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Abstract This paper presents a transportation branch and

bound algorithm for solving the generalized assignment

problem. This is a branch and bound technique in which the

sub-problems are solved by the available efficient trans-

portation techniques rather than the usual simplex based

approaches. A technique for selecting branching variables

that minimize the number of sub-problems is also presented.
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1 Introduction

The generalized assignment problem (GAP) is the problem of

assigning n jobs tom agents such that total cost is minimal and

that each job is assigned to exactly one agent and agent’s

capacity is also satisfied. GAP is NP hard and has had many

approaches being proposed in the past 50 years. The GAP

model is the general case of the assignment problem in which

both jobs and agents have an equal size and the cost associated

with each job-agent combination may have different values.

GAP has many applications in real life and these include ve-

hicle routing: Toth and Vigo (2001), resource allocation:

Winston and Venkataramanan (2003), supply chain: Yagiura

(2004, 2006), machine scheduling and location among others.

It is because of these important applications that somany exact

and inexact methods have been proposed. The exact ap-

proaches that were developed include methods by: Ross and

Soland (1975); Martello and Toth (1981); Fisher et al. (1986);

Guignard and Rosenwein (1989); Karabakal et al. (1992);

Savelsburgh (1997) and Pigatti et al. (2005). An inexact

method or heuristic is amethod that gives a highly accurate but

not necessarily optimal solution. Some of the heuristics for the

GAPwere developed by: Laguna et al. (1995); Osman (1995);

Chu and Beasley (1997); Asahiro et al. (2003); Nauss (2003)

and Yagiura et al. (1998). Note that: Nauss (2003) presented

both a heuristic and an optimizing approach.

In this paper we propose a transportation branch and

bound algorithm for solving the GAP. This is a branch and

bound technique in which the sub-problems are solved by

use of the available efficient transportation techniques

rather than the usual simplex based approaches. A tech-

nique for selecting branching variables so as to minimize

sub-problems is also presented.

2 Generalized assignment problem

A mathematical formulation of the GAP may be repre-

sented as shown in Eq. (1).
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ZGAP ¼ Minimize
Xm

i

Xn

j

cijxij

Subject to
Xn

j

rijxij � bi; 8i

Xm

i

xij ¼ 1; 8j

9
>>>>>>>>>=

>>>>>>>>>;

ð1Þ

where xij = 0 or 1, (i = 1, 2,…,m) is a set of agents,

(j = 1,2,…,n) is a set of jobs, cij is the cost of assigning

agent i to job j, rij is the resource needed by agent i to do

job j, bi is the resource available to agent i.

3 Relaxing the GAP

The GAP can be relaxed to become an ordinary trans-

portation problem. A transportation model is easy to handle

and efficient solution methods such as network approaches

are available. This type of relaxation was proposed by

Munapo et al. (2010).

3.1 Relaxing the model

Some of the GAP constraints representing resource re-

strictions are given in Eq. (2),

Xn

j

rijxij � bi; 8i ð2Þ

The GAP model can be relaxed by replacing these con-

straints with other forms of inequalities given in Eq. (3).

Xn

j

xij � ci; 8i: ð3Þ

Thus the model becomes a transportation model as

presented in Eq. (4).

Minimize
Xm

i

Xn

j

cijxij

Subject to
Xn

j

xij � ci; 8i

Xm

i

xij ¼ 1; 8j

9
>>>>>>>>>=

>>>>>>>>>;

ð4Þ

where ci is obtained by solving the knapsack problem in

Eq. (5).

ci ¼ Maximize
Xn

j

xij

Subject to
Xn

j

r
ij
xij � bi

xij¼ 0 or 1

ð5Þ

The optimal solution to this knapsack problem (5) is

readily available.

3.2 Solving the knapsack problem

The optimal solution to the knapsack solution can be ob-

tained by arranging the resource coefficients in row i in

ascending order i.e.,

r0i1; r
0
i2; . . .; r

0
in ð6Þ

where

r0i1 � r0i2 � . . .� r0ici\. . .\r0in ð7Þ

are the arranged coefficients. The knapsack objective value

ci, is the largest integral value such that

bi � r0i1 þ r0i2 þ . . .þ r0ici ð8Þ

where,1� ci � n: The integral value ci is now the supply in

the transportation model..

4 The transportation model

The optimal solution to the transportation model will act as

a lower bound to the GAP and is usually infeasible to the

original GAP model. The relaxed problem is shown in

Table 1.

This transportation problem is not a balanced model. In

most cases

Xm

i

ci 6¼ n ð9Þ

If
Xm

i

ci\n ð10Þ

Then Eq. (1) is infeasible i.e., at least one of constraints,
Pm

i

xij ¼ 1; is violated.

If
Xm

i

ci ¼ n ð11Þ

Then the relaxed model can be solved directly without

balancing. The solution to the relaxation is optimal if it

satisfies Eq. (1).

Table 1 Transportation problem

Supply

… c1
… c2

… … … …
… cm

Demand 1 1 1
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If
Xm

i

ci [ n ð12Þ

Then the relaxed model requires balancing before ap-

plying transportation techniques. To balance the trans-

portation problem, a dummy column is added when we

have inequality Eq. (12) of the form[ type. When the

transportation is balanced then the optimal solution can be

found by using network codes for transportation models.

These are efficient and recommended and the sub-problems

are not solved from scratch. The current solutions are used

as starting solutions in the next iterations. Lagrangian or

linear programming (LP) relaxations are not readily useful

to this procedure. With this approach it is only possible to

branch if the relaxation gives an integer optimal solution

and this is not possible with LP or Lagrangian relaxations.

4.1 Branch and Bound Approach

A branch and bound method can be used to ascend from the

lower bound to an optimal solution of the GAP. The lower

bound obtained by solving the relaxed model is usually

infeasible to Eq. (1). A row i that is not feasible can be

selected, a clique inequality generated and used to create

branches.

4.2 Generating branching inequalities

Suppose from row i, the following variables are basic and

they make up an infeasible solution

xif1; xif2; . . .; xifl ð13Þ

rif1 þ rif2 þ . . .þ rif ‘ [ bi ð14Þ

where xifj is basic variable and rifj is its corresponding re-

source coefficient with j = 1,2,…l.

From the inequality given in Eq. (14), it implies that

some of these basic variables are not supposed to be basic.

One or more of these basic variables may not be the re-

quired basic feasible solutions and the exact number is only

known for the specific given problem. Branching does not

necessarily mean the transportation sub-problem has to be

resolved from scratch. The sub-problem is solved by im-

proving the current solution. The previous solution is used

as a starting solution in the next iteration.

4.3 Order of branching

The order of branching is very important as it can affect the

size of the search tree. Strategies are required to determine

a branching order that results in the smallest search tree. In

this paper it is recommended that branching starts with

those rows that have the least number of choices. In other

words the most restricted rows are used in creating

branches: Kumar et al. (2007). Thus the branching starts

with the most restricted row, which in this paper is defined

as the row where the least number of branches can be

generated.

5 Transportation branch and bound algorithm

for GAP

The transportation branch and bound algorithm for the

GAP consists of the following steps,

Step 1 Relax GAP to obtain a lower bound.

Step 2 Select the most restricted row to come up with

branching variables.

Step 3 Branch using the selected variables. Return to

step 2 until the best transportation solution is

feasible.

Best solution: A solution is said to be the best solution if it

is the smallest optimal solution available.

5.1 Optimality

Suppose the terminal nodes are given in Eq. (15).

ZT
1 Z

T
2 . . .Z

T
g ð15Þ

The upper bound is selected from the node giving best

solution so far.

ZGAP ¼ min½ZT
1 ; Z

T
2 ; . . .; Z

T
g � ð16Þ

Thus ZGAP is optimal.In the branching tree, a node is said

to be a terminal one if the

• optimal solution to the transportation model is feasible

to original GAP model,

• transportation model does not have feasible optimal

solution or

• optimal solution to the transportation model is bigger

than a given upper bound.

Note: Generation of clique inequalities and using them as

cuts is not a new idea. Clique constraints used in this paper

are in fact a simple type of knapsack constraints generated

from single constraints of the original problem. Knapsack

constraint generators are very common in modern MIP

solvers. What is new is the fashion of using these

inequalities to form branches and solving the sub-problems

generated as transportation problems. This is effective for

GAP models. Jumptracking is preferred in this procedure

and branching is done on a node with the smallest objective

value (Table 2).
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5.2 Numerical illustration

Use the transportation branch and bound algorithm to solve

the following GAP model.

• A terminal node is said to be feasible if the optimal

solution to the transportation sub-problem is feasible to

the original GAP problem.

• A terminal node is said to be infeasible if the optimal

solution to the transportation is infeasible to the GAP

model.

• DNE means the transportation sub-problem does not

have a feasible optimal solution

• The numbers in the circles denote the order of solution.

From the search tree given in Appendix Fig. 2, the optimal

solution to the GAP problem is given as shown in Eq. (19)

ZGAP ¼ min½ZT
1 ; Z

T
2 ; Z

T
3 ; Z

T
4 ; Z

T
5 ; Z

T
6 � ¼ 300 ð19Þ

The optimal solution from (19) is given as:

x11 ¼ x14 ¼ x25 ¼ x32 ¼ x33 ¼ 1

x12 ¼ x15 ¼ x21 ¼ x23 ¼ x24 ¼ x32 ¼ x33 ¼ x34 ¼ 0

ð20Þ

For details, see the appendix to this paper.

6 Conclusions

The proposed approach has the advantage that the indi-

vidual, ci values can be found independently allowing the

much needed use of parallel processors. The sub-problems

resulting from the search trees are transportation models

and can be solved efficiently by the available network

approaches. The sub-problems that result from the usual

branch and bound related approaches are NP hard integer

models which are very difficult to solve. The only nuisance

to this approach is that like the simplex based approaches it

is also not spared by degeneracy. It may be desirable to use

the approach discussed by the authors in an earlier publi-

cation (Munapo et al. 2012).

In the search tree diagram given in Appendix Fig. 2, it

may be noted that there is no change in the objective value

from node 4 to node 7. The degeneracy drawback can be

alleviated by noting all alternate optimal solutions at every

node and then branch in such a way that the objective value

does not remain static.

Attempts will be made in future to use cuts in branching

and compare its efficiency with the available approaches

and explore for better strategies that can significantly im-

prove the selection of branching variables.

Acknowledgments Authors are thankful to referees for their con-

structive suggestions for improvement of the paper.

Appendix: Details of GAP numerical illustration

In this appendix, detailed working of the numerical illus-

tration for the transportation branch and bound algorithm

for solving the GAP model is presented. For completeness

and ease of reference, some essential elements of the nu-

merical illustration are reproduced again in this appendix.

The problem is given by Eq. (21):

Table 2 Transportation model for numerical illustration

Supply

28 76 L 52 28 2

98 L 40 92 98 2

L 90 32 20 L 2

Demand 1 1 1 1 1

The letter L shows that an assignment is not possible in that cell. A

dummy column is introduced to balance the transportation problem as

shown in Table 3

Table 3 Balancing the transportation model (by adding a dummy

column)

Supply

28 76 L 52 28 0 2

98 L 40 92 98 0 2

L 90 32 20 L 0 2

Demand 1 1 1 1 1 1

ZGAP ¼Minimize 28x11 þ 76x12 þ 52x14 þ 28x15 þ 98x21 þ 40x23

þ 92x24 þ 98x25 þ 90x32 þ 32x33 þ 20x34

)
ð17Þ

Subject to:

24x11 þ 38x12 þ 22x14 þ 36x15 � 56; 12x21 þ 22x23 þ 30x24 þ 36x25 � 56

20x32 þ 28x33 þ 44x34 � 56; x11 þ x21 ¼ 1; x12 þ x32 ¼ 1; x23 þ x33 ¼ 1;

x14 þ x24 þ x34 ¼ 1; x15 þ x25 ¼ 1; xij ¼ 0 or 1 8ij:

9
>=

>;
ð18Þ
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ZGAP ¼ Min28x11 þ 76x12 þ 52x14 þ 28x15 þ 98x21

þ 40x23 þ 92x24 þ 98x25 þ 90x32 þ 32x33 þ 20x34

Subject to:

24x11 þ 38x12 þ 22x14 þ 36x15 � 56

12x21 þ 22x23 þ 30x24 þ 36x25 � 56

20x32 þ 28x33 þ 44x34 � 56

9
>=

>;

x11 þ x21 ¼ 1

x12 þ x32 ¼ 1

x23 þ x33 ¼ 1

x14 þ x24 þ x34 ¼ 1

x15 þ x25 ¼ 1

9
>>>>>>=

>>>>>>;

xij ¼ 0 or 1 8ij ð21Þ

Arranging the resource coefficients of constraints in

(first three constraints of Eq. 21) in ascending order, we

have Eq. (22).

f22; 24; 36; 38g
f12; 22; 30; 36g

f20; 28; 44g

9
>=

>;
ð22Þ

The ci values are easily calculated from Eq. (21) and

Eq. (22).

22þ 24 ¼ 46� 56 : c1 ¼ 2

12þ 22 ¼ 34� 56 : c2 ¼ 2

20þ 28 ¼ 48� 56 : c3 ¼ 2

9
>=

>;
ð23Þ

The transportation model becomes as shown in Table 4.

Any efficient transportation technique can be used to

solve the model and an optimal solution to the relaxed

model is obtained as presented in Table 6. The solution in

Table 6 is a second order degenerate solution. The opti-

mality solution can be easily verified by using cells (1,6)

and (3,3) as basic with zero allocation.

Using the resource constraints, one can easily verify that

row one is infeasible, since 24 ?36 = 60[ 56

i.e., x11 ? x15 B 1

This implies: either x11 = 0 or x15 = 0

Similarly the third row is also infeasible, because

20 ? 44 = 64[ 56

i.e. x32 ? x34 B 1

Which implies: either x32 = 0 or x34 = 0.

We select the branches from row 3 as it is more re-

stricted compared to row 1. This gives either x32 = 0 or

x34 = 0 This results in the following Fig. 1.

Now let us consider the case when x32 = 0, the trans-

portation Table 6 is modified by replacing the assignment

cost 90 in the cell (3,2) by L. This is given in Table 7.

Now once again, for the above solution, the resource

constraint 3 is not satisfied because 28 ? 44 = 72[ 56.

Hence, either x33 = 0 or x34 = 0. This will lead to nodes 4

and 5 respectively.

Table 4 Transportation model for numerical illustration

Supply

28 76 L 52 28 2

98 L 40 92 98 2

L 90 32 20 L 2

Demand 1 1 1 1 1

The letter L shows that an assignment is not possible in that cell. A

dummy column is introduced to balance the transportation problem as

shown in Table 5

Table 6 Optimal solution to the relaxed model (lower bound)

Supply

28[1] 76 L 52 28[1] 0 2

98 L 40[1] 92 98 0[1] 2

L 90[1] 32 20[1] L 0 2

Demand 1 1 1 1 1 1

Zrelaxed = 206

206=Z

032 =x 034 =x

1 

Fig. 1 Initial branching with respect to cells (3,2) and (3,4)

Table 7 Node corresponding to the restriction of no assignment in

cell (3,2)

Supply

26[1] 76[1] L 52 28 0 2

98 L 40 92 98[1] 0[1] 2

L L 90[1] 32[1] L 0 2

Demand 1 1 1 1 1 1

Zrelaxed = 254

Table 5 Balancing the transportation model (by adding a dummy

column)

Supply

28 76 L 52 28 0 2

98 L 40 92 98 0 2

L 90 32 20 L 0 2

Demand 1 1 1 1 1 1
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Similarly, at node 3 we deal with the restriction that

allocation in the cell (3,4) is restricted to zero, in other

words we modify the Table 6 and replace the cost element

in the cell (3,4) by L. This is shown in Tables 8, 9, 10, 11,

12 and 13.

Form the solution obtained in Table 8, it is noted that

the resource constraint 1 is not satisfied, since for the al-

location in cells (1,1) and (1,5) resource requirement is

24 ? 36 = 60[ 56. Hence branching from node 3 will be

either x11 = 0 or x15 = 0. These restrictions lead to nodes

10 and 11 in Fig. 2.

In the following, we have given the transportation cost

tables under various restrictions as shown in the tree dia-

gram shown in Fig. 2.

These results have been summarized in the tree diagram

given in Fig. 2, where the following interpretations have

been used.

Note:

• A terminal node is said to be feasible if the optimal

solution to the transportation sub-problem is feasible to

the original GAP problem.

• A terminal node is said to be infeasible if the optimal

solution to the transportation is infeasible to the GAP

model.

• DNE means the transportation sub-problem does not

have a feasible optimal solution

• The numbers in the circles denote the order of solution

From the search tree given in Fig. 2 the optimal solution

to the GAP problem is given as shown in (4A) and (5A).

ZGAP ¼ min½ZT
1 ; Z

T
2 ; Z

T
3 ; Z

T
4 ; Z

T
5 ; Z

T
6 � ¼ 300 ð24Þ

x11 ¼ x14 ¼ x25 ¼ x32 ¼ x33 ¼ 1 and

x12 ¼ x15 ¼ x21 ¼ x23 ¼ x24 ¼ x32 ¼ x33 ¼ x34 ¼ 0
ð25Þ

The transportation optimal solutions for the nodes 2–7 and

node 9 are given below in the appendix. Node 1 is optimal

solution to the relaxed model and is given in Table 6. Thus

a total of 10 nodes (starting from node 2) are required to

verify the optimal solution value.

Table 8 Node corresponding to the restriction that allocation in cell

(3, 4) is zero

Supply

28[1] 76 L 52 28[1] 0 2

98 L 40[1] 92 98 0[1] 2

L 90[1] 32 L L 0 2

Demand 1 1 1 1 1 1

Zrelaxed = 270

Table 9 Node 4

Supply

28[1] 76[1] L 52 28 0 2

98 L 40[1] 92 98[1] 0 2

L L L 20[1] L 0[1] 2

Demand 1 1 1 1 1 1

Zrelaxed = 262

Table 10 Node 5

Supply

28[1] 76[1] L 52 28 0 2

98 L 40 92[1] 98[1] 0 2

L L 32[1] L L 0[1] 2

Demand 1 1 1 1 1 1

Zrelaxed = 326

Table 11 Node 6

Supply

28[1] 76 L 52[1] L 0 2

98 L 40 92 98[1] 0[1] 2

L 90[1] 32[1] L L 0 2

Demand 1 1 1 1 1 1

Zrelaxed = 300

Table 12 Node 7

Supply

L 76 L 52[1] 28[1] 0 2

98[1] L 40 92 98 0[1] 2

L 90[1] 32 L L 0 2

Demand 1 1 1 1 1 1

Zrelaxed = 300

Table 13 Node 9

Supply

28 76[1] L 52 28[1] 0 2

98[1] L 40[1] 92 L 0 2

L L L 20[1] L 0[1] 2

Demand 1 1 1 1 1 1

Zrelaxed = 262
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