
ORIGINAL ARTICLE

Early software reliability analysis using reliability relevant
software metrics

Harikesh Bahadur Yadav • Dilip Kumar Yadav

Received: 6 June 2014 / Published online: 6 December 2014

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of

Operation and Maintenance, Lulea University of Technology, Sweden 2014

Abstract The early software reliability analysis is very

useful for improving the quality of software at reduced

testing effort. Software defect density indicator predicted in

the early phases (requirement analysis, design and coding

phases) provides an opportunity for the early identification of

cost overrun, software development process issues and

optimal development strategies. Failure data is not available

in the early phases of the software development life cycle

(SDLC). However, qualitative values of softwaremetrics are

available in the early phases of SDLC. Therefore, in this

paper, a model is proposed to predict the software defect

density indicator of early phases of SDLC using fuzzy logic

and the reliability relevant softwaremetrics of early artifacts.

The proposed model is applied on twenty real software

projects. It is observed that the requirement analysis phase

defect density indicator value is relatively greater than that of

the design and coding artifacts. The model is validated with

the existing literature. Validation result is satisfactory.

Keywords Software reliability � Software metrics �
Defect density indicator � Fuzzy logic � Software defect

1 Introduction

Now a day, software has become the integral part of most

of the complex applications and people are working under

direct or indirect influence of software. Therefore, it is very

important to ensure the reliability of the software system.

The reliability of a software system depends upon the

number of residual defects. A defect is the product

anomaly (IEEE 1988). A general method to measure the

reliability of software is to reveal the presence of defects in

it, and usually the metric used for it is defect density (DD).

The DD is defined as the total number of defects divided by

the size of the software (IEEE 1990). The software defect

density indicator metric provides the information regarding

the reliability improvement during development phases.

Software reliability is an important factor of software

quality. Software reliability is the probability that software

will not cause any failure of a system for a specified period

of time under the specified conditions (IEEE 1990). Reli-

ability is requested to be assured in almost all safety–crit-

ical system. Software reliability model was designed to

quantify the likelihood of software failure (IEEE 1988; Lyu

1996). The termination of the ability of a functional unit to

perform its required function called failure (IEEE 1990).

Software reliability plays an important role in the early

software development phases (Musa et al. 1987). Lots of

study in the past has been made for software reliability

estimation and prediction (Lyu 1996; Pham 2007). (Gaff-

ney and Davis 1988; Gaffney and Pietrolewiez 1990)

proposed a phase based model for predicting reliability by

using the faulty statistics. Rome Laboratory developed a

model for early software reliability prediction (McCall

et al. 1992; Friedman et al. 1992). The model is mainly

based on the software requirement specification and data

collected by the organization. Agresti and Evanco (1992)

proposed a model to predict defect density on the basis of

process and product characteristics. (Smidts et al. 1998)

developed a reliability prediction model based on the

H. B. Yadav (&) � D. K. Yadav
Department of Computer Applications, National Institute of

Technology, Jamshedpur 831 014, India

e-mail: yadavaharikesh@gmail.com

D. K. Yadav

e-mail: dkyadav1@gmail.com

123

Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108

DOI 10.1007/s13198-014-0325-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-014-0325-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-014-0325-3&domain=pdf

requirements change request during the SDLC. The tradi-

tional models for software reliability prediction are neither

universally successful in predicting reliability behavior, nor

generally tractable to users (Cai et al. 1991). The majority

of models is based on probabilistic approach.

The causal model for defect prediction with Bayesian

net is developed by (Fenton and Neil 1999; Fenton et al.

2007; Fenton et al. 2008). The main feature is that it does

not require detailed domain knowledge and it combines

both qualitative and quantitative data. (Mohanta et al.

2010, 2011) proposed a model to predict the reliability of

object-oriented systems during the early stages of the

product development based on bottom-up approach. In this

approach, the reliability of the overall system is estimated

based on operational profile and reliabilities of classes.

(Octane and Yildiz 2014) proposed a novel method using

Bayesian networks to explore the relationships among

software metrics and defect proneness.

(Pandey and Goyal 2009) have proposed an early fault

prediction model using process maturity and software

metrics. They have considered the fuzzy profiles of various

software metrics in different scale and have not explained

the criteria used for developing these fuzzy profiles. The

method level metrics are used in most of the fault predic-

tion models. Yadav et al. (2012) proposed a software defect

prediction model in which they had considered only the

uncertainty associated over the assessment of software size

metric and three metrics of requirement analysis phase.

(Catal and Diri 2009; Catal 2011) provided a systematic

review of various software fault prediction studies with a

focus on metrics, methods and datasets. (Radjenovic et al.

2013) reported that the process metrics are successful in

finding the faults. (Can et al. 2013) suggested a model for

software defect prediction in which they used the benefit of

the non-linear computing capability of support vector

machine and parameters optimization capability of particle

swarm optimization. Recently, (Maa et al. 2014) analyze

the ability of requirement metrics for software defect pre-

diction during the design phase.

The most of software reliability models are based on

failure data. However, failure data are not available in the

early phases of SDLC. There are many factors which affect

the software reliability in SDLC. Thirty-two factors are

identified which have an impact on the software reliability

(Zhang and Pham 2000). In another study, (Li et al. 2000;

Li and Smidts 2003) identified thirty software metrics

which influence the software reliability.

In fact, most of the software metrics are associated with

uncertainty. The smaller size of software testing data,

unrealistic assumptions, and the fact that some measures

cannot be defined precisely, are the key reasons that a

fuzzy logic approach should be developed for predicting

the software reliability at the early phase of the SDLC.

The rest of the paper is organized as follows: the pro-

posed model and methodology is discussed in Sect. 2. In

Sect. 3, a case study is presented. Results and validation

are discussed in Sect. 4 and 5 respectively. Conclusion is

presented in Sect. 6.

2 Proposed model and methodology

In the proposed model, defect density indicator of early

phases of SDLC is predicted based on the measures present

in the early phases of SDLC. Therefore, proposed model

leverages the top most reliability relevant metrics (Li et.al.

2000; Li and Smidts 2003) from early phases of SDLC. In

the requirement analysis phase, the defect density indicator

is predicted using requirement fault density (RFD),

requirement stability (RS), and review, inspection and walk

through (RIW) software metrics.

The defect density indicator predicted at the end of

requirement phase (RPDDI) is taken as input in the design

phase along with cyclomatic complexity (CC) and design

review effectiveness (DRE) to predict the defect density

indicator at the end of the design phase. Similarly, the defect

density indicator predicted at the end of the design phase

(DPDDI) taken as input in coding phase along with the pro-

grammer capability (PC) and process maturity (PM) (Fig. 1).

At the end of coding phase, we will get the total number of

defects predicted for the software before testing phase using

coding phase defect density indicator (CPDDI).

The following steps are involved in this proposed model

A. Selection of software metrics

B. Define the membership function of each input and

output variable

RS F

I

S F

I

S F

I

S

D

E

F

U

Z

Z

I

F

I

C

A

T

I

O

N

N

O

O

F

D

E

F

E

C

T

S
PC

CC

DRE

PM

RIW

RPDDI

DPDDI
RFD

CPDDI

Fig. 1 Proposed model architecture

S2098 Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108

123

C. Design fuzzy rules

D. Perform fuzzy inference, and defuzzification.

2.1 Selection of software metrics

Software metrics that are considered in the proposed model

are explained as follows:

2.1.1 Requirement phase software metrics

(i) Requirement stability (RS) Requirement stability

is inversely proportional to requirement change

request. The requirement change may happen at

any time during a software project development.

Studies have exposed that more than half the

errors are due to imprecisely defined requirements

during software development.

(ii) Requirement fault density (RFD) This metric

measures the fraction of faulty requirements

specification documents. Requirement fault den-

sity provides an indicator of the software quality

of developing software during the requirement

analysis phase.

(iii) Review, inspection and walk-through (RIW) This

metric purify the software product and can be

applied at various points during software project

development. The goal of the review process is to

ensure that the software requirement specification is

feasible, complete, consistent and accurate. From a

quality point of view, it is very important metrics.

2.1.2 Design phase software metrics

(i) Cyclomatic complexity (CC) The measurement of

Cyclomatic complexity by McCabe (Kan 2002)

was intended to specify a program’s understand-

ability and testability. It can be used to indicate an

upper bound in the model for estimating the num-

ber remaining software defects.

(ii) Design review effectiveness (DRE) Design defects

are usually found by a design review process

during the software project development. The goal

of design review is to make sure that the design

meets the stakeholder’s requirements or to find

whether design requires modification.

2.1.3 Coding phase software metrics

(i) Programmer capability (PC) Software complexity

depends on the experience of the staff and their

intelligence. An experienced and sound technical

background programmer will develop quality soft-

ware with the least number of defects.

(ii) Process maturity (PM) In Software Company,

capability maturity model (CMM) plays a key role

in defining software development process improve-

ment. CMM has five levels. Software defect density

reduces as one proceeds from one CMM level to

next CMM level.

2.2 Define the membership function of each input

and output variable

There are many methods of membership value assignment

such as: rank ordering, intuition, inference, etc. (Yadav

et al. 2012; Ross 2004; Yadav et al. 2012; Yadav and

Yadav 2013; 2014; Yadav et al. 2011; Verma et al. 2007).

In the intuition method, fuzzy profile is derived from the

ability of humans to develop a fuzzy profile through their

own innate intelligence and understanding. In the inference

method of fuzzy profile development, one uses knowledge

to perform deductive reasoning. The assessing preference

of a single individual, a committee, a poll, and other

opinion methods can be used to assign membership values

to a fuzzy variable in the rank ordering method. Mem-

bership functions for all the input and output software

metrics which are considered in the proposed model should

be defined by domain experts. Developing a fuzzy profile

of selected software metrics with the help of domain expert

knowledge is one of the basic steps in the design of a

problem which is to be solved by fuzzy set theory. There

are no standard guidelines or rules that can be used for the

appropriate membership function construction technique.

Another problem that makes membership function con-

struction an important task is the lack of consensus on the

definition and interpretation of membership functions. The

majority of the methods is application domain dependent

and complex. It is impractical to use different membership

function construction technique for different application

problem. It is not impossible, come up with a single

membership construction technique which will work for

most application problems.

Membership function can have a variety of shapes like

polygonal, trapezoidal, triangular, and so on (Ross 2004;

Yadav et al. 2012; Yadav and Yadav 2013; 2014). How-

ever, triangular and trapezoidal shapes provide a conve-

nient representation of domain expert knowledge and it

also simplifies the process of computation (Kaya and Al-

hajj 2003). In the proposed model membership function of

all the input and output metrics are defined with the help of

domain experts. In this model triangular and trapezoidal

membership are considered for representing the linguistic

state.

Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108 S2099

123

2.3 Design fuzzy rules

In this step fuzzy rule is defined in the form of IF–THEN

conditional statement.

IF A is X

THEN B is Y

IF part of the rule is known as the antecedent and THEN

part is consequent (Zadeh 1989). Fuzzy rules that are

required for the prediction of defects of software projects

are defined using human intuition. Instead of considering

the entire set of input variables at the same time, software

metrics involved from phase to phase reduces the required

number of rules. Considering all the selected software

metrics one at a time, it is required to define large numbers

of rules for the prediction of software defects. However,

instead of using generalized fuzzy inference methods pro-

posed model considers cascading the input variables.

Therefore, less numbers of rules alone are required.

2.4 Perform fuzzy inference, and defuzzification

Fuzzy inference engine evaluates and combines the result

of each fuzzy rule. Fuzzy inference engine maps, fuzzy set

into a fuzzy set. A fuzzy Max–Min operator is used for this

step. In many applications, the crisp value needs to be

obtained as an output. The defuzzification method such as

centroid, max–min and bisection etc. maps, fuzzy set into

crisp value (Ross 2004). The process of fuzzy inference

and defuzzification is shown in Fig. 2. Centroid method of

defuzzification is used to calculate the value of z* in this

model.

3 Case studies

3.1 The data set used

In order to validate the proposed model, twenty real soft-

ware project data sets (Fenton et al. 2008) are used for case

studies and that is reproduced in Table 1.

3.2 Model illustration: case study 1

In this case study, software project one has been considered

to explain the proposed approach. Following are the steps

for finding the defect density indicator and total number of

residual defects for software project one before the testing

phase.

3.2.1 Selection of software metrics

The selected software metrics and their fuzzy range and

values for early phases of the SDLC are shown in Tables 2,

3 and 4.

3.2.2 Define the membership function of input and output

variable

Membership functions for individual software metrics are

illustrated in this section. Membership functions for each

input and output software metrics are shown in Figs. 3, 4,

5, 6, 7, 8, 9, 10, 11 and 12. The proposed model consists of

a set of input and output values. The range of software

input and output metrics are in normalized form.

Fig. 2 Process of fuzzy

inference and defuzzification

S2100 Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108

123

3.2.3 Design fuzzy rules

The fuzzy rules for project one in early phases of the SDLC

are shown phase wise in Tables 5, 6 and 7.

(i) Requirements phase fuzzy rule If RS is high, the defect

will be lowand ifRFD is high, the defectwill be higher

but it is not applicable for RIW. Therefore, the fuzzy

rules are interpreted in the following manner.

Table 1 Software projects

metrics data
Case

study no.

Project # (Fenton

et al. 2008)

Size

(KLOC)

RS RFD RIW CC DRE PC PM

1 1 6 L H VH M H H H

2 2 0.9 H H VH L H H H

3 3 53.9 H VH VH H H VH VH

4 7 21 M L VH L H VH VH

5 8 5.8 H L H M M H H

6 9 2.5 VH M VH L VH VH VH

7 10 4.8 H M H M H H H

8 11 4.4 H H H H H H M

9 12 19 L M H H M M H

10 13 49.1 L H M H H H M

11 15 154 VL VH H H H H H

12 16 26.7 M H H L H H H

13 17 33 M H M L H M M

14 19 87 M H H H H H H

15 20 50 VL M M VH L VL H

16 21 22 M M H L H H H

17 22 44 L M M M L M H

18 24 99 L H M M H H H

19 29 11 VH M VH M H VH H

20 30 1 VH M VH L H H H

Table 2 Requirement analysis phase software metrics

Requirement analysis phase software metrics Fuzzy range Value

Input metrics Requirement stability (RS) {0–1} {Low, medium, high}

Requirement fault density (RFD) {0–1} {Low, medium, high}

Review, inspection and walk-through (RIW) {0–1} {Low, medium, high}

Output metrics Requirement phase defect density indicator (RPDDI) {0–1} {Very low, low, medium, high, very high}

Table 3 Design phase software metrics

Design phase software metrics Fuzzy range Value

Input metrics Cyclomatic complexity (CC) {0–1} {Low, medium, high}

Design review effectiveness (DRE) {0–1} {Low, medium, high}

Requirement phase defect density indicator (RPDDI) {0–1} {Very low, low, medium, high, very high}

Output metrics Design phase defect density indicator (DPDDI) {0–1} {Very low, low, medium, high, very high}

Table 4 Coding phase software metrics

Coding phase software metrics Fuzzy range Value

Input metrics Programmer capability (PC) {0–1} {Low, medium, high}

Process maturity (PM) {0–1} {Low, medium, high}

Design phase defect density indicator(DPDDI) {0–1} {Very low, low, medium, high, very high}

Output metrics Coding phase defect density indicator (CPDDI) {0–1} {Very low, low, medium, high, very high}

Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108 S2101

123

(ii) Design phase fuzzy rule For lower value of CC, the

defect will be lower, but for lower values of DRE,

the defect will be higher. Therefore, the following

fuzzy rules are developed.

(iii) Coding phase fuzzy rule If the PC and PM are high,

then defect will be low in a software project.

Therefore, the fuzzy rules are developed as follows:

3.2.4 Perform fuzzy inference, and defuzzification

The defect density indicator value is obtained using fuzzy

inference tool of MATLAB at the end of requirement

analysis phase, design phase and coding phase. The Result

of case study one is shown in Table 8.

4 Prediction result

The prediction results for 20 case studies are shown in

Table 9. Table 9 shows the actual defects, predicted

defects and defects predicted by (Yadav et al. 2012) and

(Fenton et al. 2008). Defects of software projects are

obtained based on defect density indicator in the coding

phase of the respective project, which has been compared

with the similar results done by Fenton, et al. (2008) and

(Yadav et al. 2012).

We can observe from Fig. 13 that the maximum number

of defect density occurs in requirement analysis phase,which

also effect later on in the design phase and coding phase. It is

also observed that the software metrics that are responsible

for the defect density present in the initial phases of SDLC

need to be considered with more attention than the metrics

that become available in the later phases of SDLC. Early

software defect density indicator prediction could improve

the reliability of a software project and helps software

managers to achieve reliable software within time and costs.

In case study 8, 15 and 18, defects in the design phase

are higher than the requirement analysis phase. Design

phase metrics are critical in these projects. Similarly, in

case study 1, 2, and 13 coding phase metrics require high

consideration along with design phase metrics.

5 Model validation

5.1 Evaluation measures

To validate the prediction accuracy of the proposed model

commonly used and suggested evaluation measures have

Fig. 3 Requirement stability

Fig. 4 Requirement fault

density

S2102 Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108

123

been taken (Fenton et al. 2008; Yadav et al. 2012; Chulani

et al. 1999; Kitchenham et al. 2001).

(i) Mean magnitude of relative error (MMRE)

MMRE is the mean of absolute percentage errors and a

measure of the spread of the variable Z, where the

Z = estimate/actual

MMRE ¼ 1

n

Xn

i¼1

yi � ŷij j
yi

where, yi is the actual value and ŷi is the estimated value of

a variable of interest.

(ii) Balanced mean magnitude of relative error

(BMMRE)

MMRE is unbalanced and penalizes overestimates more

than underestimates. For this reason, a balanced mean

magnitude of the relative error measure is also considered

which is as follows:

Fig. 5 Review, inspection and

walkthrough

Fig. 6 Requirement phase

defect density indicator

Fig. 7 Cyclomatic complexity

Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108 S2103

123

BMMRE ¼ 1

n

Xn

i¼1

yi � ŷij j
Min yi; ŷið Þ

The lesser value of MMRE and BMMRE indicates better

accuracy of prediction.

5.2 Validation results

The proposed model is validated using actual defects,

and the predicted result of Yadav et al. (2012) and

(Fenton et al. 2008). Fenton proposed a Bayesian Net

Fig. 8 Design review

effectiveness

Fig. 9 Design phase defect

density indicator

Fig. 10 Programmer capability

S2104 Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108

123

model for predicting the software defects for the same

software projects.

It can be observed in Table 10 that the MMRE and

BMMRE for the proposed model are 0.0687 and 0.0757,

respectively. Clearly, the MMRE and BMMRE of the

proposed model come out to be much lesser than that of the

(Fenton et al. 2008) model and (Yadav et al. 2012) model.

It can also be observed that the predictive accuracy of

the models expressed by different measures increases with

the size of the project. Measures based on the relative error

Fig. 11 Process maturity

Fig. 12 Coding phase defect

density indicator

Table 5 Requirements phase

fuzzy rule
Rule no. Fuzzy rule

1 If RS is L and RFD is L and RIW is L then RPDDI is L

2 If RS is L and RFD is L and RIW is M then RPDDI is VL

……. ………………………………………………………………………………..

26 If RS is H and RFD is H and RIW is M then RPDDI is L

27 If RS is H and RFD is H and RIW is H then RPDDI is VL

Table 6 Design phase fuzzy

rule
Rule no. Fuzzy rule

1 If CC is L and DRE is L and RPDDI is VL then DPDDI is VL

2 If CC is L and DRE is L and RPDDI is L then DPDDI is VL

…….. ………………………………………………………………………………..

44 If CC is H and DRE is H and RPDDI is H then DPDDI is VH

45 If CC is H and DRE is H and RPDDI is VH, then DPDDI is VH

Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108 S2105

123

(MMRE, BMMRE) decrease significantly, as project size

increases for all three models.

6 Conclusion

In this paper, a fuzzy logic based model is proposed for

predicting software defect density indicator at early phase

of the SDLC. The proposed model considers only reli-

ability relevant software metrics of the early phase of the

SDLC. The proposed model takes into account the uncer-

tainty associated with the reliability relevant software

Table 7 Coding phase fuzzy

rule
Rule no. Fuzzy rule

1 If the PC is L and PM is L and DPDDI is VL then CPDDI is VL

2 If the PC is L and PM is L and DPDDI is L then CPDDI is L

……. …………………………………………………………………………………………
44 If the PC is H and PM is H and DPDDI is H then CPDDI is L

45 If the PC is H and PM is H and DPDDI is VH then CPDDI is H

Table 8 Defect density indicator of project one

Case study no. Project No. # (Fenton et al. 2008) RPDDI DPDDI CPDDI No. of defects = CPDDI 9 LOC

1 1 0.0133 0.0183 0.0222 133

Table 9 Predicted defect density indicator in requirement analysis, design, and coding Phase

Case study no. RPDDI DPDDI CPDDI Defects predicted by Actual defects

Proposed model Yadav et al. (2012) Fenton et al. (2008)

1 0.0133 0.0183 0.0222 133 88 75 148

2 0.0167 0.0219 0.0290 26 9 52 31

3 0.0025 0.0031 0.0038 205 261 254 209

4 0.0066 0.0080 0.0087 183 204 262 204

5 0.0066 0.0080 0.0087 51 56 48 53

6 0.0044 0.0059 0.0061 15 24 57 17

7 0.0044 0.0059 0.0061 29 70 203 29

8 0.0033 0.0181 0.0183 81 64 51 71

9 0.0030 0.0042 0.0046 87 92 347 90

10 0.0014 0.0020 0.0025 125 476 516 129

11 0.0055 0.0073 0.0113 1,740 1,490 1,526 1,768

12 0.0025 0.0031 0.0038 102 130 145 109

13 0.0100 0.0146 0.0185 611 589 444 688

14 0.0030 0.0042 0.0046 400 130 581 476

15 0.0033 0.0181 0.0183 915 892 986 928

16 0.0064 0.0075 0.0081 180 214 259 196

17 0.0025 0.0031 0.0038 169 213 501 184

18 0.0033 0.0181 0.0191 1,554 1,440 1,514 1,597

19 0.0066 0.0080 0.0082 91 107 116 91

20 0.0030 0.0042 0.0046 5 5 46 5

Fig. 13 Defect density indicator in early phases

S2106 Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108

123

metrics of early phases of SDLC. The predicted defect for

20 software projects are found very near to the actual

defects detected during testing. The predicted defect den-

sity indicators are very helpful to analyze the defect

severity in different artifacts of SDLC of a software pro-

ject. This provides a guideline to the software manager for

early identification of cost overruns, schedules mismatch,

software development process issues, software resource

allocation and release decision making etc.

References

Agresti WW, Evanco WM (1992) Projecting software defects form

analyzing Ada design. IEEE Trans Softw Eng 18(11):988–997

Cai KY, Wen CY, Zhang ML (1991) A critical review on software

reliability modeling. Reliab Eng Syst Saf 32(3):357–371

Can H, Jianchun X, Ruide Z, Juelong L, Qiliang Y, Liqiang X (2013)

A new model for software defect prediction using particle swarm

optimization and support vector machine. Control and decision

conference (CCDC), 25th Chinese, p 4106–4110

Catal C (2011) Software fault Prediction: a literature review and

current trends. Exp Syst Appl 38:4626–4636

Catal C, Diri B (2009) A systematic review of software fault

predictions studies. Exp Syst Appl 36(4):7346–7354

Chulani S, Boehm B, Steece B (1999) Bayesian analysis of empirical

software engineering cost models. IEEE Trans Softw Eng

25(4):573–583

Fenton NE, Neil M (1999) A critique of software defect prediction

models. IEEE Trans Softw Eng 25(5):675–689

Fenton NE, Neil M et al (2007) Predicting software defects in varying

development lifecycles using bayesian nets. Inf Softw Technol

49(1):32–43

Fenton NE, Neil M et al (2008) On the effectiveness of early life

cycle defect prediction with bayesian nets. Empir Softw Eng

13:499–537

Friedman MA, Tran PK, Goddard PL (1992) Reliability techniques

for combined hardware and software system. Rome laboratory

Technical Report RL-TR-92-95 1-2

Gaffney JE Jr, Davis CF (1988) An approach to estimating software

errors and availability. In: Proceedings of 11th Minnow-

brook workshop on software reliability, SPC-TR-88-007, ver-

sion 1.0, July 26–29, Blue Mountain Lake, NY

Gaffney JE Jr, Pietrolewiez J (1990) An automated model for

software early error prediction (SWEEP). In: Proceedings of

13th Minnowbrook workshop on software reliability, July

24–27, Blue Mountain Lake, NY

IEEE (1988) Guide for the use of IEEE standard dictionary of

measures to produce reliable software. IEEE, New York, IEEE

Std. 982.2-1988

IEEE (1990) Standard glossary of software engineering terminology.

IEEE, New York, p 1–84, IEEE Std. 610.12-1990

Kan SH (2002) Metrics and models in software quality engineering,

2nd edn. Addison wesley, Boston

Kaya M, Alhajj R (2003) A clustering algorithm with genetically

optimized membership functions for fuzzy association rules

mining. In: The 12th IEEE international conference on Fuzzy

systems, 2003, FUZZ’03, vol 2, p 881–886

Kitchenham AB, Pickard LM, MacDonell SG, Sheppered MJ (2001)

What accuracy statistics really measure? IEEE Proc Softw

148(3):81–85

Li M, Smidts C et al. (2000) Ranking software engineering measures

related to reliability using expert opinion. In: Proceedings of the

11th international symposium on software reliability engineering

(ISSRE), San Jose, p 246–258

Li M, Smidts C (2003) A ranking of software engineering measures

based on expert opinion. IEEE Trans Softw Eng 29(9):811–824

Lyu MR (1996) Handbook of software Reliability Engineering. IEEE

Computer Society Press, Los Alamitos

Maa Y, Zhua S, Qinb K, Luob G (2014) Combining the requirement

information for software defect estimation in design time. Inf

Process Lett 114:469–474

McCall JA, Randell W, Dunham J (1992) Software reliability,

measurement, and testing. Rome laboratory Technical Report

RL-TR-92-95 1-2

Mohanta S, Vinod G, Ghosh AK, Mall R (2010) An approach for

early prediction of software reliability. ACM SIGSOFT Softw

Eng Notes 35:1–9

Mohanta S, Vinod G, Mall R (2011) A technique for early prediction

of software reliability based on design metrics. Int J Syst Assur

Eng Manag 2:261–281

Musa JD, Iannino A, Okumoto K (1987) Software reliability: measure-

ment, prediction, application. McGraw-Hill Publishers, New York

Octane, Yildiz OT (2014) Software defect prediction using bayesian

networks. Empir Softw Eng 19:154–181

Pandey AK, Goyal NK (2009) A fuzzy model for early software fault

prediction using process maturity and software metrics. Int J

Electron Eng 1(2):239–245

Pham H (2007) System software reliability. Reliability engineering

series. Springer-Verlag publisher, London

Radjenovic D et al (2013) Software fault prediction metrics: a

systematic literature review. Inf Softw Technol 55(8):1397–1418

Ross TJ (2004) Fuzzy logic with engineering applications, 2nd edn.

Wiley, New York

Smidts C, Stutzke M, Stoddard RW (1998) Software reliability

modeling: an approach to early reliability prediction. IEEE Trans

Reliab 47(3):268–278

Table 10 Values of model evaluation measures

Project size MMRE BMMRE

Fenton et al.

(2008)

Yadav et al.

(2012)

Proposed

model

Fenton et al.

(2008)

Yadav et al.

(2012)

Proposed

model

Projects\ 5 KLOC (n = 5) 3.5024 0.5268 0.0970 3.5245 0.6862 0.1065

5KLoC B Projects\ 50 KLOC (n = 10) 0.9731 0.3936 0.0654 1.0416 0.4237 0.0715

Projects B 50 KLOC (n = 5) 0.1375 0.1313 0.0471 0.1424 0.1404 0.0535

All projects (n = 20) 1.11377 0.3613 0.0687 1.4375 0.4185 0.0757

Bold values indicate the results of the proposed model

n number of projects, MMRE mean magnitude of relative error, BMMRE balanced mean magnitude of relative error

Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108 S2107

123

Verma AK, Srividya A, Gaonkar RSP (2007) Fuzzy reliability

engineering: concepts and applications. Narosa Publishing

House, Delhi

Yadav HB, Yadav DK (2013) A fuzzy logic approach for software

quality modeling. In: Proceedings of the second international

conference on computing sciences (ICCS-2013), Lovely Profes-

sional University, Punjab, p 32–39

Yadav HB, Yadav DK (2014) A multistage model for defect

prediction of software development life cycle using fuzzy logic.

In: Proceedings of the third international conference on soft

computing for problem solving (SOCPROS-2013), IIT Roorkee.

Advances in intelligent systems and computing, vol 259,

Springer India Publication, India, p 661–671

Yadav JY, Kharat V, Deshpande A (2011) Fuzzy description of air

quality: a case study. Rough sets and knowledge technology.

Lecture notes in computer science, vol 6954, p 420–427

Yadav DK, Charurvedi SK, Mishra RB (2012a) Early software

defects prediction using fuzzy logic. Int J Perform Eng

8(4):399–408

Yadav DK, Chaturvedi SK, Misra RB (2012) Forecasting time-

between-failures of software using fuzzy time series approach.

In: IEEE Proceeding of North American fuzzy information

processing society (NAFIPS), Berkley, p 1–8

Zadeh LA (1989) Knowledge representation in fuzzy logic. IEEE

Trans Knowl Data Eng 1:89–100

Zhang X, Pham H (2000) An analysis of factors affecting software

reliability. J Syst Softw 50(1):43–56

S2108 Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2097–S2108

123

	Early software reliability analysis using reliability relevant software metrics
	Abstract
	Introduction
	Proposed model and methodology
	Selection of software metrics
	Requirement phase software metrics
	Design phase software metrics
	Coding phase software metrics

	Define the membership function of each input and output variable
	Design fuzzy rules
	Perform fuzzy inference, and defuzzification

	Case studies
	The data set used
	Model illustration: case study 1
	Selection of software metrics
	Define the membership function of input and output variable
	Design fuzzy rules
	Perform fuzzy inference, and defuzzification

	Prediction result
	Model validation
	Evaluation measures
	Validation results

	Conclusion
	References

