
ORIGINAL ARTICLE

HIDS: A host based intrusion detection system for cloud
computing environment

Prachi Deshpande • S. C. Sharma • S. K. Peddoju •

S. Junaid

Received: 2 May 2014 / Revised: 3 June 2014 / Published online: 24 June 2014

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2014

Abstract The paper reports a host based intrusion

detection model for Cloud computing environment along

with its implementation and analysis. This model alerts the

Cloud user against the malicious activities within the sys-

tem by analyzing the system call traces. The method

analyses only selective system call traces, the failed system

call trace, rather than all. An early detection of intrusions

with reduced computational burden can be possible with

this feature. The reported model provides security as a

service (SecaaS) in the infrastructure layer of the Cloud

environment. Implementation result shows 96 % average

intrusion detection sensitivity.

Keywords Cloud � Detection � Host based IDS �
OpenNebula � Network � Security � System call traces �
Virtual machine

1 Introduction

The advent of Cloud is a milestone in technological

advancement for speedy information processing. With the

introduction of a new computing system, its security issue

becomes a prime concern for academicians and research-

ers. To secure the information processing across any

information system has become pivotal in the success of an

information processing system.

Cloud computing provides a rapid and location inde-

pendent information processing. Due to location indepen-

dent processing, trust is one of the major issues among the

Cloud users for using its resources. Hence Cloud security

becomes essential for successful deployment of its ser-

vices. Due to security apprehension, a third party security

service is not attractive in comparison of an in built secu-

rity mechanism. This is the area where the intrusion

detection system (IDS) fits in. The ideal IDS is the one

which has 100 % detection efficiency against the possible

vulnerabilities. It can be designed based on detection

techniques, deployment location, and alert mechanism

(Abraham et al. 2007; Modi et al. 2013). The intrusions can

be detected by anomaly or signature based detection

techniques. The signature detection based IDS cannot

identify the novel attacks as it is based on known signa-

tures. The anomaly based detection technique uses the

deviation in the established pattern of a particular user to

identify the intrusion. The only drawback with this tech-

nique is the high false-positive rate of detection and can be

overcome by suitable classification method. Based on

location of deployment, IDS can be host-based or network

based entity. Host stationed IDS (HIDS) completely

depends on the target system itself, whereas network based

IDS (NIDS) depends on the network environment.

P. Deshpande (&) � S. C. Sharma

Department of Applied Science & Engineering, Indian Institute

of Technology Roorkee, Roorkee, Uttarakhand 247667, India

e-mail: deprachi3@gmail.com

S. C. Sharma

e-mail: scs60fpt@iitr.ac.in

S. K. Peddoju � S. Junaid
Department of Computer Science & Engineering, Indian

Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,

India

e-mail: drpskfec@iitr.ac.in

S. Junaid

e-mail: siddiqui.mohdjunaid@gmail.com

123

Int J Syst Assur Eng Manag (June 2018) 9(3):567–576

https://doi.org/10.1007/s13198-014-0277-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-014-0277-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-014-0277-7&domain=pdf

An intruder can acquire the status of administrator (in

Windows operating system (OS)) or root (UNIX/Ubuntu/

Linux OS) by gaining the access of the privileged programs

(Mukkamala et al. 2004). This flaw has been mitigated with

the help of program profile generation by capturing the

system calls. Hence, it will become difficult for an attacker

to perform its activities without evading the execution logs.

As a result, a program based profile creation is more stable

as compared to the behavior based profile of a user for

identification of an intrusion.

1.1 Present scenario

The notion of intrusion detection was first introduced by

Anderson in 1980 (Anderson 1980) followed by the study

of the first intrusion detection system model in 1987

(Denning 1987). Since then, with the advent in communi-

cation networks and methodologies, the secure data pro-

cessing has become need of the hour. As far as IDS is

concerned, the classification of various attacks is very

crucial. Based on the classification, the IDS can generate

the alerts to the user or the administrator against the un-

authorised access or malicious activities.

There are various classifiers reported in the literature such

as rule learning (Lee et al. 1997), Hidden Markov model

(HMM) (Warrender et al. 1999). But HMM approach

increases resource consumption. Further, k-nearest neighbor

(kNN) (Payne et al. 1997), artificial neural networks (Ghosh

et al. 1999), and a binaryweighted cosinemetric (Rawat et al.

2006) had been also reported in the literature as the classi-

fiers. Till date, a little work has been reported for HIDS in

Cloud environment. Forrest et al. (1996) had proposed a

HIDS using a feed forward artificial network for analysis of

behavior of users. But it was not verified against wireless

environment. The authors had carried out the experimenta-

tions on the synthetic data sets. Using systems ‘default log’,

self similarity measures were calculated by Wespi et al.

(2000) for intrusion detection. But the effort was limited only

to Windows OS.A standard ‘1998 DARPA BSM’ data set

had been used for this analysis. In another approach, IDS

models were invoked according to the severity of the attacks

(Tandon and Chan 2005).The prediction of intrusion had

been carried out by the behavioral analysis of the user. This

approach suffered from increased resource consumption

according to the user’s privilege. Neural network based

anomaly detection (Ying et al. 2010) method’s accuracy was

based on creation of log files and also it was not verified over

the Cloud environment. Statistical method based HIDS

(Vokorokos and Balaz 2010) had been utilized for data

evaluation wherein detection was based on the information

of user activity deviation. HIDS for ARP based attack

detection (Barbhuiya et al. 2011) was limited to a local area

network environment. A data normalization approach (Cai

et al. 2010) for anomaly detection had been also used in IDS.

Agent based IDS had been proposed (Doelitzscher et al.

2012) for Cloud environment. Random forest (RDF) method

(Htun andKhaing 2013) had been employed for prediction of

anomalies along with an analysis using the standard

‘KDD’99 dataset (KDD 1999).

It has been evidenced from the available literature that,

till date, no effort has been initiated to verify the perfor-

mance of the IDS in the real time environment. The

research gaps, based on the reported methods, towards the

deployment of HIDS can be summarized as—

(a) Most of the existing system had used artificial data

sets, rather than the real-time data, for analysis

purpose.

(b) The reported mechanism(s) had a very large training

time for detection of the malicious activity.

(c) For identification of the intrusion, the existing

mechanisms rely on all the system calls rather to

be specific. Alert generation only after analyzing

entire system call trace results into a slow or late

response against the intrusion

(d) Real time IDS for Cloud with early detection of

intrusion never considered in any of the reported

methods.

1.2 Architecture of Cloud with HIDS

The research gaps available from the state-of-the-art steers

to a conclusion that there is a need for a new method to

determine the intrusion in real-time environment. Hence, in

the present work, a HIDS has been initiated with real-time

data analysis. Only a failed system call traces were used to

predict the intrusion. This feature will reduce the burden in

the IDS and generate the early prediction of the intrusion.

The abnormal behavior has been predicted using kNN

classifier. kNN is best suited for a distributed environment

like Cloud computing due to its highly scalable nature.

The proposed IDS framework is based on traditional

IDS with an improvement of adopting a modular approach

and real-time analysis so as to make it work with Cloud

infrastructure. Each component has been designed in a

layered manner with a specific task to carry out. Figure 1

shows the architecture of proposed HIDS. It has a front-end

machine with OpenNebula installation and a host machine

that provides resources to virtual machine (VM). The user

sends request to front-end for accessing the virtualized

resources. Front-end creates VM for the user on the host.

HIDS monitors the VM behavior using the avail-

able modules in the HIDS.

It is very difficult to supervise and identify intrusive

events in the Cloud environment due to thousands of vir-

tual and actual machines and allied inward traffic. Hence,

568 Int J Syst Assur Eng Manag (June 2018) 9(3):567–576

123

each VM must be equipped with an IDS to enforce defense

against internal and external vulnerabilities.

The anomaly detection requires audit logs that are

generated on the target machine itself for identifying the

intrusion. Hence, system call traces have been used for the

purpose of audit logs to monitor the running processes on

the system. It is provided by the OS running over that

machine. Also, they are vulnerable to modification by the

attacker. Hence it forces IDS to identify the attack before it

could manipulate its activity traces as normal. In this work,

for root (administrator) all the audit logs has been ana-

lyzed, whereas for a user, only audit logs of failed pro-

cesses are analyzed. The motivation behind this strategy is,

users unprivileged activities will be failed, which may be

an intrusion. This act will minimize the response time for

alert generation being selective in processes. Some of the

host based information sources in ‘Linux/Ubuntu OS’ are

as follows:

• Accounting: It keeps the record regarding the resource

usage, such as memory, disk, CPU, network usage and

the application or processes invoked by the users

present on the system

• Syslog: It is an audit service made available by the OS to

the application program to store the logs generated by

them. It stores this log information along with the time

stamp and process id of the corresponding application.

Being a daemon process, it is always running in the

system waiting for the information to be logged

• Linux audit: Linux audit framework is shipped along

with ‘SUSE’ enterprise Linux and Ubuntu. Audit

enables users to perform various tasks such as mapping

processes to user, generation of audit report using

‘aureport’ tool, filtering of event of interest at different

levels (user, process, group, system call etc.) and

prevention of audit data loss

Traditional IDS has limitations to identify the intrusion due

to unavailability of unknown attack signatures. Even if

anomalies were detected, it lags in correct identification

of them as intrusions. Hence, a mechanism is required,

which not only identify the intrusions but also alerts the

user very quickly against it. The distinguishing features of

the proposed work from its counterpart’s are:

1. Creation of an indigenous database of normal activities

instead of standard data sets used in (Warrender et al.

1999; Rawat et al. 2006).

2. After process execution, entire trace of a process is not

captured as the process terminated may be invasive one.

Hence, a novel time interval based logging technique has

been proposed to overcome this problem. This approach

reduces the intrusion by identifying it at a very early

stage. A kNN method has been used for comparing the

current information with the available database.

The main steps in devising a simple framework for

deploying HIDS over the Cloud can be summarized as:

Capturing and preprocessing: A module to capture the

system calls trace of running process, filtering of raw

data into useful information and store them in the

database. Same module can be used to capture current

system call traces.

Analysis: A module to match and analyze the informa-

tion obtained after capturing and preprocessing to

Fig. 1 Architecture of HIDS in

Cloud Environment

Int J Syst Assur Eng Manag (June 2018) 9(3):567–576 569

123

identify anomalous behavior. Data mining techniques

has been applied to perform this task.

Control and management: A monitoring unit to initiate

suitable action according to the severity against anom-

alous behavior detected by the analysis component.

Coordination with other IDS in the Cloud environment

has been taken care by this unit.

The intrusion can be identified by the ‘audit log’. Every

system call has been recognized as a word and every

execution of the program is treated as a document. With the

help of kNN classifier, malicious activities can be identi-

fied. The rest of the paper has been organised as: The

proposed work and its methodology are discussed in Sect.

2. The experimentation with their outcomes is reported in

Sect. 3. The article concludes in Sect. 4 along with its

future scope.

2 Modules of the proposed framework

The framework for integrating IDS with the OpenNebula

private Cloud (Deshpande et al. 2013), intermediate steps

in proposed IDS model development and deployment, and

basic work flow of the complete system has been discussed

in this section.

2.1 Proposed intrusion detection model

Security as a service (SaaS) in Cloud had already been

investigated by many researchers. But an IDS as a service

in a Cloud is hardly examined. Also, there is no such

standard framework or architecture developed for setting

up IDS in Cloud. Hence this attempt will help to the Cloud

owner to provide IDS as a service. Figure 2 shows the

component based model for the proposed IDS. The com-

plete system has been divided into four modules.

2.1.1 Data logging module (DLM)

As the name suggests DLM is responsible for recording

the audit logs generated by the application program and

process running in the system. A huge information has

been generated by the application programs for debugging

purpose. But only useful information is recorded using

filters and rules available in data logging components.

System call trace can be carried out by two ways. A

kernel module can be integrated with the kernel to

intercept the system calls invoked by a user process. It

reduces tracing overhead, but very complex to build. A

simpler method is to use an accounting facility which is

provided along with almost every Linux/Ubuntu

distribution.

The second option has been chosen for the present work.

For this purpose ‘Linux audit’ framework is being used. It

is an accounting utility shipped with ‘SUSE’ enterprise

Linux distribution. This can also be installed in Ubuntu.

Figure 3 depicts the Linux ‘audit’ framework.

The various components of audit framework are sum-

marized as:

• auditd: This is an audit daemon continuously running

in the background of the system. As soon as the system

get started ‘auditd’ starts writing the audit information

to ‘audit.log’ generated by the kernel audit interface,

processes and application activities. The initial config-

uration of the ‘audited’ can be managed through its

configuration file available in ‘/etc./sysconfig/auditd’.

Once the ‘auditd’ gets started it can be further

controlled through ‘/etc./auditd.conf’

• audit rules: This rule file is the core component for the

proposed work. By placing appropriate rules, one can

restrict the logging of only those system calls which are

of interest to intrusion detection purpose. This rule file

is loaded with the initiation of the audit daemon.

T
ra

in
in

g
 P

h
as

e

Audit Log

Audit Log

Database

Data Logging Module

Analysis & Decision Engine

Pre-Prosing Module

Management Module

Test
Record

D
at

ab
as

e
C

re
at

io
n

T
estin

g
 P

h
ase &

 L
ive M

o
n

ito
rin

g

Fig. 2 Proposed component

based model for IDS

570 Int J Syst Assur Eng Manag (June 2018) 9(3):567–576

123

• aureport: This utility enables the administrator to

generate custom report and extract useful information

from the raw data logged in the log files. The output of

‘aureport’ can be used in different application for

visualizing the audit logs

• ausearch: It allows the user to customize its search

based on different filters like process id, user id, group

id, system call name and various other keywords of the

logged format

Using ‘auditd’ framework, the failed system calls for a

process are recorded with their frequency. This recording is

carried out, at a time interval of 30 and 60 s, during process

execution and can be expanded as per the requirements.

Due to this novel time based logging technique, a process

can be identified as normal or intrusive. This will enable

early detection of intrusion.

2.1.2 Preprocessing module

To analyze each field in the log file, large disk space is

required to store such logs. Also it is time consuming and

makes resource exhaustion. Therefore, preprocessing has

been initiated to filter out the important feature for popu-

lating the database which can be used later for analysis

purpose. Figure 4 shows the workflow of the preprocessing

module. The preprocessing has been carried out in three

phases as:

• Phase I

The logs obtained from the data logging module

contains fields like record number, date, time, process

id, system call name, process name, user name, etc. Out

of all these information, only two column values i.e.

process id (P_ID) and system call (syscal) are of most

interest. Thus output of this phase is a table containing

two columns with information of a specific process and

its system call. This file is then processed in phase II of

the preprocessing.

• Phase II

In the second phase, the records are aggregated to

calculate the frequency of system calls invoked by

individual process. Here the frequency of each system

call by each process is calculated as a process issues

same system call many a times in span of its execution.

The output of this phase contains a table containing

three columns, namely, process id, system call, fre-

quency. This information is then passed to the phase III.

• Phase III

In the final phase, all the records has been converted

into vectors representing each process with frequency

distribution of system calls, ordered in a predefined

format. Only a specific set of system calls (i.e. failed)

are collected. Therefore, with respect to each process, a

vector is obtained whose cell will contain the frequency

for that particular system call.

2.1.3 Analysis and decision engine (ADE)

This is the core component of the proposed system. It

verifies the test records against a database containing the

reference records by applying data mining algorithm.

Analyzing the system calls for intrusion can be mapped to

the text categorization technique in which similarity

between the documents has been calculated by measuring

the extent of similarity between the words used in those

documents. Various classification and machine learning

techniques were used for text categorization such as

regression models, Bayesian classifiers, decision trees,

nearest neighbor classifiers, neural networks, and support

vector machines (Aggarwal and Zhai 2012).

In text classification, the document with character

strings has been converted into a form appropriate for the

categorization work. A vector space model, in general, is

used for representing the documents in which documents

are transformed into vectors indicating the occurrence of

words in those documents.

A matrix X is used for compilation of documents and

given by X = (xij). Here xij is the value of word i in doc-

ument j. Boolean weighting is the most simple approach

audit.rules audit.conf

auditctl auditd

audispd

audit.log

autrace

aureport

ausearch

KERNELApplication

Fig. 3 Linux ‘audit’

framework

Int J Syst Assur Eng Manag (June 2018) 9(3):567–576 571

123

which sets the weight xij to 1 if the word is present in the

text and otherwise 0.

In the present work, a kNN classifier has been

employed. It works on the postulate that the categorization

of nearby instances is analogous in a vector space. Com-

pared to Bayesian classifier, kNN doesn’t require prior

probabilities as the Bayesian classifier does and hence is

fast in terms of calculations. It is very easy to initiate

recurrent additions in the training document and introduc-

ing new training documents with kNN classifier. This

important aspect of kNN makes it suitable for a very

dynamic and distributed environment of Cloud computing.

kNN classifier grades the neighbor vectors among the

training document, and uses its labels of k most analogous

neighbors to forecast the class of the new document. The

similarity has been estimated with the help of Euclidean

distance or the cosine value between two document vec-

tors. The cosine similarity is defined as—

sim X;Pj

� �
¼

P
ti
2 X \ Pj

� �
xi � pij

Xk k2� Pj

�� ��
2

ð1Þ

where X is the test document; Pj is the jth training docu-

ment; ti is a word shared by X and Pj; xi is the weight of

word ti in X; pij is the weight of word ti in document Pj;

||X||2 is the norm of X, and ||Pj||2 is the norm of Pj. A cutoff

threshold is required to assign the new document to a

known class.

These vectors are then stored in database which is a two

dimensional matrix where each row represent a document

and each column represents a word from the vocabulary.

The value in a cell [i, j] represent the frequency of ‘j’th

word in ‘i’th document. Intrusion detection using the sys-

tem call trace of processes best fits for this kind of cate-

gorization. Hence technique used in this work is too based

on this terminology. An analogy between intrusion detec-

tion using system call trace of processes and text catego-

rization has been described in Tables 1 and 2.

The vectors so obtained after preprocessing phase are

analogous to vectors for documents where each process

maps to a document and its information vector, containing

the frequency of each system call for that process. The flow

chart for analysis and detection of auditlogs has been given

in Fig. 5.

2.1.4 Management module

The component ‘2.1.1 to 2.1.4’ will be collectively deployed

on the VM, whereas management module (MM) works at

front endOpenNebulaCloud infrastructure (Deshpande et al.

Audit Logs

Database

Phase I

Pid System_call

Phase III

Pid System_call Freq
Phase II

Fig. 4 Workflow of the

preprocessing module

Table 1 Document to word matrix

Doc_ID/word Intrusion Detection System ….. Cloud

1 0 1 2 …. 1

2 1 1 1 …. 3

…. …. …. …. …. ….

3 2 3 1 …. 0

Table 2 Process system call matrix

P_ID/syscall Read() Write() Open() ….. Exit()

1890 0 147 237 …. 876

2089 152 145 178 …. 533

…. …. …. …. …. …
3540 245 3 61 …. 450

572 Int J Syst Assur Eng Manag (June 2018) 9(3):567–576

123

2013). The basic role ofmanagement module is to upload the

normal profile database of user to its assigned VMat the time

of system startup. Depending on the severity of intrusion

attack, it will alert the VM user, or even shut it down. In case

of any intrusion, the IDS running on VM reports to man-

agement module to take preventive actions which can vary

from alerting the VM user, suspending a particular VM and

even shutting down of VM.

Each VM on the Cloud will be shipped with a complete

IDS system with mechanism to communicate with the

management module present on front end of the OpenNe-

bula private Cloud. The model has been designed to

incorporate database creation, testing phase, training phase

as well as live monitoring environment. Data logging

module and preprocessing component will be in action for

almost every phase.

Analysis and decision module will not be the part of

database creation phase. Training phase is carried out using

analysis and decision making module as well as the alert

generation module. Testing phase is nothing but off-line

working of IDS in which known data is pushed to evaluate

the accuracy of the system and hence would cover all the

components.

2.2 The work flow

The entire system starts with the creation of normal profile

database for the user whose activities are to be monitored.

This database creation is a one time process. It is carried

out as soon as a new user is added i.e. a new request for

Cloud resource arrives. All the activities were captured

over less than a week time so as to define a normal

behavior of the user. Once the database creation is done, it

is stored at a repository in front end.

Then intrusion detection model undergoes training

phase and testing phase before getting available for live

deployment. In training phase, the database is tuned to the

normal profile of the user. To evaluate the accuracy of the

analysis and decision engine, testing is performed. In this

phase audit logs of known processes are rated as normal or

invasive. Analysis is performed over these records against

the obtained database to check whether it is able to cor-

rectly identify the process as normal or intrusive. The

algorithm of the proposed method is given in the Fig. 6.

3 Implementation and results

The experimentation and results has been discussed in this

section. The system calls which were included in the

dataset and used in the experiment has been listed out here.

3.1 Dataset—system calls

Systems calls are often seen as an interface between user

space and kernel space. This distinction of space is main-

tained for security reasons. User space program can use the

kernel services through the use of system calls. Thus sys-

tem calls are the only way to break the barrier between

these two spaces. The system calls are functions specific to

kernel, they cannot be used directly in the user space

program. Instead, APIs are provided to programmer

through which the system call can be invoked. In order to

change the mode from user to kernel execution, a software

generated interrupt is used which is known as an ‘‘oper-

ating system trap’’. This interrupt is invoked by the inbuilt

library functions provided by the compiler. The system

calls are divided into different categories based on their

functionality, like file system management, process man-

agement, intercrosses communication. The list of system

calls which has been used for monitoring in this work is

given in Table 3.

The results has been estimated using three different real-

time datasets, with a time window of 30 and 60 s. For

analysis of the available traces, a confusion matrix is cre-

ated as given in Table 4. A higher value of ‘True Positive’

detection is desirable for robust IDS.

Further, the performance of the IDS is analyzed by using

various cost functions such as accuracy, true positive rate,

true negative rate, positive prediction value, negative pre-

diction value, false positive rate, false negative rate, false

discovery rate, F1score, informedness and markedness

Start

Test
Record

Compare it
with records
in database Database

Output
Sort the
results

Calculate the
mean value of
‘k’ top records

K> thresholdAnomaly

Normal
Process

Yes

N
o

Fig. 5 Flow chart for analysis and detection of ‘auditlogs’

Int J Syst Assur Eng Manag (June 2018) 9(3):567–576 573

123

(Fawcett 2006).Here threshold value(TT) of 1, 10 and 20

are considered for the classification of the process as nor-

mal or intrusive. The system call traces are analyzed for a

time frame of 30 and 60 s. The system call sequence for

each new process can be scanned and extracted for every

new process. After transformation into a vector, with the

help of Eq. 1, resemblance between the new process and

the normal data set can be calculated. For a similarity score

1, each new process is rated as normal. Otherwise, kNN is

chosen to determine the status of a particular new process.

Here the threshold of classification is set by considering the

average similarity values of kNNs with highest similarity

index. Any new process is considered as normal only when

the average similarity value is above the threshold. During

the verification, the proposed IDS compare each new pro-

cess against the available data set. By estimating the

Euclidian distance between the kNNs and the threshold

value, the particular process has been classified as

1. Construct the standard data set
2. for every process vector ‘Xi’ in test data set do
3. for each process vector ‘Pj’ in database set

4. Calculate distance (Xi,Pj);
5. If distance (Xi,Pj) equals to zero

6. ‘Xi’ is normal;
7. exit;
8. Sort the distance in increasing order;
9. Find ‘k’ top records and calculate their avg (dist);

10. If avg((dist)<threshold)

11. Xi is normal;
12. else
13. ‘Xi’ is abnormal;

Fig. 6 Algorithm for the

proposed method

Table 3 Summary of system calls used for analysis

Categories Description System calls name

File management Create a channel Creat()

Open a file Open()

Close a file Close()

Read into a file Read()

Write into a file Write()

Random access Lseek()

Channel duplication Dup()

Aliasing a file Link()

Removing a link Unlink()

Status of a file Stat(), fstat()

Access control Access(), chmod(), chown(), umask()

Device control Ioctl()

Process management Process creation and termination Exec(), fork(), vfork(), wait(), exit()

Process ownership and group Getuid(), geteuid(), getgid(), getegid()

Process identification Getpid(), getppid()

Process control Kill(), alarm()

Change working directory Chdir()

Inter process communication Pipelines Pipe()

Messages Msgget(), msgsnd(), msgrcv()

Semaphores Semget(), semop()

Shared memory Shmget(), shmat(), shmdt(), mmap(), munmap()

Table 4 Confusion matrix

Test outcome Condition positive Condition negative

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

574 Int J Syst Assur Eng Manag (June 2018) 9(3):567–576

123

normal or else. The characteristics of the proposed method

are summarized in Table 5.

Further the performance of the system had been ana-

lyzed with the help of receiver operating characteristics

(ROC) and area under the curve (AUC) by using different

threshold value. Figure 7 shows the ROC for the proposed

system. The sensitivity of the proposed model is directly

proportional to the threshold value. For a threshold value of

20, the proposed system shows a fair amount of accuracy as

well as sensitivity. The performance of the system can be

improved by a rigorous and continuous observation in the

Cloud environment for updating the data logs in real-time.

From Table 6, it can be evidenced that the threshold

value ‘TT’ and the accuracy and true positive values are

directly proportional to each other. The analysis of various

cost function shows the profoundness of the proposed

method. The average performance of the proposed system

has been summarized in Table 7.

Table 5 Confusion matrix for

system call trace
Duration TT Test Condition positive Condition negative Total

30 s 1 Positive outcome 979 499 1,478

Negative outcome 101 171 272

Total 1,750

10 Positive outcome 1,263 310 1,573

Negative outcome 77 149 226

Total 1,799

20 Positive outcome 1,510 144 1,654

Negative outcome 46 84 130

Total 1,784

60 s 1 Positive outcome 1,180 496 1,676

Negative outcome 87 201 288

Total 1,964

10 Positive outcome 1,429 241 1,670

Negative outcome 106 212 318

Total 1,988

20 Positive outcome 1,711 103 1,814

Negative Outcome 86 96 182

Total 1,996

Fig. 7 ROC for the proposed IDS framework

Table 6 Result comparison

Parameter Dataset-30 s Dataset-60 s

Threshold TT 1 10 20 1 10 20

Sensitivity 0.91 0.94 0.97 0.93 0.93 0.95

Specificity 0.26 0.32 0.37 0.29 0.47 0.48

Precision 0.66 0.80 0.91 0.70 0.86 0.94

Negative predictive value 0.63 0.66 0.65 0.70 0.67 0.53

False positive rate 0.74 0.68 0.63 0.71 0.53 0.52

False discovery rate 0.34 0.20 0.09 0.30 0.14 0.06

Miss rate 0.09 0.06 0.03 0.07 0.07 0.05

Accuracy 0.66 0.78 0.89 0.7 0.83 0.91

F1 score 0.77 0.87 0.94 0.80 0.89 0.95

Informedness 0.16 0.27 0.34 0.22 0.40 0.43

Markedness 0.29 0.46 0.56 0.40 0.52 0.47

Int J Syst Assur Eng Manag (June 2018) 9(3):567–576 575

123

4 Conclusions

A HIDS, based on anomaly detection, for Cloud environ-

ment had been reported in this paper. Based on the

assumption that anomalous behavior is evidently different

from the normal behavior, normal profile for a Cloud user

had been created using the system call trace of applications

and programs running in the system. kNN classifier was

used to classify the system call traces as it allows easy

incorporation of new training document. This feature is

very helpful in highly scalable Cloud environment. Also

instead of monitoring successful system calls, frequency of

failed system calls has been preferred for analysis. Detec-

tion accuracy with a high sensitivity of 96 % indicate a fair

performance of the proposed method. With this method,

accuracy can be increased but at the cost of delayed

detection. In future, the present work can be extended to

frame an adaptive management module for initiating pre-

ventive actions after intrusion detection and the integration

of HIDS and NIDS with the help of updated data logs.

References

Abraham A, Grosan C, Martin-Vide C (2007) Evolutionary design of

intrusion detection programs. Int J Netw Secur 4(3):328–339

Aggarwal C, Zhai C (2012) A survey of text classification algorithms.

In: Mining Text Data. New york, Springer 163–222

Anderson J (1980) Computer security threat monitoring and surveil-

lance, Technical report. James P. Anderson Co., Fort

Washington

Barbhuiya F et al (2011) An active host-based intrusion detection

system for ARP-related attacks and its verification. Int J Net Sec

App 3(3):163–180

Cai L, Chen J, Ke Y, Chen T, Li Z (2010) A new data normalization

method for unsupervised anomaly intrusion detection. J Zhejiang

Uni-SCI C 11(10):778–784

Denning D (1987) An intrusion detection model. IEEE Trans Soft

Eng 13(2):222–232

Deshpande P, Sharma S, Kumar S (2013) Implementation of a private

cloud: a case study. Adv Int Sys Comp 259(2):635–648

Doelitzscher F et al (2012) An agent based business aware incident

detection system for cloud environments. J Cloud Comp Adv

Sys App 1–9. doi:10.1186/2192-113X-1-9

Fawcett T (2006) An introduction to ROC analysis. Patt Recog Lett

27:861–874

Forrest S, Hofmeyr A, Somayaji A, Longsta T (1996) A sense of self

for Unix processes. IEEE Symp Security and Privacy, Oakland,

pp 120–128

Ghosh A, Schwartzbard A, Shatz A (1999) Learning program

behavior profiles for intrusion detection. In: Proceedings of the

Ist USENIX workshop on intrusion detection and network

monitoring, Santa Clara, California, USA, pp 51–62

Htun P, Khaing K (2013) Important roles of data mining techniques

for anomaly intrusion detection system. Int J Adv Res Comp Eng

Tech 2(5):1850–1854

KDD’99 datasets, The UCI KDD Archive Irvine, CA, USA, 1999

[online] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Lee W, Stolfo S,and Chan P (1997) Learning patterns from UNIX

process execution traces for intrusion detection. In: Proceedings

of the AAAI Workshop on AI Models in Fraud and Risk

Management, Stanford, pp 50–56

Modi C et al (2013) A survey of intrusion detection techniques in

cloud. J Netw Comp App 36:42–57

Mukkamala S, Sung A, Abraham A (2004) Designing intrusion

detection systems: architectures and perspectives. Annual review

of communications, The Int Eng Consortium (IEC), Chicago,

57:1229–1241

Payne T et al (1997) Experience with rule induction and k-nearest

neighbor methods for interface agents that learn. IEEE Trans

Knowl Data Eng 9(2):329–335

Rawat S et al (2006) Intrusion detection using text processing

techniques with a binary-weighted cosine metric. J Info Assur

Security 1:43–50

Tandon G and Chan P (2005) Learning useful system call attributes

for anomaly detection. In: Proceedings of the 18th International

Artificial Intelligence Research Society Conference, Florida,

pp 405–410

Vokorokos L. and Balaz A (2010) Host-based intrusion detection

system. In: 14th International Conference on Intelligent Engi-

neering System, Spain, pp 43–47

Warrender C, Forrest S, Pearlmutter B (1999) Detecting intrusions

using system calls: alternative data models. IEEE Symposium on

Security and Privacy, Oakland, pp 133–145

Wespi A, Dacier M, Debar H (2000) Intrusion detection using

variable length audit trail patterns. Recent Adv Intru Det

1907:110–129

Ying L, Yan Z, Jia O (2010) The design and implementation of host-

based intrusion detection system. In: Third International Sym-

posium on Intelligent Information Technology and Security

Information, Jinggangshan, pp 595–598

Table 7 The average characteristics of the proposed method

Dataset used Threshold Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Maintenance

Real-time data capture 1 66 92 27.5 Overhead reduced due to deletion

of VM logs when VM is deleted.10 80.50 93.5 39.5

20 90 96 42.5

576 Int J Syst Assur Eng Manag (June 2018) 9(3):567–576

123

http://dx.doi.org/10.1186/2192-113X-1-9
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	HIDS: A host based intrusion detection system for cloud computing environment
	Abstract
	Introduction
	Present scenario
	Architecture of Cloud with HIDS

	Modules of the proposed framework
	Proposed intrusion detection model
	Data logging module (DLM)
	Preprocessing module
	Analysis and decision engine (ADE)
	Management module

	The work flow

	Implementation and results
	Dataset---system calls

	Conclusions
	References

