Size (TS). Chen et al. (2008)

proposed an approach that used specification coverage to

generate properties as well as design model to enable

directed test generation using model checking. In their

method, the number of test sequences is reduced and the

maximum number of test sequences is bounded by the

number of predicates in a state machine.

Kim et al. (2007) proposed a method for generating test

cases for class testing using UML state chart diagrams.

They transformed state charts to Extended FSMs (EFSMs)

to derive test cases. In the resulting EFSMs, the hierar-

chical and concurrent structure of states were flattened and

broadcast communications were eliminated. Then, data

flow was identified by transforming the EFSMs into flow

graphs, to which conventional data flow analysis tech-

niques were applied.

Kalaji et al. (2009) proposed an approach in which an

EFSM contained states, variables, and transitions among the

states. EFSM of a class has an object state consisting of

values assigned to data members. A transition has guard

condition and action associated with the variables. A tran-

sition in the class diagram occurs as an external input. The

transition takes place when the guard condition is slaked

and the associated actions are executed. A CFG in UML

state diagrams is identified in terms of the paths in the

resulting EFSMs. A significant advantage of our approach

over their approach (Kalaji et al. 2009) is that our approach

generates test sequences by the use of the state machine and

covers all independent sequences without redundancy.

Abdurazik and Offutt (2000) presented test criterion

based on collaboration diagrams for dynamic testing and

static checking. They adapted traditional data flow cover-

age criterion in the context of collaboration diagrams. It did

not generate prioritized test cases. Gerhard (2005) pre-

sented a test sequence generation method from activity

diagram which used condition classification tree. Flake and

Muller (2003) presented a formal semantics for the

dynamic behavior of UML models using the temporal OCL

extension. Their approach performed semantic integration

of UML statecharts into OCL language concepts by the

formal definition of a statechart configuration. Gnesi

et al. (2004) proposed a theoretical method for testing and

conformance theories for UML state chart. A formal con-

formance testing relation was proposed for input-enabled

transition systems with transitions labeled by input/output-

pairs (IOLTSs). IOLTSs provided a suitable semantic

model for a behavioral subset of state chart diagram. An

automatic test case generation algorithm was proposed

using UML state chart.

Latella and Massink (2001) proposed a formal testing

framework for a behavioral subset of UML state chart di-

agrams (UMLSDs).

However, the results obtained so far are preliminary. The

associated automatic test data generation procedures are

difficult, and none of the reported results directly addresses

specification-based software testing. We use the state

machine diagram to extract test sequences to verify the

behavior of themodel. SMTSG algorithm is used to generate

all possible valid test sequences for the state machine. After

that, we calculate the effectiveness of test sequences using

APFD metric based on fault detection capability.

7 Conclusion and future work

This paper presented a model based approach for test

sequence generation using a state machine. The generated

test sequences are prioritized based on fault detection

capability. This experimental work in software testing has

focused on generating test sequences using an algorithm

called SMTSG. This work has described the effectiveness

of test sequences using mutation faults. We have consid-

ered nine types of state faults for checking effectiveness of

the generated test sequences. Our work also calculated the

effectiveness of the prioritized test sequences using

Int J Syst Assur Eng Manag (June 2017) 8(2):242–252 251

123

Average Percentage Fault Detection (APFD) metric. In this

experimental result, we have observed that the APFD value

for the prioritized test sequences obtained using the pro-

posed approach is 4.7619 % more than the non-prioritized

test sequences. In future, we will prioritize test sequences

using some heuristic algorithms.

References

Abdurazik A, Offutt J (2000) Using UML collaboration diagrams for

static checking and test generation. In: 3rd International

conference on the unified modeling language: advancing the

standard. Springer-Verlag, Berlin, pp 383–395

Ammar HH, Yacoub SM, Ibrahim A (2001) A fault model for fault

injection analysis of dynamic UML specifications. In: 12th IEEE

international symposium on software reliability engineering,

pp 383–395

Bernhard AK, Brandl H, Elisabeth J, Willibald K, Rupert S, Stefan T

(2014) Killing strategies for model-based mutation testing.

Softw Test Verif Reliab 24(4):1–32

Chen M, Mishra P, Kalita D (2008) Coverage-driven automatic test

generation for UML activity diagrams. In: 18th ACM great lakes

symposium on VLSI, ACM, pp 139–142

Elbaum S, Malishevsky AG, Rothermel G (2002) Test case priori-

tization: a family of empirical studies. IEEE Trans Softw Eng

28(2):159–182

Flake S, Muller W (2003) Formal semantics of static and temporal

state-oriented OCL constraints. Softw Syst Model 2(3):164–186

Gerhard GH (2005) Component-based software testing with UML.

Springer, Berlin

Gnesi S, Latella D, Massink M (2004) Formal test-case generation for

UML statecharts. In: 9th IEEE international conference on

engineering complex computer systems, pp 75–84

Gupta A, Jalote P (2008) An approach for experimentally evaluating

effectiveness and efficiency of coverage criteria for software

testing. Int J Softw Tools Technol Transfer 10(2):145–160

Jorgensen PC (2008) Software testing: a Craftsman’s approach.

Auerbach Publication, Boca Raton

Kalaji A, Hierons RM, Swift S (2009) A search-based approach for

automatic test generation from extended finite state machine

(EFSM). In: IEEE testing: academic and industrial conference-

practice and research techniques, pp 131–132

Kim SW, Clark J, McDermid JA (2001) Investigating the effective-

ness of object-oriented testing strategies using the mutation

method. Softw Test Verifi Reliab 11(4):207–225

Kim H, Kang S, Baik J, Ko I (2007) Test cases generation from UML

activity diagrams. In: 8th IEEE ACIS international conference

on software engineering, artificial intelligence, networking, and

parallel/distributed computing, pp 556–561

Latella D, Massink M (2001) A formal testing framework for UML

statechart diagrams behaviours from theory to automatic veri-

fication. In: 6th IEEE international symposium on high assurance

systems engineering, pp 11–22

Pandey AK, Shrivastava V (2011) Early fault detection model using

integrated and cost-effective test case prioritization. Int J Syst

Assur Eng Manag 2(1):41–47

Punuganti SBA, Pattanaik PK, Prasad S, Mall R (2007) Model-based

mutation testing of object-oriented programs. IT Bus Intell

49(2):1–9

Rothermel G, Untch RH, Chu C, Harrold MJ (2001) Prioritizing test

cases for regression testing. IEEE Trans Softw Eng 27(10):

929–948

Shirole M, Kumar R (2013) UML behavioral model based test case

generation: a survey. ACM SIGSOFT Softw Eng Notes 38(4):

1–13

Srivastava PR (2003) Putting your best tests forward. Softw Eng Best

Practi IEEE 20(5):74–77

Srivastava PR (2008) Test case prioritization. J Theor Appl Inf

Technol 4(3):178–181

Swain SK, Mohapatra DP, Mall R (2010) Test case generation based

on state and activity models. J Object Technol 9(5):1–27

Usman F Peng LC (2008) Mutation analysis for the evaluation of AD

models. In: international conference on computational intelli-

gence for modelling control & automation, IEEE computer

society, pp 296–301

252 Int J Syst Assur Eng Manag (June 2017) 8(2):242–252

123

	Generating and evaluating effectiveness of test sequences using state machine
	Abstract
	Introduction
	Preliminaries
	UML state machine models
	UML state faults
	Test case prioritization using APFD metric
	XMI

	Proposed approach
	Construct the state machine diagram for the given system and export into XMI representation
	Convert the state machine diagram to Composite Control Flow Graph (CCFG) and Adjacency matrix
	Generate test sequences using SMTSG algorithm and transform the test sequences into independent paths
	Prioritize the test sequences by identifying the model faults in the state machine diagram
	Find the APFD for the prioritized test sequences

	Case study
	Finding APFD value of the prioritized test sequences
	Comparison with related work
	Conclusion and future work
	References

