
ORIGINAL ARTICLE

A formal study on generative power of a class of array token Petri
net structure

T. Kamaraj • D. Lalitha • D. G. Thomas

Received: 9 August 2014 / Published online: 24 October 2014

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2014

Abstract Adjunct array token Petri net structure

(AATPNS) is a recently introduced rectangular picture

generating device which extends Array token Petri net

structure. AATPNS generates some of the classical classes

of picture languages namely Siromoney matrix languages

and kolam array languages, and a recent, pure 2D context-

free languages. In this paper we concentrate our attention

on determining the generative power of AATPNS by

comparing it with some expressive rectangular picture

grammar models and also with the classes of languages

recognizable by tiling systems. We also study certain clo-

sure properties with respect to basic array operations.

Keywords Petri nets � Array tokens � Adjunction �
Pure 2D grammars � Picture languages

Mathematics Subject Classification 68Q85 � 42 � 45 �
10 � 15

1 Introduction

Since seventies, the study of two dimensional languages gen-

erated by grammars or recognized by Automata have been

found in the theory of formal languages with the motivation of

picture processing and pattern recognition tasks (Giammarresi

andRestivo 1997; Rosenfeld and Siromoney 1993; Siromoney

1987).With the quest of syntactic techniques on digital picture

patterns, many array generating grammar devices have been

proposed. Siromoney matrix grammars (SMG; Siromoney

et al. 1972), controlled table L array grammars (T0LG/T1LG;

Siromoney and Siromoney 1977), kolam array grammars

(KAG; Siromoney et al. 1973, 1974) are some of the classical

generating devices, which used sequential and parallel appli-

cation of rewriting rules. Pure 2D context-free grammars

(P2DCFG; Subramanian et al. 2009) and parallel contextual

arraygrammars (Subramanianet al. 2008a, b)makeuse of only

terminal symbols as in pure string grammars. Prusa grammars

(PG; 2004) tile rewriting grammars (TRG) and regional tile

rewriting (RTG) grammars (Crespi-Reghizzi and Pradella

2005; Cherubini et al. 2006; Pradella et al. 2011) are some of

the more expressive context-free grammars. Tiling system

(TS;Giammarresi andRestivo1997;Cherubini et al. 2006) is a

recognizing device for the class of recognizable picture lan-

guages (REC), which involves the projection of languages

belonging to the class of local picture languages (LOC)defined

by a finite set of tiles.

Recently another picture generating mechanism, array

token Petri net structure (ATPNS; Lalitha et al. 2012b) has

been evolved from string generating Petri nets (Baker

1972; Hack 1975). Petri net (Peterson 1981) is one of the

formal models used for analyzing systems that are con-

current, distributed and parallel. In ATPNS, array tokens

are used to simulate the dynamism of the net.

This work is an extension of a preliminary paper (Kamaraj et al.

2014).

T. Kamaraj (&) � D. Lalitha
Department of Mathematics, Sathyabama University,

Chennai 600119, India

e-mail: kamaraj_mx@yahoo.co.in

D. Lalitha

e-mail: lalkrish_24@yahoo.co.in

D. G. Thomas

Department of Mathematics, Madras Christian College,

Chennai 600059, India

e-mail: dgthomasmcc@yahoo.com

123

Int J Syst Assur Eng Manag (June 2018) 9(3):630–638

https://doi.org/10.1007/s13198-014-0304-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-014-0304-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-014-0304-8&domain=pdf

ATPNS model along with a control feature called

inhibitor arcs generate the same family of languages as

generated by KAG, T0LG and P2DCFG. To increase the

generative power of this model, adjunction rules are

introduced and adjunct array token Petri net structure

(AATPNS; Lalitha et al. 2012a) is defined. This model

generates the table 1L languages and strictly included

ATPNS family of languages. In Kamaraj et al. (2013)

AATPNS is also compared with extended forms of SMGs

(Nivat et al. 1989; Subramanian et al. 1989), extended

P2DCFGs (Subramanian et al. 2008b) and internal parallel

contextual grammars (Subramanian et al. 2008a).

Several approaches have been proposed or attempted to

find a Chomsky-like hierarchy for array grammars. To find a

hierarchy it is very essential to compare generating capacities

of various models. Recently, in Bersani et al. (2011) and

Pradella et al. (2011) mutual relationship between various

context-free array grammars has been established. In this

paper, we compare AATPNS, with some expressive rectan-

gular picture grammar devices and also with REC and LOC.

This paper is organized in the following manner. In

Sect. 2, basic definitions of arrays, Petri nets and notions

of Petri nets pertaining to arrays have been recalled. In

Sect. 3, we recall the definition of adjunct array token

Petri nets and provide some illustrative examples. In

Sect. 4, some of the closure properties are discussed. In

Sect. 5 we compare AATPNS with various array gram-

mars and also with REC and LOC with respect to the

generative capacity.

2 Preliminaries

The following notation and definitions are mainly from

Giammarresi and Restivo (1997), Bersani et al. (2011) and

Lalitha et al. (2012b). In this section, we review some of

the definitions of arrays, array grammars, Petri nets and

notions of Petri nets pertaining to arrays.

2.1 Arrays and languages

Definition 2.1.1 Let R be a finite alphabet. A rectangular

arrangement of elements ofR is called an array or a picture over

R. The set of all non-empty arrays over R is denoted by R??.

For h, k C 0, R(h,k) denotes the set of pictures of size (h,

k) and R** = R?? [{K} where K is the empty picture.

We denote by |p|r and |p|c, the number of rows and columns

of a picture p [R**. The size of p is the pair |p| = (|p|r,

|p|c). A picture (array) language is a subset of R**.
For 1 B i B |p|r, 1 B j B |p|c, the element of p in the ith

row and jth column is called a pixel, denoted by p(i, j).

The domain of a picture p, denoted by d(p), defined by

d(p) = [1, |p|r] 9 [1, |p|c] (N2. Subdomain of d(p) is a set of

the form {k, k ? 1,…,k0} 9 {‘, ‘ ? 1,…,‘0} where

1 B k B k0 B |p|r and 1 B ‘ B ‘0 B |p|c also denoted as (k, ‘;

k0, ‘0). The set of subdomains of p is denoted by Ds(p). Let

ds = (k, ‘; k0, ‘0) [Ds(p), then the subpicture pics(p, ds) [

R
k
0
�kþ1;‘

0
�‘þ1

is defined as pics(p, ds)(i, j) = p(k ? i - 1,

‘ ? j - 1) for all 1 B i B k0 - k ? 1, 1 B j B ‘0 - ‘ ? 1.

A subdomain is c-homogeneous (or homogeneous)

when all pixels in the associated picture are identical to

c [R.
Let u, v [Z, the translation of ds by (u, v) is the sub-

domain ds � (u, v) = (k ? u, ‘ ? v; k0 ? u, ‘0 ? v).

An homogenous partition of a picture p is any partition

P ¼ fds1 ; ds2 ; . . .; dsng of d(p) into homogeneous subdo-

mains ds1 ; ds2 ; . . .; dsn : Then unit partition of p, written

U(p), is the homogeneous partition of d(p) defined by

single pixels. A homogeneous partition is called strong if

adjacent subdomains have different labels and the partition

is also unique in this case.

Let # 62 R be a boundary symbol. If p [R(h,k), p̂ [
R(h?2,k?2) is the picture p surrounded by # as shown in

Fig. 1.

A picture p of size (2, 2) is called a tile. Set of all tiles

contained in a picture p is denoted by [[p]].

Let C and R be two finite alphabets and p: C ? R a

function called projection, if p [C**, the projection of p by
p is the picture p0 [R** such that p0(i, j) = p(p(i, j)), for all
1 B i B |p|r, 1 B j B |p|c. Row and column catenations are

partial operations on arrays denoted by s and h. If p, q [

R
ðk;�Þ (resp. p, q [R

�;‘ð Þ
) ph q (resp. ps q) is the horizontal

(resp. vertical) juxtaposition of p and q. With (p)n [resp.

(p)n] is denoted the horizontal (resp. vertical) juxtaposition

of n copies of p. If L1 and L2 are two array languages over

R then the column catenation of L1, L2, denoted as L1 h

L2, is defined by

L1h L2 ¼ p h q=p 2 L1 and q 2 L2f g:

The row catenation of L1, L2 can be defined in the

similar notion.

2.2 Pure 2D context-free grammars

P2DCFGs, unlike the SMGs, admit rewriting of any row or

column of pictures by equal length strings involving only

terminal symbols.

#####
#k)p(n,p(n,1)#
##
#k)p(1,p(1,1)#
#####

p̂
k)p(n,p(n,1)

k)p(1,p(1,1)
p ==

Fig. 1 A picture p and the corresponding picture p̂

Int J Syst Assur Eng Manag (June 2018) 9(3):630–638 631

123

Definition 2.2.1 A P2DCFG is a four-tuple G = (R, Pc,
Pr, m0), where R is a set of symbols, Pc = {tci /

1 B i B m}, Pr = {trj /1 B j B n}.

Each tci (1 B i B m), called a column table, is a set of

context free rules of the form a ? a, a [R, a [R* such

that any two rules of the form a ? a, b ? b in tci ; have

|a| = |b| where |a| denotes the length of a.
Each trj (1 B j B n), called a row table, is a set of

context free rules of the form c ? cT, c [R, c [R* such

that any two rules of the form c ? cT, d ? dT in trj ; have

|c| = |d|.
m0 (R?? is a finite set of axiom arrays.

Derivations are defined as follows. For any two arrays

M1, M2, M1) M2 denotes that M2 is obtained from M1 by

either rewriting a column of M1 by rules of a column table

tci in Pc or a row of M1 by rules of a row table trj in Pr.)
�
is

the reflexive transitive closure of).

The picture language L(G) generated by G is the set of

rectangular picture arrays {M/M0)
�

M [R**, for some

M0 [m0}.

Definition 2.2.2 A P2DCFG with regular control

[(R)P2DCFG] is a tuple Gr =\G, C, C[where G is a

P2DCFG, C is the control alphabet, the set of labels of the

rule tables in Pc [Pr, C (C* is the regular control

associated with the grammar.

If p [R** and S [S0, p is derived from S in Gr by means

of a control word

w = w1 w2��� [C, in symbols S) w p, if p is obtained

from S by applying the column/row rules in sequence of

tables w1w2��� The language L(G) generated by

(R)P2DCFG Gr is the set of pictures {p/ S)w p [R?? for

some w [C}.

While a P2DCFG allows rewriting any column or any

row of a picture, a variant of P2DCFG investigated in

Zbynek et al. (2014), allows rewriting of only the left

most column or the upper most row. P2DCFG working

under this derivation mode is known as (l/u) P2DCFG

and the corresponding family of picture languages gen-

erated by them is denoted as (l/u) P2DCFL. It is shown

that (Zbynek et al. 2014) (l/u) P2DCFL is incomparable

with P2DCFL.

2.3 Tiling systems

TS define a ground level class of array languages known as

recognizable languages (REC) by means of projection of

pictures of a local language belonging to the class LOC.

The local language is defined by means of a set of tiles.

Definition 2.3.1 Let R be a finite alphabet, h a finite set

of tiles over the alphabet R [{#}. The local language

defined by h is the set L(h) = {p [R**/[[p̂]] (h}. The
family of local languages is denoted by LOC.

Definition 2.3.2 A TS is a four-tuple T = (R, C, h, p),
where R and C are two finite alphabets, h is a finite set of

tiles over the alphabet C [{#}, and p: C ? R is a pro-

jection. A picture p [R** is recognized by T if there exists

p0 [C** such that p0 [LOC(h) and =p(p0). The class of all
languages recognized by some TS is denoted by REC.

2.4 Prusa grammars

PGs are the formalisms that admit parallel application of

rules in which non-terminal symbols can be substituted

with rectangular pictures.

Definition 2.4.1 PG is a tuple (J, N, R, S), where J is the

finite set of terminal symbols, disjoint from the set N of

non-terminal symbols; S [N is the start symbol; and

R (N 9 (N [J)?? is the set of rules.

Let G = (J, N, R, S) be a PG. We define a picture

language L(G, A) over J for every A [N. The definition is

given by the following recursive descriptions:

(1) if A ? w is in R, and w [J??, then w [L(G, A);

(2) let A ? w be a production in R, w = (N [J)(m,n),

for some m, n C 1, and pi,j, with 1 B i B m,

1 B j B n, be pictures such that:

(a) if w(i, j) [J, then pi,j = w(i, j);

(b) if w(i, j) [N, then pi,j [L(G, w(i, j));

(c) if Pk = pk,1 h pk,2 h���h pk,n, for any

1 B i B m, 1 B j B n, |pi,j|c = |pi?1,j|c, and

P = P1 s P2 s���s Pm; then P [L(G, A).

The set L(G, A) contains exactly the pictures that can be

obtained by applying a finite sequence of rules (i) and (ii).

The language L(G) generated by grammar G is L(G, S).

2.5 Regional TRGs

TRGs (Crespi-Reghizzi and Pradella 2005) perform an

isometric derivation process for which homogeneous sub

pictures are replaced with isometric pictures of the local

language defined by the right part of the rules.

Definition 2.5.1 A tile rewriting grammar (TRG) is a tuple

(J, N, S, R), where J is the terminal alphabet, N is a set of non-

terminal symbols, S [N is the starting symbol, R is a set of

rules. Let A [N. There are two kinds of rules in R:

(1) fixed size A ? t, where t [J;

(2) variable size A ? x, x is a set of tiles over N [{#}.

At each step of the derivation, an A-homogeneous sub

picture is replaced with an isometric picture of the local

632 Int J Syst Assur Eng Manag (June 2018) 9(3):630–638

123

language defined by the right part a of a rule A ? a, where
a admits a strong homogeneous partition. The process

terminates when all non terminals have been eliminated

from the current picture.

Regional tile grammars (RTG; Pradella et al. 2011) are

the TRGs with specified set of tiling called regional.

Definition 2.5.2 A homogeneous partition is regional

(HR) iff distinct (not necessarily adjacent) subdomains

have distinct labels. A picture p is regional if it admits a

HR partition. A language is regional if all its pictures are

so. A regional tile grammar (RTG) is a TRG (see Definition

2.5.1), in which every variable size rule A ? x is such that

L(x) [LOC, is a regional language.

2.6 Petri nets

Definition 2.6.1 Petri Net is one of the mathematical

modeling tools for the description of distributed systems

involving concurrency and synchronization. It is a weigh-

ted directed bipartite graph consisting of two kinds of

nodes called places (represented by circles) and transitions

(represented by bars). Places represent conditions and

transition represents events. The places from which a

directed arc runs to a transition are called input places of

the transition and the places to which directed arcs run

from a transition are called output places. Places in Petri

nets may contain a discrete number of marks called tokens.

Any distribution of tokens over the places will represent a

configuration of the net called a marking. In the abstract

sense, a transition of a Petri net may fire if it is enabled;

when there are sufficient tokens in all of its input places.

Definition 2.6.2 A Petri net structure is a four tuple

C = (Q, T, I, O) where Q = {q1, q2,…,qn} is a finite set of

places, n C 1, T = {t1, t2,…,tm} is a finite set of transitions

m C 1, Q \ T = /, I: T ? Q? is the input function from

transitions to bags of places and O: T ? Q? is the output

function from transitions to bags of places.

Definition 2.6.3 An inhibitor arc from a place ql to a

transition tk has a small circle in the place of an arrow in

regular arcs. This means the transition tk is enabled only if

ql has no tokens in it. In other words a transition is enabled

only if all its regular arc input places have required number

of tokens and all its inhibitor arc (if exists) input places

have zero tokens.

2.7 Array token Petri nets

In the array generating Petri Net structure, arrays over an

alphabet J are used as tokens in some input places.

Definition 2.7.1 Row (resp. column) catenation rules in

the form of A s B (resp. A h B) can be associated with a

transition t as a label, where A is a m 9 n array in the input

place and B is an array language whose number of columns

(resp. rows) depends on the number of columns (resp.

rows) of A. Three types of transitions can be enabled and

fired

(i) When all the input places of transition t (without

label) having the same array as tokens.

– Each input place should have at least the

required number of tokens (arrays).

– Firing t removes arrays from all its input

places and moves the array to all its output

places.

The graph in Fig. 2a represents position of

arrays in the net before the transition t fires

and Fig. 2b represents position of arrays in the

net after the transition t fires.

(ii) When all the input places of transition t have the

different arrays as tokens.

A

A

q1

q2

q3

t
Aq1

q2

q3

t

(a) (b)

Fig. 2 Transition of type 1

A1

A2

q1

q2

q3

t(q1)
A1

q1

q2

q3

t(q1)

(a) (b)

Fig. 3 Transition of type 2

Int J Syst Assur Eng Manag (June 2018) 9(3):630–638 633

123

– The label of t designates one of its input places

which has sufficient number of same arrays as

tokens.

– Firing t removes arrays from all its input

places and moves the array from the desig-

nated input place to all its output places.

The graph in Fig. 3a shows the transition t

with label before firing and Fig. 3b shows the

transition t with label after firing.

(iii) When all the input places of transition t (with row

or column catenation rule as label) have the same

array as tokens.

– Each input place should have at least the

required number of tokens (arrays).

– Firing t removes arrays from all its input

places and creates the catenated array as per

the catenation rule, in all its output places.

The graph in Fig. 4a shows the transition t

with catenation rule before firing and Fig. 4b

shows the transition t with catenation rule after

firing.

In all the three types, firing of a transition t is enabled

only if all the input places corresponding to inhibitor arcs

(if exist) does not have any tokens in it.

Definition 2.7.2 An ATPNS is a five tuple N = (J, C,

M0, q, F) where J is a given alphabet, C = hQ, T, I, Oi is a
Petri net structure with tokens as arrays over J, M0:

Q ? J**, is the initial marking of the net, q: T ? L, a

mapping from the set of transitions to set of labels of

transitions and F , Q, is a finite set of final places.

3 Adjunct ATPNS

In this section, we recall the notions of AATPNS (Lalitha

et al. 2012a) in generalized form and give some examples.

Definition 3.1 Adjunction is a generalization of catena-

tion. In the row catenation A s B, the array B is joined to

A after the last row. But row adjunction can join the array

B into array A after any row of A. Similarly column

adjunction can join the array B into array A after any

column of A. Let A be an m 9 n array in J** called host

array; B , J** be an array language whose members,

called adjunct arrays have fixed number of rows. A row

adjunct rule (RAR) joins an adjunct array B into a host

array A in two ways: by post rule denoted by (A, B, arj),

array B is juxtaposed into array A after jth row and by pre

rule denoted by (A, B, brj), array B is juxtaposed into array

A before jth row. The number of columns of B is same as

the number of columns of A. In the similar notion column

adjunct rule (CAR) can also be defined in two ways: post

rule (A, B, acj) and pre rule (A, B, bcj) joining B into A,

after jth column of A and before jth column of A,

respectively. It is obvious that a row catenation rule A s B

in ATPNS is a post RAR rule (A, B, arm) and column

catenation rule A h B is a post CAR rule (A, B, acn).

Transitions of a Petri net structure can also be labeled with

RAR or CARs.

Definition 3.2 An AATPNS is a five tuple N = (J, C, M0,

q, F) where J is a given alphabet, C = (Q, T, I, O) is a Petri

net structure with tokens as arrays over J, M0: Q ? J**, is

the initial marking of the net, q: T ? L, a mapping from

the set of transitions to set of labels where catenation rules

of the labels are either RAR or CAR and F , Q, is a finite

set of final places.

In AATPNS, the types of transitions which can be

enabled and fired are similar to that of Definition 2.7.1

except the type (iii) where labels of transitions may be

RAR or CAR rules instead of row or column catenation

rules.

When all the input places of a transition t (with RAR or

CAR rule as label) have the same array as tokens.

– Each input place should have at least the required

number of tokens (arrays).

– Firing t removes arrays from all its input places and

creates the array through adjunction as per the RAR or

CAR rule, in all its output places.

In all the three types, firing of a transition t is enabled

only if all the input places corresponding to inhibitor arcs

(if exists) does not have any tokens in it.

Definition 3.3 If P is an AATPNS then the language

generated by P is defined as L(P) = {X [J** / X is in

the place q for some q in F}. Starting with arrays (tokens)

over a given alphabet as initial marking, all possible

A
A

q1

q2

q3 A1
q1

q2

q3

t(A□B) t(A□B)

(a) (b)

Fig. 4 Transition of type 3

634 Int J Syst Assur Eng Manag (June 2018) 9(3):630–638

123

sequences of transitions are fired. Set of all arrays created

in final places F is called the language generated by

AATPNS.

Example 3.1 Consider the AATPNS P1 = (J, C, M0, q, F)
where J = {0, 1}, C = (Q, T, I, O), Q = {q1, q2}, T = {t1,

t2}, I(t1) = {q1}, I(t2) = {q2}, O(t1) = {q2}, O(t2) = {q1},

M0 is the initial marking: the array S is in q1 and there is no

array in q2, q(t1) = (A, B1, acn) and q(t2) = (A, B2, arm) and

F = {q1}. The arrays used in the net are defined as follows:

S =
1 0

0 1
and B1 = (0)m and B2 = (0)n-1 1. The Petri net

graph is given in Fig. 5.

Initially t1 is the only enabled transition. Firing of t1
adjoins a column of 0’s after the last column of array S and

puts the derived array in q2, making t2 enabled. Firing t2
adjoins a row of 0’s ending with 1 after the last row of the

array in q2 and puts the derived array in q1. When the

transitions t1, t2 fire the array that reaches the output place

q1 is shown as
1 0

0 1
)
t1 1 0 0

0 1 0
)
t2

1 0 0

0 1 0

0 0 1

: Firing the

sequence (t1t2)
2 generates the output array as

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

:

The language L1 generated by Petri net is set of square

pictures over {0, 1} with 1’s in the main diagonal and other

elements are 0’s.

Example 3.2 If in Example 3.1, J = {a}, S = a,

B1 = (a)m, B2 = (a)n, then the language L2 of square

pictures of a’s is generated.

Example 3.3 Consider the AATPNS P3 = (J, C, M0, q,
F), where J = {a}, the Petri net structure is C = (Q, T, I,

O) with Q = {p1, p2, p3, p4, p5, p6, p7}, T = {t1, t2, t3, t4,

t5, t6}, I(t1) = {p1, p2}, I(t2) = {p3}, I(t3) = {p4},

I(t4) = {p1, p5}, I(t5) = {p5, p6}, I(t6) = {p1, p2},

O(t1) = {p3}, O(t2) = {p4}, O(t3) = {p2, p5},

O(t4) = {p6}, O(t5) = {p1}, O(t6) = {p7, p2}.

q: T ? L is defined as follows: q(t1) = p2, q(t2) = (A,

B1, acn), q(t3) = (A, B2, arm), q(t4) = k, q(t5) = k,
q(t6) = k, q(t7) = k, F = {p7}. The Petri net graph is

given in Fig. 6. The arrays used are S =
a a

a a
; B1 = (a

a)m, B2 =
a

a

� �n

:

To start with only t1 is enabled. Firing of sequence of

transitions t1t2t3 results in a square of a’s of size 4 9 4 in

p2 and p5. At this stage both t6 and t4 are enabled. Firing the

sequence t1t2t3t6 puts a square of size 4 9 4 in p7. Firing t4
pushes the array to p6, emptying p5. In this position t5 is

enabled. Firing t5 puts two copies of same array in p1.

Since at this stage there are two tokens in p1, the sequence

t1t2t3 has to fire two times to empty p1. The firing of

sequence t4t5 (t1t2t3)
2 t6 puts a square of a’s of size 8 9 8 in

p7. The inhibitor input p1 make sure that a square of size

6 9 6 does not reach p7. This AATPNS generates the

language L3 of squares of a’s of size (2n, 2n), n C 1.

Example 3.4 The AATPNS P4 = (J, C, M0, q, F) with

J = {a, b}, F = {p} given in Fig. 7, where S [
a b b a

b b b b
;
b b b b

b b b b
;
b a a b

a a a a
;
a a a a

a a a a

� �
;

B1 = (aa)m, B2 = an, B3 = (bb)m, B4 = bn, generates the

language L4 of pictures of symmetrical squares, where each

square is composed by nested ‘‘L’’ shaped strings of the

same character over the alphabet {a, b}.

A typical picture in this language is given in Fig. 8.

4 Closure properties

In this section we discuss the closure property with respect

to various standard array operations. The formal definitions

of these operations are given in Siromoney et al. (1973).

We omit some of the proofs as they are straight forward.

q1
S

q2

t2(A,B2,arm)

t1(A,B1,acn)

Fig. 5 Petri net for generating the picture language L1

p1

p2
p3

p4

p5

p6

p7

S S

S

t6

t5
t4

t1(p2) t2(A, B2,acn)

t3(A,B2,arm)

Fig. 6 Petri net for generating the picture language L3

Int J Syst Assur Eng Manag (June 2018) 9(3):630–638 635

123

Theorem 4.1 The family of languages generated by

AATPNS is closed under the following picture operations.

(i) transpose,

(ii) rotation through 90�,
(iii) rotation through 180�,
(iv) reflection about the rightmost vertical,

(v) reflection about the base.

Theorem 4.2 If L1 and L2 are two array languages

generated by AATPNSs then L1 h L2 and L1 s L2 need not

be generated by another AATPNS.

Proof If we consider both L1 and L2 are same as the

language L4 in Example 3.4, then it is easy to see that L1 h

L2 and L1 s L2 will contain arrays which do not have any

pattern. Hence it is impossible to construct a Petri net with

finite number of transitions to generate all the arrays.

Theorem 4.3 The family of languages generated by

AATPNS is closed under union and intersection.

Proof Let P1 be an AATPNS with start array S1 at a place

p1 and let P2 be another AATPNS with start array S2 at a

place p2. In the net to generate the union, have two extra

places p, q with S1 and S2, respectively as tokens. Let the

extra transitions be tp and tq in the net. Let the label of tp be

p and the label of tq be q. Let the input places of both tp and

tq be p, q. Output place of tp is p1 and output place of tq is

p2. Rest of the net would be the combination of C1 and C2.

Once tp fires, the Petri net P1 would become operational or

if tq fires, P2 would become operational. Hence the union of

the languages generated by P1 and P2 can also be generated

by an AATPNS.

If we construct another Petri net with new transition,

which fires if and only if the transitions in P1 and P2 which

have same labeling rule and same input array fires, then the

intersection of the languages generated by P1 and P2 can

also be generated by an AATPNS.

5 Comparative results

In the following results we use the notation L(X) to denote

the family of all languages generated by the device X.

Theorem 5.1 (R)P2DCFL , L (AATPNS).

Proof Let the picture array language be generated by the

P2DCFG G = (R, Pc, Pr,m0), where R is a set of symbols,

Pc = ftci=1� i�mg is a set of column tables,

Pr = ftrj=1� j� ng is a set of row tables, m0 (R?? is a

finite set of axiom arrays, with a regular control language

over the set of labels, say (‘1, ‘2,…,‘m). Application of

column table is equivalent to a column adjunction. Hence

for every column table tci ; a corresponding CAR(A, B, aci/

bci) can be defined. Similarly for every row table trj ; a

corresponding RAR(A, B, arj/brj) can be defined. If it is

assumed that the derivation M0)
w
M yields an array M of

the language, where w is a control word ‘1, ‘2,…,‘m then

the AATPNS P can be constructed as follows.

Let p0 be a place with array M0 as token. Let t1 be a

transition with the adjunction rule corresponding to ‘1 as a

label; p0 being the input place and p1 as its output place.

Have a transition t2 with the adjunction rule corresponding

to ‘2 as a label; p1 being the input place and p2 as its output

place and so on. Have a transition tm with the adjunction

rule corresponding to the table ‘m as label; pm-1 being the

input place and p0 as its output place. Let F = {p0}.

The firing sequence t1t2���tm will have the same effect as

applying the rules ‘1, ‘2,…,‘m in that order once. The firing

the sequence (t1t2���tm)n generates the same array which is

obtained by applying the set of tables in the control word

(‘1, ‘2,…,‘m)
n. Thus the Petri net P constructed will gen-

erate the language generated by the (R)P2DCFG G. In

other words, (R)P2DCFL (L (AATPNS).

For the strict inclusion, we consider the language L3 in

Example 3.3 which cannot be generated by any

(R)P2DCFG (Bersani et al. 2011, Proposition 5.5).

Since P2DCFL , (R)P2DCFL (Subramanian, Theorem

7), we can state the following:

Corollary 5.1 P2DCFL , L (AATPNS).

Theorem 5.2 (R)(l/u)P2DCFL , L (AATPNS).

Proof Let L be the picture language generated by a (l/u)

P2DCFG G = (R, Pc, Pr,m0), where R is a set of symbols,

Pc = ftci=1� i�mg is a set of column tables,

Pr = ftrj=1� j� ng is a set of row tables, m0 (R?? is a

Fig. 7 Petri net for generating the picture language L4

aaaaaaaa
bbbaabbb
bbbaabbb
abbaabba

Fig. 8 A typical picture of L4

636 Int J Syst Assur Eng Manag (June 2018) 9(3):630–638

123

finite set of axiom arrays, with a regular control language

over the set of labels, say (‘1, ‘2,…,‘m). Application of a

column table under (l/u) mode of derivation is equivalent to

a column adjunction before or after the first column of the

host array. Hence for every column table tcj ; a corre-

sponding CAR(A, Bj, ac1/bc1) can be defined. Similarly for

every row table trk ; a corresponding RAR(A, Bk, ar1/br1)

can be defined. If it is assumed that the derivation M0)
w
M

yields an array M of the language, where w is a control

word ‘1, ‘2,…,‘m then the AATPNS P can be constructed

as in Theorem 5.2.

Thus the Petri net P constructed will generate the lan-

guage generated by the (R)(l/u)P2DCFG G. In other words,

(R)(l/u)P2DCFL (L (AATPNS).

For the strict inclusion, we again consider the language

L3 in Example 3.3 which is not present in (R)P2DCFL. The

families (R)P2DCFL and (R)(l/u)P2DCFL coincide if we

restrict to only a unary alphabet. Since there is a single

symbol and the column rules and row rules can use only

one symbol, rewriting any column (row) is equivalent to

rewriting the leftmost column (uppermost row). Since L3 is

over unary alphabet {a}, it is not in (R) (l/u) P2DCFL also.

Since (l/u)P2DCFL , (R)(l/u)P2DCFL (Zbynek et al.

2014, Theorem 4), we can state the following:

Corollary 5.2 (l/u)P2DCFL , L (AATPNS).

Theorem 5.3 L (AATPNS) is incomparable with L
(RTG) and L (PG) but not disjoint.

Proof The language L2 of squares over {a}, in

Example 3.2, can be generated by a PG, G =(N, T,

P, S) where N = {S, H, V}, T = {a} and

P ¼ S ! a H

V S
; H ! aH=a; V ! a

V
=a; S ! a

� �
:

Since L (PG) , L (RTG; Pradella et al. 2011, Propo-

sition 8), this language is also in L (RTG).

The incomparability with L (RTG) can be seen as fol-

lows: the AATPNS language L4 of Example 3.4, which

consists of pictures of symmetrical squares, where each

square is composed by nested ‘‘L’’ shaped strings of the

same character. This language cannot be generated by any

regional tile grammar and hence by PG. In order to define

two square regions, a production of the grammar should

define them in the first derivation: since the partition is

strong, the two sub-pictures generated from two different

non-terminals say A and B are regionally defined, i.e., the

derivations of the one can not affect the derivation of other.

So there does not exist a method to make them symmetric.

Now, the language L?b of pictures consists of a horizontal

and a vertical string of b’s (not in border) in the background

of a’s can be generated by a PG (Prusa 2004, Example 8) and

hence by a RTG. A typical member of L?b is given in Fig. 9.

This language cannot be generated by any AATPNS, as the

number of transitions in the net cannot depend on the size of

the array. In an m 9 n array of a’s a column of b’s can be

adjuncted in n - 1ways and a row of b’s can be adjuncted in

m - 1 ways. To insert both a column of b’s and a row of b’s

the net required (m - 1)(n - 1) transitions with corre-

sponding adjunction rules.Hence it is not feasible to generate

these arrays using AATPNS.

Theorem 5.4 L (AATPNS) is incomparable but not dis-

joint with LOC and REC.

Proof The AATPNS language L1 of square pictures over

{0, 1} with 1’s in the main diagonal and other elements are

0’s in Example 3.1, is in LOC (Giammarresi and Restivo

1997, Example 7.1) and hence in REC, as LOC , REC

(Giammarresi and Restivo 1997). So, L (AATPNS) \ LOC

\ REC = /.

The incomparability of L (AATPNS) with REC and

hence with LOC is shown as follows: the language L6

= {anbn/n C 1} is not in REC (Prusa 2004, Theorem 11)

but can be generated by a AATPNS, P5 = (J, C, M0, C, F)

with J = {a, b}, F = {p} given in Fig. 10.

where S = ab, B = ab.

The language Ldiag of pictures containing arbitrary num-

ber of diagonals of 1 (no single 1 are admitted at corners) that

are separated by at least one diagonal of 0’s is in LOC. But

Ldiag cannot be generated by any AATPNS. The only 2 9 2

array in the language is
0 0

0 0
: But there are four 3 9 3

arrays with the property belonging to the language. To

generate four 3 9 3 arrays from the start array we need eight

transitions with different array languages involved in the

labels of the transitions. Hence it is impossible to construct a

net with finite number of transitions.

6 Conclusion

In this paper we have considered a variant class of array

token Petri nets with column and row adjunction rules as

abaaa
abaaa
bbbbb
abaaa
abaaaFig. 9 A typical picture in L?b

S
p t1(A,B,acn/2)

Fig. 10 Petri net for generating the picture language L6

Int J Syst Assur Eng Manag (June 2018) 9(3):630–638 637

123

labels of transitions. We compared this model with some of

the expressive grammar models: (R)P2DCFG, (R)(l/

u)P2DFCG, RTG, PG and also with REC and LOC. We

have shown that AATPNS have higher generative capacity

than (R)P2DCFG and (R)(l/u)P2DCFG but incomparable

with other models with non-empty intersection. The non-

empty intersection clearly suggests that this model can

generate a wide variety of digitized pictures and patterns. It

will be of interest to allow the removal of a column or a

row from the picture array, by the firing of transition in the

Petri nets and examine the effect in the derivation of pic-

ture. The application of this model in picture processing

tasks and Pattern recognition should be investigated

further.

References

Baker HG (1972) Petri net languages. In: Computation structures

group memo 68, Project MAC. MIT, Cambridge

Bersani MM, Frigeri A, Cherubini A (2011) On some classes of 2D

languages and their relations. In: Aggarwal JK et al (eds) IWCIA

2011, LNCS, vol 6636, pp 222–234

Cherubini A, Crespi-Reghizzi S, Pradella M, Peitro PS (2006) Picture

languages: tiling systems versus tile rewriting grammars. Theor

Comput Sci 356:90–103

Crespi-Reghizzi S, Pradella M (2005) Tile rewriting grammars and

picture languages. Theor Comput Sci 340:257–272

Giammarresi D, Restivo A (1997) Two-dimensional languages. In:

Rozenberg G Salomaa A (eds) Handbook of formal languages,

vol 3. Springer, Heidelberg, pp 215–267

Hack M (1975) Petri net languages. In: Computation structures group

memo 124, Project MAC. MIT, Cambridge

Kamaraj T, Lalitha D, Thomas DG (2013) A Comparative study on

adjunct array token Petri nets with some classes of array

grammars. Appl Math Sci Hikari Publ 7(135):6705–6713

Kamaraj T, Lalitha D, Thomas DG (2014) A study on expressiveness

of a class of array token Petri nets, In: M. Pant et al (eds.),

SOCPROS 2013, Adv Intell Syst Comput Springer India

259:457–469

Lalitha D, Rangarajan K, Thomas DG (2012a) Adjunct array images

using Petri nets. Indian J Math Math Sci 8(1):11–19

Lalitha D, Rangarajan K, Thomas DG (2012) Rectangular arrays and

Petri nets. In: Barneva RP et al (eds) IWCIA 2012, LNCS, vol

7655, Springer, Heidelberg, pp 166–180

Nivat M, Saoudi A, Dare R (1989) Parallel generation of finite

images. Int J Pattern Recognit Artif Intell 3(1989):279–294

Peterson JL (1981) Petri net theory and modeling of systems. Prentice

Hall, Inc., Englewood Cliffs

Pradella M, Cherubini A, Crespi-Reghizzi S (2011) A unifying

approach to picture grammars. Inf Comput 209:1246–1267

Prusa D (2004) Two-dimensional languages. PhD Thesis, Charles

University, Faculty of Mathematics and Physics, Czech Republic

Rosenfeld A, Siromoney R (1993) Picture languages—a survey. Lang

Des 1(3):229–245

Siromoney R (1987) Advances in array languages. In: Proceedings of

the 3rd international workshop on graph grammars and their

application to computer science, LNCS, vol 291. Springer, Hei-

delberg, pp 549–563

Siromoney R, Siromoney G (1977) Extended controlled table

L-arrays. Inf Control 35:119–138

Siromoney G, Siromoney R, Krithivasan K (1972) Abstract families

of matrices and picture languages. Comput Graph Image Process

1:284–307

Siromoney G, Siromoney R, Kamala K (1973) Picture languages with

array rewriting rules. Inf Control 22:447–470

Siromoney G, Siromoney R, Kamala K (1974) Array grammars and

kolam. Comput Graph Image Process 3(1):63–82

Subramanian KG et al (1989) Siromoney array grammars and

applications. Int J Pattern Recognit Artif Intell 3(1989):333–351

Subramanian KG, Van DL, Helen Chandra P, Quyen ND (2008a)

Array grammars with contextual operations. Fundam Inform

83(2008):411–428

Subramanian KG et al (2008b) Two-dimensional picture grammar

models. In: Proceedings of the 2nd European modelling sympo-

sium, EMS2008. IEEE, Los Alamitos, pp 263–267

Subramanian KG, Rosihan M, Geethalakshmi M, Nagar AK (2009)

Pure 2D picture grammars and languages. Discret Appl Math

157(16):3401–3411

Zbynek K et al (2014) A variant of pure two-dimensional context-free

grammars generating picture languages. In: Barneva RP et al

(eds) IWCIA 2014, LNCS, vol 8466. Springer, Heidelberg,

pp 123–133

638 Int J Syst Assur Eng Manag (June 2018) 9(3):630–638

123

	A formal study on generative power of a class of array token Petri net structure
	Abstract
	Introduction
	Preliminaries
	Arrays and languages
	Pure 2D context-free grammars
	Tiling systems
	Prusa grammars
	Regional TRGs
	Petri nets
	Array token Petri nets

	Adjunct ATPNS
	Closure properties
	Comparative results
	Conclusion
	References

