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Abstract Optimal power flow (OPF) is one of the most

requisite tools for power system operation analysis. This

problem has a complex mathematical formulation which is

relatively hard to solve. This paper presents a swarm intelli-

gence-based approach to solve the OPF problem. The pro-

posed approach describes the use of a modified artificial bee

colony (ABC) algorithm called ABC with global and local

neighborhoods (ABCGLN) to determine the optimal settings

of OPF control variables. ABCGLN is a recent modified

version of basic ABC algorithm that can handle non-differ-

entiable, non-linear, andmulti modal objective functions. The

ABCGLN approach is tested here on the standard IEEE

30-bus test systemwith three different objective functions for

minimizing quadratic fuel cost function, piecewise quadratic

cost function and quadratic cost function with valve point

effects. The simulation results demonstrate the potential of

ABCGLN algorithm of finding effective and robust quality

solutions to solve OPF problem with various objective

functions for the considered system as compared to those

available in the literature.

Keywords Optimal power flow � Artificial bee colony �
Optimization � Swarm intelligence

1 Introduction

In past two decades, optimal power flow (OPF) problem has

got much attention. OPF is a latest interest of many utilities

as being one of the main tools for optimal operation and

planning of modern power systems. Therefore, the OPF is

the basic tool which facilitates electric utilities to determine

secure and economic operating conditions for an electric

power system. An OPF problem focuses on determining the

optimal setting of power system control variables in order to

optimize a selected objective function for example fuel cost

while satisfying some physical and operational constraints.

These constraints include equality constraints in the form of

power flow equations and inequality constraints in the form

of limits on control variables and operational limits on

system dependent variables. The control variables for the

problem are generator real powers, generator bus voltages,

the reactive powers for shunt VAR compensations and

transformer tap settings while the system dependent vari-

ables are the load bus voltages, transmission line loadings

and generators reactive powers. In general, the OPF problem

is a large-scale, highly constrained nonlinear and non-con-

vex optimization problem.

Dommel and Tinney (1968), was first to present the

formulation of OPF problem. Since then it is been used by

many research scientists. Many traditional mathematics-
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based techniques like linear programming (Mota-Palomino

and Quintana 1986; Al-Muhawesh and Qamber 2008), non-

linear programming (Habibollahzadeh et al. 1989), interior

point method (Granville 1994; Wei et al. 1998) and

Newton-based method (Sun et al. 1984) have been applied

to solve the different OPF problems. Generally, these

classical techniques are applied with assumption that the

fuel cost characteristic of a generating unit is a smooth and

convex function. Moreover, these techniques are very

sensitive towards initial solution and even they may fail to

converge due to inappropriate starting values of variables.

The main disadvantage with these techniques is that these

are not possible to solve practical systems because of

nonlinear characteristics such as prohibited operating

zones, valve point effects and piecewise quadratic cost

functions. Now, it becomes mandatory to develop such

optimization techniques which can over come these

drawbacks and tolerate these complexities.

With the emergence of computers having tremendous

capabilities, the meta-heuristic techniques such as particle

swarm optimization (Abido 2002a), genetic algorithm (Ba-

kirtzis et al. 2002), tabu search (Abido 2002b), differential

evolution (Sayah and Zehar 2008), simulated annealing

(Roa-Sepulveda and Pavez-Lazo 2003) and evolutionary

programming (Ongsakul and Tantimaporn 2006; Yuryevich

and Wong 1999), etc., have been implemented to solve

various OPF problems. The reported results of these meta

heuristic techniques in literature are promising and encour-

age the researchers for further research in the same direction.

Karaboga (2005) proposed the recent addition to this

category known as artificial bee colony (ABC) optimiza-

tion algorithm. The ABC algorithm mimics the foraging

behavior of honey bees while searching food for them.

ABC is a simple population-based optimization algorithm

which is effective for both continuous and discrete opti-

mization problems. Collaborative trial and error method is

the main concept behind ABC algorithm which enables its

algorithmic procedure to find the solution. The ABC pop-

ulation consists of possible solutions in terms of food

sources for honey bees whose fitness is regulated in terms

of nectar amount which the food source contains. The

swarm updating in ABC is due to two processes namely,

the variation process and the selection process which are

responsible for exploration and exploitation, respectively.

The ABC algorithm has successfully been tested on almost

all domains of science and engineering like electronics

engineering (Chidambaram and Lopes 2009; Kavian et al.

2012), electrical engineering (Jones and Bouffet 2008;

Nayak et al. 2009; Sulaiman et al. 2012), computer science

engineering (Karaboga and Cetinkaya 2011; Lam et al.

2012; Lei et al. 2010), mechanical engineering (Ban-

harnsakun et al. 2012; Pawar et al. 2008; Xu and Duan

2010), civil engineering (Akay and Karaboga 2012; Li

et al. 2011; Mandal et al. 2012), medical pattern classifi-

cation and clustering problems (Karaboga et al. 2008) and

mathematical graph problems (Xing et al. 2007; Singh

2009; Yeh and Hsieh 2011). Many of the recent modifi-

cations and applications of ABC algorithm can be studied

in Bansal et al. (2013b).

However the ABC achieves a good solution but, like the

other optimization algorithms, it also has problem of pre-

mature convergence and stagnation. On the other hand, it is

also required to tune the ABC control parameters based on

problem. Also literature says that basic ABC itself has

some drawbacks like stop proceeding toward the global

optimum even though the population has not converged to

a local optimum (Karaboga and Akay 2009) and it is

observed that the position update equation of ABC algo-

rithm is inefficient to balance exploration and exploitation

(Zhu and Kwong 2010). Therefore these drawbacks require

a modification in position update equation of ABC in order

to make it capable to balance exploration and exploitation.

These drawbacks have also addressed in earlier research

(Banharnsakun et al. 2011; Bansal et al. 2013a, c; Gao and

Liu 2012; Jadon et al. 2014b; Karaboga and Akay 2011;

Sharma et al. 2013). Based on neighborhood concept, Ja-

don et al. (2014a) proposed a recent modified ABC variant

called ABC with global and local neighborhoods (AB-

CGLN). In ABCGLN, authors proposed a new position

update equation for employed bees in ABC which linearly

incorporate two components namely local and global

components in its swarm updating process in order to set a

trade off between the exploration and exploitation capa-

bilities of ABC. Here, local component is responsible for

explorative moves and has better chance of locating the

minima of test function. On the other hand, global com-

ponent is responsible for exploitive moves and rapidly

converges to a minimum of the test function.

In this paper, we used this ABC variant ABCGLN to

solve OPF problem with three different objective functions

and compared it with various results available in literature.

Rest of the paper is organized as follows: Section 2

describes the basic mathematical formulation of OPF prob-

lem. Section 3 explains ABCGLN algorithm. Section 4

gives statistical analysis to compare the performance of the

ABCGLN strategy on OPF problem with other meta-heu-

ristic algorithms. Finally, in Section 5, paper is concluded.

2 OPF formulation

The aim of solving an OPF problem is to provide an

optimal setting of power system’s control variables while

satisfying some physical and operational restrictions in

terms of equality and inequality constraints. Mathematical

formulation of a general OPF problem can be seen as:

Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2158–S2169 S2159

123



Min Fðu; xÞ; ð1Þ

subject to:

Gðu; xÞ ¼ 0; ð2Þ

Hmin �Hðu; xÞ�Hmax; ð3Þ

where F is the objective function to be optimized, u is the

vector of control variables (independent variables) which

includes generator bus voltages (Vg), generator real powers

(Pg) except at slack bus, transformer tap settings (T) and

shunt VAR compensation (Qc) and x is the vector of state

variables (dependent variables) which includes generator

active power at slack bus (Pg1), load bus voltages (Vl),

generator reactive powers (Qg) and transmission line

loading (line flow; Sl). Hence, u and x can be expressed as:

u ¼ Pg2; . . .;Pgng; Vg1; . . .;Vgng; Qc1; . . .;Qcnc; T1; . . .; Tnt
� �

;

ð4Þ

x ¼ Pg1; Vl1; . . .;Vlnl; Qg1; . . .;Qgng; Sl1; . . .; SlNl
� �

; ð5Þ

where ng, nc, nt, nl, Nl are the number of generators,

number of shunt VAR compensators, number of regulating

transformers, number of load buses and number of trans-

mission lines, respectively.

Gðu; xÞ is the set of equality constraints which repre-

sents typical load flow equations:

Pgi � Pdi � Vi

Xnb

k¼1

Vk Gik cos hik þ Bik sin hikð Þ ¼ 0; ð6Þ

and

Qgi � Qdi � Vi

Xnb

k¼1

Vk Gik sin hik þ Bik cos hikð Þ ¼ 0; ð7Þ

where Pgi and Qgi are the active and reactive powers at ith

generators, Pdi and Qdi are the active and reactive power

demands at ith bus, Gik and Bik are the transfer conductance

and susceptance between buses i and k, respectively, hik is
the phase angle difference between the voltages at buses

i and k and nb is the total number of bus bars.

Hðu; xÞ is the set of system operational limiting con-

straints which includes following inequality constraints:

– Generator constraints

Pmin
gi �Pgi �Pmax

gi ; for i ¼ 1; 2; . . .; ng; ð8Þ

Qmin
gi �Qgi �Qmax

gi ; for i ¼ 1; 2; . . .; ng ð9Þ

Vmin
gi �Vgi �Vmax

gi ; for i ¼ 1; 2; . . .; ng: ð10Þ

– Security constraints

Vmin
li �Vli �Vmax

li ; for i ¼ 1; 2; . . .; nl; ð11Þ

Sli � Smaxli ; for i ¼ 1; 2; . . .;Nl: ð12Þ

– Transformer constraints

Tmin
i � Ti � Tmax

i ; for i ¼ 1; 2; . . .; nt: ð13Þ

– Shunt VAR compensator constraints

Qmin
ci �Qci �Qmax

ci ; for i ¼ 1; 2; . . .; nc: ð14Þ

There are various techniques available in the literature to

handle constraints in optimization algorithm. In this article,

penalty function method is adopted to handle constraints

with respect to dependent variables i.e., if any dependent

variable violates its bound then square of that violation

amount multiplied by a fix penalty factor is added to its

corresponding fitness function so that infeasible solutions

can be rejected. On the other hand, the constraints corre-

sponding to control variables are handled by generating

them between the given bounds in its initialization phase.

In this way, the modified objective function for OPF is of

the following form:

Min Fmod ¼ Fðu; xÞ þ kp Pg1 � Plim
g1

� �2

þ kv
Xnl

i¼1

Vli � Vlim
li

� �2þkq
Xng

i¼1

Qgi � Qlim
gi

� �2

þ ks
XNl

i¼1

Sli � Slimli
� �2

; ð15Þ

where kp; kv; kq and ks are the penalty factors (all are set to
105 in this paper) and alim is the limit value (may be min or

max limit depending upon which limit dependent variable

a has crossed).

3 ABC algorithm with global and local neighborhoods

The ABC algorithm is a population based relatively recent

swarm intelligence based algorithm which is inspired by

foraging behavior of honey bees. In ABC, each solution is

known as food source of honey bees whose fitness is

determined in terms of the quality of the food source. ABC

is made of three group of bees: employed bees, onlooker

bees and scout bees. The number of employed and onloo-

ker bees is equal. The employed bees search the food

source in the environment and store the information, like

the quality and the distance of the food source from the

hive. Onlooker bees wait in the hive for employed bees and

after collecting information from them, they start searching

in neighborhood of that food sources which are having

better nectar. If any food source is abandoned then scout

bee finds new food source randomly in the search space.

While searching the solution of any optimization problem,
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ABC algorithm first initializes ABC parameters and swarm

then it requires the repetitive iterations of the three phases

namely employed bee phase, onlooker bee phase and scout

bee phase.

For an efficient optimization algorithm, two concepts

exploration and exploitation should be well balanced which

are actually contradictory to each other in nature. Explo-

ration means the ability of exploring diverse regions of the

search space and exploitation means refining already

explored regions. In ABC, at any instance, a solution is

updated through information flow from other solutions of

the swarm. This position updating process uses a linear

combination of current position of the potential solution

which is going to be updated and position of a randomly

selected solution as step size with a random coefficient

/ij 2 ½�1; 1�: This process plays an important role to

decide the quality of new solution. If the current solution is

far from randomly selected solution and absolute value of

/ij is also high then the change will be large enough to

jump the true optima. On the other hand, small change will

decrease the convergence rate of whole ABC process.

Further, it is also suggested in literature (Karaboga and

Akay 2009; Zhu and Kwong 2010) that basic ABC itself

has some drawbacks, like stop proceeding toward the

global optimum even though the population has not con-

verged to a local optimum. Karaboga and Akay (2009) also

analyzed the various variants of ABC and found that the

ABC in its current form shows poor performance and

remains inefficient to balance the exploration and exploi-

tation capabilities of the search space. Consequently, con-

vergence speed of ABC is also deteriorated.

To overcome above shortcomings, Jadon et al. (2014a)

proposed a modified ABC by incorporating local neighbor-

hood and global neighborhood strategies in its position

update equation of employed bee phase. In local neighbor-

hood strategy each member is updated through best solution

found so far in its sub population (i.e., local neighborhood),

while in the global neighborhood strategy each member

takes the advantage of best solution found so far in the

whole population. In ABCGLN, the neighborhood structure

of any solution is static and has been defined on the set of

indices of the solutions. Neighborhood of a solution is the

set of other solutions to which it is connected. For global

neighborhood strategy, neighborhood structure is the star

topology i.e., each solution is connected to each other

solution and therefore cardinality of neighborhood of any

solution in this strategy is equal to the number of food

sources. On the other hand, for local neighborhood strategy,

ring topology is adopted as neighborhood structure and

cardinality of neighborhood is considered as 10% of the

number of food sources i.e., local neighborhood of each

solution includes 10% solutions based on their indices as

5% from the forward side and 5% from the backward side.

Here, it should be noticed that solutions belonging to a local

neighborhood are not necessarily local in the sense of their

geographical nearness or similar fitness values but, the

overlapping neighborhoods based on the indices of the

swarm members have been considered in ABCGLN. For

more details about the neighborhood structure adopted,

readers are advised to go through the original article AB-

CGLN (Jadon et al. 2014a). In ABCGLN, for each

employed bee, two components a local and a global com-

ponent are created. The local component for a bee is created

based on best solution position in that bee’s local neigh-

borhood and two other solutions selected randomly from this

neighborhood while global component is created based on

best solution of whole swarm and two other solutions

selected randomly from the whole swarm i.e., from the

global neighborhood. The mathematical equations for these

components are as follows:

Lij ¼ xij þ probið Þ xlj � xij
� �

þ /ij xr1j � xr2j
� �

;

Gij ¼ xij þ 1� probið Þ xgj � xij
� �

þ /ij xR1j � xR2j
� �

;

ð16Þ

where each j represents the jth dimension of the each posi-

tion, Li and Gi are the local and global components,

respectively. xl and xg are respectively the best positions in

local and global neighborhoods of ith solution. xr1; xr2 are

the two neighbors chosen randomly from the local neigh-

borhood of ith solution such that r1 6¼ r2 6¼ i: xR1; xR2 are

the two neighbors chosen randomly from the global neigh-

borhood i.e., from whole swarm such that R1 6¼ R2 6¼ i:/ij

is random number in ½�1; 1� and probi is the probability of

ith solution as in Eq. (19). Here in both equations the third

term i.e., difference between two randomly selected neigh-

bors is added so that individual member should not follow

only the best position in order to prevent the swarm from

getting trapped in local minima. Also second term in both

the equations is multiplied by their probabilities which is a

function of fitness. It is clear that solution with better fitness

will give more weightage to its local best than the global best

in order to prevent the swarm to converge too quickly as

global best may be a local optima in initial stages. On the

other hand the solution with low fitness will give priority to

global best more than the local best as there surroundings are

not good enough so they follow better directions. Finally

both the local and the global components together guide the

new direction for employed bees as follows: for ith

employed bee, the new position is,

vij ¼ probið Þ � Gij þ 1� probið Þ � Lij: ð17Þ

Now based on greedy selection, employed bee selects one

between the old and new positions. In this way, the
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involvement of weighted linear sum of both local and

global best components, is expected to balance the explo-

ration and exploitation capabilities of ABC algorithm as

the local best components of respective bees explore the

search space or tries to identify the most promising search

space regions, while the global best component will exploit

the identified search space. The pseudo code of imple-

mentation of this whole neighborhood concept in employed

bee phase of ABCGLN is explained in Algorithm 1.

Algorithm 1 introduced a new parameter cr which is set to

a low value 0.3 (Jadon et al. 2014a).

Now whole ABCGLN algorithmic procedure can be

understood in following way. In ABCGLN, first initiali-

zation of the solutions is done like in basic ABC as:

3.1 Initialization of the swarm

If D is the number of variables in the optimization problem

then each food source xi ði ¼ 1; 2; . . .; SNÞ is a D-dimen-

sional vector among the SN food sources and is generated

using a uniform distribution as:

xij ¼ xminj þ rand½0; 1� xmaxj � xminj
� �

; ð18Þ

here xi represents the ith food source in the swarm, xminj
and xmaxj are bounds of xi in jth dimension and rand[0, 1] is

a uniformly distributed random number in the range [0, 1].

After initialization phase ABCGLN requires the cycle of

the three phases namely employed bee phase, onlooker bee

phase and scout bee phase to be executed.

3.2 Employed bees phase

In this phase, ith candidate’s position is updatedusingEq. (17):

after generating new position, the position with better fitness

between the newly generated and old one is selected.

3.3 Onlooker bees phase

In this phase, employed bees share the information asso-

ciated with their food sources like quality (nectar) and

position of the food source with the onlooker bees in the

hive. Onlooker bees evaluate the available information

about the food source and based on its fitness they select

solutions with probability probi: Here probi can be cal-

culated as function of fitness (there may be some

other method):

probiðGÞ ¼
0:9� fitnessi

maxfit
þ 0:1; ð19Þ

here fitnessi is the fitness value of the ith solution and

maxfit is the maximum fitness among all the solutions.

Based on this probability, onlooker selects a solution and

modifies it using the ordinary ABC position update

Eq. (20). Again by applying greedy selection, if the fitness

is higher than the previous one, the onlooker bee stores the

new position in its memory and forgets the old one.

vij ¼ xij þ /ij xij � xkj
� �

: ð20Þ

3.4 Scout bees phase

If for a predetermined number of cycles, any bee’s posi-

tion is not getting updated then that food source is taken

to be abandoned and this bee becomes scout bee. In this

phase, the abandoned food source is replaced by a ran-

domly chosen food source within the search space. The

number of cycles after which a particular food source

becomes abandoned is known as limit and is a crucial

control parameter. In this phase the abandoned food

source xi is replaced by a randomly chosen food source

within the search space using the Eq. (18) as in initiali-

zation phase.

Algorithm 1 employed bee phase for ABCGLN:
Input employed bee i, probi and best solution g found so far in whole swarm;
Find best solution l in local neighborhood of ith bee;
Select two neighbors xr1, xr2 randomly from the local neighborhood of ith bee such that r1 �= r2 �= i;
Select two neighbors xR1, xR2 randomly from whole swarm such that R1 �= R2 �= i;
for (each dimension j) do

if (rand < cr) then { # rand is a uniform random number between 0 and 1}
Generate local component Lij and global component Gij using Equation (16);
Generate new position vij using Equation (17);

else
vij = xij ;

end if
end for
Return better of old position xij and new position vij for employed bee i;
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The pseudo-code of the ABCGLN algorithm is shown in

Algorithm 2 (Jadon et al. 2014a ).

3.5 ABCGLN implementation for OPF

ABCGLN first initializes each individual member of the

population which represents a potential solution. The

structure of each individual member is u ¼
ðPg2; . . .;Pgng; Vg1; . . .;Vgng; Qc1; . . .;Qcnc; T1; . . .; TntÞ
where each involved variable is self constrained i.e., each

control variable of individual member u is initialized

randomly within allowable its given limits given in

Table 1. If any control variable violates its lower or upper

limits then that is adjusted to the corresponding violated

limit. To handle the inequality constraints of dependent

variables, the modified objective function [Eq. (15)] is

considered to be optimized. The flow chart of

OPF problem’s solution through ABCGLN is presented in

Fig. 1. This is clear from Flow chart 1 that whenever a

new solution is generated during initialization or

employed or onlooker or scout phase, then power flow

algorithm is run for that individual solution u to deter-

mine the state variables and to evaluate its fitness.

4 Experimental results and discussion

4.1 Test system under consideration

To validate the effectiveness and robustness of the AB-

CGLN algorithm, it is applied on standard IEEE 30-bus

system. This test system consists of 6 generating units at

buses 1, 2, 5, 8, 11 and 13 interconnected with 41 trans-

mission lines with a total load of 283.4 MW and

126.2 MVAR and 4 transformers with off-nominal tap

ratios in lines 6–9, 6–10, 4–12 and 28–27. The bus data and

the branch data are taken from Alsac and Stott (1974). The

shunt injections are provided at buses 10, 12, 15, 17, 20,

21, 23, 24 and 29 as given in Abido (2002a). The maximum

and minimum limits on control variables are mentioned in

Table 1. Three different objective functions to minimize

the total quadratic fuel cost, piece wise quadratic fuel cost

and quadratic fuel cost with valve point effects are con-

sidered to demonstrate the effectiveness of ABCGLN

algorithm. To check the robustness of the ABCGLN

algorithm, 100 runs were executed for solving the OPF

problem in each case.

4.1.1 Case 1: quadratic fuel cost function

The generator cost characteristic are defined as quadratic

cost function of generator power output and Eq. (15) is

selected as objective function to be optimized. In Eq. (15),

the Fðu; xÞ is designed for this case as:

Fðu; xÞ ¼
Xng

i¼1

fi Pgi

� �
¼

Xng

i¼1

ai þ biPgi þ ciP
2
gi

� �
; ð21Þ

where fi and Pgi are fuel cost and active power of ith

generator, respectively. The variables ai; bi and ci repre-

sent the cost coefficients of ith generator whose values

have been taken from standard IEEE 30-bus system and is

given here in Table 2. ng is the total number of generators

in the system.

Table 1 The upper and lower limits of control variables

Control

variables

Min Max Control

variables

Min Max

P1 50 200 T11 0.9 1.1

P2 20 80 T12 0.9 1.1

P5 15 50 T15 0.9 1.1

P8 10 35 T36 0.9 1.1

P11 10 30 Qc10 0 5

P13 12 40 Qc12 0 5

V1 0.95 1.1 Qc15 0 5

V2 0.95 1.1 Qc17 0 5

V5 0.95 1.1 Qc20 0 5

V8 0.95 1.1 Qc21 0 5

V11 0.95 1.1 Qc23 0 5

V13 0.95 1.1 Qc24 0 5

Qc29 0 5

Algorithm 2 ABC with Global and Local neighborhoods (ABCGLN):
Initialize the population and control parameters;
while Termination criteria is not satisfied do

Memorize the best food source found so far;
Calculate probi using Equation (19) for each bee;
Employed bee phase: apply Algorithm (1) to generate new food sources for each employed bee.
Onlooker bees phase: use Equation (20) to update the food sources for particular bees selected based on probi;
Scout bee phase: use Equation (18) to determine the new food sources for exhausted food sources.

end while
Return the best solution found so far.
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4.1.2 Case 2: piece-wise quadratic fuel cost functions

Practically, in a power system, various fuel sources like nat-

ural gas, coal and oil are supplied to thermal generating units.

The fuel cost functions of these units may be dissevered as

piece-wise quadratic fuel cost functions for different fuel

types (Abou El Ela et al. 2010). In this case, the objective of

the problem is to minimize fuel cost among the available fuel

Fig. 1 ABCGLN algorithm

flow for OPF problem

Table 2 Generator cost

coefficients for case 1
Cost coefficients Bus nos.

1 2 5 8 11 13

a 0.00 0.00 0.00 0.00 0.00 0.00

b 2.00 1.75 1.00 3.25 3.00 3.00

c 0.00375 0.01750 0.06250 0.00834 0.02500 0.02500

S2164 Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2158–S2169

123



of each unit and satisfy the system constraints. The problem

becomes a non-convex optimization problem with discon-

tinues value at each boundary which may result in many local

optima and hence limit the application of the traditional

mathematical methods (Dieu and Ongsakul 2006). The cost

characteristics of generating units connecting at buses 1 and 2

are represented by a piece-wise quadratic cost function to

model different fuels, which are defined as follows:

fi Pgi

� �
¼

ai1 þ bi1Pgi þ ci1P
2
gi; Pmin

gi �Pgi �Pgi1

ai2 þ bi2Pgi þ ci2P
2
gi; Pgi1 �Pgi �Pgi2

. . .

aik þ bikPgi þ cikP
2
gi; Pgik�1 �Pgi �Pmax

gi ;

8
>>>><

>>>>:

ð22Þ

where aik; bik and cik are cost coefficients of the ith gen-

erator for fuel type k. So, here Eq. (15) is selected as

objective function to be optimized where the Fðu; xÞ is

designed for this case as:

Fðu; xÞ ¼
Xng

i¼1

fi Pgi

� �
¼

X2

i¼1

fi Pgi

� �

þ
Xng

i¼3

ai þ biPgi þ ciP
2
gi

� �
;

ð23Þ

where fiðPgiÞ for generating units 1 and 2 are selected based
on Eq. (22) and the cost coefficients for these units are

given in Table 3 and the cost coefficients of other gener-

ators have the same values as of case 1.

4.1.3 Case 3: quadratic fuel cost function with valve point

effects

For this case, the generating units of buses 1 and 2 are

considered to have the valve point effects on their

characteristics. The cost coefficients of these generating

buses are adopted from Vaisakh and Srinivas (2011)

and are given in Table 4. The cost coefficients for

Table 3 Generator cost coefficients for case 2

Bus nos. From MW To MW Cost coefficients

a b c

1 50 140 55.00 0.70 0.0050

140 200 82.50 1.05 0.0075

2 20 55 40.00 0.30 0.0100

55 80 80.00 0.60 0.0200

Table 4 Generator cost coefficients for case 3

Bus nos. Pmin
gi

Cost coefficients

a b c d e

1 50 150.00 2.00 0.0016 50.00 0.0630

2 20 25.00 2.50 0.0100 40.00 0.0980

Table 5 Load data

Bus

nos.

Load Bus

nos.

Load Bus

nos.

Load

P Q P Q P Q

1 0.000 0.000 11 0.000 0.000 21 0.175 0.112

2 0.217 0.127 12 0.112 0.075 22 0.000 0.000

3 0.024 0.012 13 0.000 0.000 23 0.032 0.016

4 0.076 0.016 14 0.062 0.016 24 0.087 0.067

5 0.942 0.190 15 0.082 0.025 25 0.000 0.000

6 0.000 0.000 16 0.035 0.018 26 0.035 0.023

7 0.228 0.109 17 0.090 0.058 27 0.000 0.000

8 0.300 0.300 18 0.032 0.009 28 0.000 0.000

9 0.000 0.000 19 0.095 0.034 29 0.024 0.009

10 0.058 0.020 20 0.022 0.007 30 0.106 0.019

Table 6 Best control variable settings achieved by ABCGLN algo-

rithms for different cases

Control

variables

Case 1: Case 2: Case 3:

Quadratic

fuel cost

function

Piece-wise

quadratic fuel

cost function

Quadratic fuel cost

function with valve

point effects

P1 177.0220 139.9909 199.6030

P2 48.6853 55.0000 20.0000

P5 21.3817 24.0789 22.1228

P8 21.3059 35.0000 25.8842

P11 12.0071 18.1608 13.4462

P13 12.0000 17.8988 12.0000

V1 1.0839 1.0758 1.0796

V2 1.0335 1.0094 1.0595

V5 1.0340 1.0313 1.0319

V8 1.0380 1.0495 1.0370

V11 1.0666 1.0505 1.0767

V13 1.0481 1.0574 1.0597

T11 1.0616 1.0294 1.0890

T12 0.9089 0.9291 0.9000

T15 0.9676 0.9873 0.9831

T36 0.9728 0.9736 0.9728

Qc10 5.0000 4.9999 5.0000

Qc12 5.0000 5.0000 4.2523

Qc15 4.3082 5.0000 1.4910

Qc17 5.0000 4.9999 5.0000

Qc20 4.5056 4.9693 5.0000

Qc21 5.0000 5.0000 4.7040

Qc23 3.4272 3.9497 5.0000

Qc24 5.0000 5.0000 5.0000

Qc29 2.4945 2.8101 1.6957

Fuel cost ($/h) 800.4464 646.4461 918.8439
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other generating units are same as of case 1. The

cost characteristics of generating units 1 and 2 are

defined as:

fi Pgi

� �
¼ ai þ biPgi þ ciP

2
gi þ di sin ei Pmin

gi � Pgi

� �� ����
���;

where i ¼ 1 and 2; ð24Þ

where ai; bi; ci; di and ei are cost coefficients of the ith

generating unit. So, here Eq. (15) is selected as objective

function to be optimized where the Fðu; xÞ is designed for

this case as:

Fðu; xÞ ¼
Xng

i¼1

fi Pgi

� �
¼

X2

i¼1

ai þ biPgi þ ciP
2
gi

�

þ di sin ei Pmin
gi � Pgi

� �� ����
���
�

þ
Xng

i¼3

ai þ biPgi þ ciP
2
gi

� �
:

ð25Þ

4.2 Experimental setting

The results obtained from the proposed ABCGLN are

stored in the form of minimum objective function value,

mean objective function value in 100 runs and execution

time to reach at minimum. The results are compared with

the results available from other optimization algorithms in

literature. The following parameter setting is adopted while

implementing ABCGLN and basic ABC algorithms to

solve the various OPF problems:

Table 7 Results comparison of 100 runs among different methods for

IEEE 30-bus system: case 1

Optimization methods Fuel cost ($/h) Execution

time (s)
Min Average

ITS (Ongsakul and Tantimaporn

2006)

804.5560 – –

EP (Yuryevich and Wong 1999) 802.6300 803.5100 51.4

IEP (Ongsakul and Tantimaporn

2006)

802.4650 802.5210 99.0

DE-OPF (Sayah and Zehar 2008) 802.3940 – 36.4

MDE-OPF (Sayah and Zehar

2008)

802.3760 802.3820 24.0

TS (Ongsakul and Tantimaporn

2006)

802.5020 – –

TS/SA (Ongsakul and

Tantimaporn 2006)

802.7880 – –

SADE-ALM (Vaisakh and

Srinivas 2011)

802.4040 – –

Enhanced GA (Bakirtzis et al.

2002)

802.0600 – –

PSO (Abido 2002a) 800.4890 – –

ABC-OPF 802.9086 803.6341 27.0

ABCGLN 800.4464 800.5607 18.0

Table 8 Results comparison of 100 runs among different methods for

IEEE 30-bus system: case 2

Optimization methods Fuel cost ($/h) Execution

time (s)
Min Average

ITS (Ongsakul and Tantimaporn

2006)

654.8740 – –

EP (Yuryevich and Wong 1999) 647.7900 649.7000 51.6

IEP (Ongsakul and Tantimaporn

2006)

649.3120 650.2170 100.4

DE-OPF (Sayah and Zehar 2008) 648.3840 – 37.2

MDE-OPF (Sayah and Zehar

2008)

647.8460 648.3560 37.1

TS (Ongsakul and Tantimaporn

2006)

651.2460 – –

TS/SA (Ongsakul and

Tantimaporn 2006)

654.3780 – –

PSO (Abido 2002a) 647.6900 – –

GSA (Duman et al. 2012) 646.8480 646.8962 11.0

BBO (Bhattacharya and

Chattopadhyay 2011)

647.7430 647.7645 12.0

ABC-OPF 648.9124 649.4393 29.0

ABCGLN 646.4461 646.6944 22.0

Table 9 Results comparison of 100 runs among different methods for

IEEE 30-bus system: case 3

Optimization methods Fuel cost ($/h) Execution

time (s)
Min Average

ITS (Ongsakul and Tantimaporn

2006)

969.1090 – –

EP (Vaisakh and Srinivas 2011) 955.5090 959.3630 57.7

IEP (Ongsakul and Tantimaporn

2006)

953.5730 956.4600 93.6

DE-OPF (Sayah and Zehar 2008) 931.0850 – 45.0

MDE-OPF (Sayah and Zehar

2008)

930.793 942.5010 41.9

TS (Ongsakul and Tantimaporn

2006)

956.0000 – –

TS/SA (Ongsakul and

Tantimaporn 2006)

959.5630 – –

EADDE (Vaisakh and Srinivas

2011)

930.745 – 3.98

SADE-ALM (Vaisakh and

Srinivas 2011)

944.031 – –

BBO (Bhattacharya and

Chattopadhyay 2011)

919.7647 919.8389 11.9

GSA (Duman et al. 2012) 929.7260 930.9240 10.0

ABC-OPF 930.4153 931.2629 34.0

ABCGLN 918.8439 919.1928 27.0
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– The number of simulations/run =100,

– Colony size NP ¼ 50 (Diwold et al. 2011; El-Abd

2011) and number of food sources SN ¼ NP=2;

– /ij ¼ rand½�1; 1� and limit = dimension � number of

food sources = D� SN (Karaboga and Akay 2011;

Akay and Karaboga 2010),

– The parameter cr in Algorithm 1 is set to 0.3 (Jadon

et al. 2014a),

– The cost coefficients for all cases are given in Tables 2,

3 and 4,

– The upper and lower limits for control variables is

taken from Lee et al. (1985) and is given in Table 1,
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Fig. 3 Box-plots for ABCGLN and ABC for minimum fuel cost for 100 runs

Int J Syst Assur Eng Manag (December 2017) 8(Suppl. 4):S2158–S2169 S2167

123



– The load data is adopted from Alsac and Stott (1974)

and Lee et al. (1985) and given in Table 5,

– The line data for 30-bus system is taken from Alsac and

Stott (1974) and Lee et al. (1985),

– The penalty factors kp; kv; kq and ks are set to 105:

4.3 Results analysis of experiments

Tables 6, 7, 8 and 9 present the numerical results com-

parison of all considered algorithms for cases 1–3 with the

experimental settings shown in Sect. 4.2. Table 6 shows

the optimal control parameter settings achieved by the

ABCGLN algorithm for OPF problem in each case. The

results comparison of the ABCGLN with other algorithms

in terms of minimum fuel cost, average minimum fuel cost

over 100 runs and total execution time (in seconds) to reach

at achieved minimum by the algorithm, is presented in

Tables 7, 8 and 9. The bold entries in Tables 7–9 represent

the best value among all entries. It can be observed from

these tables that most of the time, ABCGLN is more reli-

able as it has achieved minimum fuel cost than all the

considered algorithms in all three cases. However, it spent

more time than the some algorithms in some cases but in

those cases also, it achieved better minima. In terms of

average minimum fuel cost in all runs, ABCGLN is also

reliable than the others as it gave less mean fuel cost for all

cases. If ABCGLN is compared to basic ABC only then

also it shows a clear superiority of ABCGLN in every

terms of accuracy, reliability and efficiency.

Further, to compare convergence speed of ABCGLN

with respect to ABC, we calculated the convergence rate in

Fig. 2a–c. It is clear from the these figures that ABCGLN

has higher convergence rate than the ABC to solve OPF

problem for all three cases. Since the empirical distribution

of results can efficiently be represented by box-plot (Wil-

liamson et al. 1989), the box-plots for minimum fuel cost

for 100 runs for ABCGLN and basic ABC algorithms have

been represented in Fig. 3 to analyze the algorithms output

more intensively. Figure 3 shows that ABCGLN is cost

effective as the interquartile range and median are very low

for ABCGLN.

5 Conclusion

This paper presents the solution of OPF problem of IEEE

30-bus system using a recent version of ABC algorithms,

named ABCGLN. The ABCGLN is tested and compared

on standard IEEE 30-bus system with various objective

functions which minimizes the fuel cost function, non-

smooth piece-wise quadratic cost function and quadratic

cost function with valve point effects. The reported results

show the efficiency and robustness of ABCGLN in solving

OPF. Results of ABCGLN are also compared with other

algorithms’ results available in the literature and compar-

isons confirm the superiority of ABCGLN over other meta-

heuristic algorithms to find feasible and more accurate

solution to OPF problems without any restrictions on the

shape of the fuel cost curves.
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