
ORIGINAL ARTICLE

Bug prediction modeling using complexity of code changes

V. B. Singh • K. K. Chaturvedi • Sunil Kumar Khatri •

Vijay Kumar

Received: 13 May 2013 / Published online: 7 March 2014

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2014

Abstract Researchers have proposed and implemented a

plethora of bug prediction approaches in terms of different

mathematical models for measuring the reliability growth

of the software and to predict the latent bugs lying dormant

in the software. During the last four decades, software

reliability growth models (SRGM) have been successfully

used to measure the reliability growth of closed source

software. The SRGM developed were based on either

calendar time or on testing effort. In late 90s, due to the

advancement in communication and internet technologies,

the development of open source software gets an edge and

is proven to be very successful in different fields. Recently,

researchers have measured the latent bugs in the open

source software using an SRGM which has been developed

for closed source software and concluded that the existing

SRGM can well predict the latent bugs, but, still, it needs

more investigation. In open source software, the source

codes are frequently changes (the complexity of code

changes) to meet the new feature introduction, feature

enhancement and bug repair. In this paper, we have

developed two complexity of code changes/entropy based

bug prediction models namely (i) time vs entropy and (ii)

entropy vs bugs. We have compared the proposed models

with the existing time vs bugs SRGM. The empirical work

has been carried out using three subsystems of Mozilla

project. The statistical significance of different approaches

has been tested using a non-parametric Kolmogorov–

Smirnov (K–S) test. The bug prediction approaches have

been compared on the basis of various performance mea-

sures namely R-Square (R2), Adjusted R-Square (adj. R2),

Bias, variation and root mean square prediction errors. We

found that the potential complexity of code changes based

bug prediction approach i.e. time vs entropy is better over

the time vs bugs and entropy vs bugs on the basis of dif-

ferent comparison criteria and statistical test.

Keywords Bug prediction � Entropy � Software reliability

growth models � Complexity of code changes

1 Introduction

In open source software, the requirements of the users are

dynamic and large number of requests for bug fixes, feature

enhancement and new feature introduction are reported

through bug/issue reporting system. Software source codes

are modified or enhanced to satisfy the user’s need. The

V. B. Singh (&)

Delhi College of Arts & Commerce, University of Delhi, Delhi,

India

e-mail: vbsinghdcacdu@gmail.com

K. K. Chaturvedi

Department of Computer Science, University of Delhi, Delhi,

India

e-mail: kkcchaturvedi@gmail.com

K. K. Chaturvedi

Indian Agricultural Statistics Research Institute (ICAR),

New Delhi, India

S. K. Khatri

Amity Institute of Information Technology, Amity University

Uttar Pradesh, Noida, India

e-mail: sunilkkhatri@gmail.com

V. Kumar

Department of Mathematics, Amity School of Engineering and

Technology, New Delhi, India

e-mail: vijay_parashar@yahoo.com

123

Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60

DOI 10.1007/s13198-014-0242-5

enormous changes in the code make the software complex

over a period of time. These changes increase the com-

plexity of the code which also leads to the introduction of

bugs. The changes are being made continuously in the

software to remove the bugs, enhance the features and

implement the new functionalities. The open source soft-

ware/projects are being built through the contributors from

diverse communities and keep on improving rapidly. The

code complexity is one of the major attribute which

determines the quality and reliability of the software. Many

contributors are making changes in the source code of the

software to produce the quality software in limited time. It

is getting difficult to remember all those changes com-

mitted in the code which makes source code complex. The

contributors are interacting with each other through the

discussion forums/mailing lists etc. Three types of code

changes occur in the source code namely, bug repair/bug

fix, feature enhancement and addition of new features.

Bugs are generated in the software mainly due to mis-

communication or no communication among active users,

frequently changing requirements, early release pressures,

occurrence of programming errors, increasing software

complexity, and bugs present in software development

tools itself.

Entropy, an information theory based measure is

defined as a measure of randomness/uncertainty/com-

plexity in the code changes. This has been earlier

attempted to quantify the code change and predict the bugs

based on past defects using entropy (Hassan 2009). The

software reliability growth models (SRGM) based on

calendar time and testing efforts (time vs bugs) have been

proposed in the literature and widely used in the industry

(Goel and Okumoto 1979; Musa et al. 1987; Ohba 1984;

Yamada et al. 1983; Singh et al. 2007; Pham 2006; Trivedi

2001; Xie 1991) .

In this paper, we have proposed models to determine the

latent bugs lying dormant in the software by using two

approaches namely, time vs entropy and entropy vs bugs.

The proposed models have been developed in the line of

existing SRGM. These approaches are summarized as

follows:

Time vs bugs

(reliability

growth models)

In this approach, the reliability

growth models namely expo

nential (Goel and Okumoto

1979), delayed S-Shaped (Yamada

et al. 1983), inflected delayed

S-shaped (Ohba 1984) and power

function (Singh et al. 2007) based

models have been used to predict

the potential bugs lying dormant in

the software

Time vs entropy

(potential complexity

of code changes/

entropy based model)

Using this approach, we firstly

predict the potential complexity

of code changes/entropy and

then it has been used to predict

the potential bugs

Entropy vs bugs

(complexity of code

changes based models)

In this approach, we have

proposed and developed the

complexity of code changes

based bug prediction models

To study the various bug prediction practices/approa-

ches mentioned above, we have proposed the following

research hypothesis:

Null hypothesis: The bug prediction approaches namely

time vs bugs, time vs entropy and entropy vs bugs have

no significant difference.

Alternate hypothesis: The bug prediction approaches

namely time vs bugs, time vs entropy and entropy vs

bugs have a significant difference.

The proposed models in the study have been applied to

various components of Mozilla software to carry out the

empirical analysis. The statistical significance has been

tested using non parametric Kolmogorov–Smirnov (K–S)

statistical test. The bug prediction scenario has been vali-

dated using R-squared (R2), Adjusted R2 (Adj. R2), bias,

variation and root mean square prediction errors (RMSPE).

The rest of the paper is divided into nine sections. Sect 2

describes the review of work available in the literature.

Sect 3 defines the complexity of code changes. Sect 4

discusses bug prediction approaches and modelling. Sect 5

mentions the procedure of data collection and data pre-

processing. In Sect 6, the results and discussions of the

models are discussed. The managerial applications and

threat to the validity has been discussed in Sects 7 and 8

respectively. Finally, the paper is concluded in Sect 9.

2 Review of work

A variety of approaches have been proposed in the litera-

ture for bug prediction such as software reliability growth

models (Goel and Okumoto 1979; Huang et al. 1997; Ka-

pur and Garg 1992; Kapur et al. 1999, 2008; Lyu 1996;

Musa et al. 1987; Ohba 1984; Yamada et al. 1983), code

metrics (lines of code) (Arisholm and Briand 2006; Gy-

imothty et al. 2005; Nagappan and Ball 2005a; Nagappan

et al. 2006), process metrics (number of changes) (Hassan

2009; Nagappan and Ball 2005b) and previous defects

(Hassan and Holt 2005; Kim et al. 2007; Ostrand et al.

2005). Reliability models have been developed to predict

failure rates based on the expected operational usage

Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60 45

123

profile of the system. Defect detection rate during testing

process was used to predict defects with an objective to

reduce the software defects. The defects are minimized, if

we incorporate the changes early in design and testing

phases (Fenton and Neil 1999). The number of changes and

the age of a module provide a good prediction over other

product measures (Graves et al. 2000). The chaos in soft-

ware and code development process has been studied in the

literature and concluded that a complex process of coding

had a negative effect of producing a complex system

(Hassan and Holt 2003a, b). Researchers proposed in the

literature that a prior modification to a file is a good pre-

dictor to determine the fault potential in the software

(Arisholm and Briand 2006; Graves et al. 2000; Khosh-

goftaar et al. 1999; Leszak et al. 2002). There is no single

set of metrics which can predict bugs of multiple projects

(Nagappan et al. 2006). A combination of product and

process measures to predict the defect density using a

decision tree algorithm was developed and validated with

Mozilla releases. It is also concluded that the process

measures are performing well over the product measures

for bug prediction (Knab et al. 2006). A comparative study

has been conducted for bug prediction using change met-

rics and code metrics for different releases of Eclipse and

found that change metric gives better performance over the

code metric (Moser et al. 2008). Change metrics achieve

better prediction performance in the case of effort aware

prediction models which consider the effort required for

testing and code reviews (Kamei et al. 2010). History

complexity metric (HCM) as a process measure has been

proposed in the literature for bug prediction and compared

with other approaches namely prior faults, prior modifi-

cations and complexity metrics. It is concluded that the

proposed complexity metric is a better predictor of faults as

compared to product measures (Hassan 2009). A bench-

mark study was conducted on defect prediction approaches

and provided an extensive study to compare these models

and metrics using decay based models (D’Ambros et al.

2010, 2012). A mathematical model was proposed to study

the diffusion of the complexity of code changes in software

and predicted the potential complexity of code changes

(Chaturvedi et al. 2012). Recently, an attempt has been

made to propose generalized decay models to measure the

historical complexity metric with an intuition that the

effect of code change can be reduced over a period (Singh

and Chaturvedi 2012). Further, the authors applied support

vector machine technique for regression and predicted the

next year expected bugs based on the current year com-

plexity of code changes/entropy (Singh and Chaturvedi

2013). To the best of our knowledge, no effort has been

made to develop the complexity of code changes based

mathematical models for predicting potential bugs. This

paper investigates the applicability of the complexity of

code changes based bug prediction. A comparison with the

existing reliability growth models has been also proposed.

3 Complexity of code changes

The information theory deals with assessing and defining

the amount of information contained in a message is

measured as the amount of uncertainty or entropy of the

distribution. The entropy Hn is defined by (Shannon 1948)

as

HnðPÞ ¼ �
Xn

k¼1

ðPk log2 PkÞ ð1Þ

where Pk C 0 and
Pn

k¼1

Pk ¼ 1

where n is the number of files and the value of k varies

from 1 to n. For a distribution P, where all the files have the

same probability of changes ðPk ¼ 1=n; 8 k ¼ 1; 2; . . .; nÞ,
we achieve maximum entropy. On the other hand for a

distribution P where a file i has a probability of code

changes i.e., Pi ¼ 1and Vk = i, Pk = 0, we achieve a

minimal entropy.

The entropy for this period can be calculated by

substituting the values of these probabilities in Eq (1).

From the definition, it is clear that the entropy will be

maximum, if the changes are in every file. On the other

hand, it will be minimum if the changes are occurring in a

single file.

Code change process means to study the patterns of

source code modifications. These modifications/changes

are occurring due to bug repairs (BR), feature enhance-

ment/modification (EM) and the addition of new features

(NF). BR is the changes or modifications made in the code

due to fixing of the bug. EM is the changes made due to

some cosmetic changes like format, alignment, justifica-

tion, comments etc. NF is the changes made in the code due

to incorporation of new features or new components. These

changes make the software code complex and may produce

a system with new bugs. If the developer does not under-

stand source code properly before performing changes/

modifications in the source code, the release or new version

of the software may get delayed. The frequent changes in

the code may also negatively affect the software system in

terms of its overall quality, reliability and sustainability.

The entropy based estimation may be helpful in studying

the code change process. Code change quantifies the pat-

terns of changes instead of simply measuring the number of

changes to measure the effect of changes in code structure.

This measurement is called the complexity of code chan-

ges. These changes can be studied at a source code level

with granularity at package/file/class/method/variable at

46 Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60

123

the code level. These changes are measured at a specific

duration which can be anything ranging from hours to year/

decades depending on the frequency of updates/changes in

the code. The complexity of code changes is calculated

based on the number of changes in a file for specific

periods. The period can be taken as a day, week, month,

year etc. based on the total duration of the project or the

number of changes occurs.

Hassan (2009) proposed and used entropy to measure

the complexity of code changes. The probability Pk is

defined as the ratio of the number of times kth file changed

during a period and the total number of changes for all files

in that period.

For example, suppose that there are 15 changes occurred

in four files and three periods. These changes are shown in

Fig. 1. For a first period T1, there are five changes occurred

across all four files namely F1, F2, F3 and F4. There are

eight changes in period T2 and two changes in period T3.

All the four files are affected in period T2 and only two

files are affected in period T3. The probability of these

changes in files F1, F2, F3, and F4 during the period T1

will be 1/5 (=0.2), 1/5 (=0.2), 2/5 (=0.4) and 1/5 (=0.2)

respectively. These probabilities have been shown in

Fig. 1. By using these probabilities, we calculate the

entropy and complexity of code changes for all the periods.

4 Bug prediction approaches and modelling

In this section, we firstly discussed the mathematical

models used for measuring the reliability growth of soft-

ware and after that on the line of these models, new models

have been proposed to measure the potential complexity of

code changes for bug prediction and to predict the bugs

based on the complexity of code changes.

Notations

t Time

X Potential bugs

m(t) Bugs occurred/removed up to time t

b Bug detection/removal rate

b Constant and [0

H0 Potential complexity of code changes

H(t) Complexity of code changes at time t

c Rate of complexity of code changes

v Constant and [0

Z Potential bugs due to the complexity of code

changes

m(H(t)) Bugs occurred/diffused/removed up to H(t)

g Rate of bug occurrence/diffusion in the software

due to the code changes

d Constant and [0

k Constant used in power function

4.1 Time vs bugs (reliability growth models)

In this approach, the reliability growth models namely GO

(Goel and Okumoto 1979), Yamada delayed S-shaped

(Yamada et al. 1983), inflected S-shaped (Ohba 1984),

Kapur-Garg Model (Kapur and Garg 1992) and the

instruction execution dependent models (Singh et al. 2007)

have been used to predict the potential bugs.

There are several existing well-known non-homogenous

poisson process (NHPP) models with different mean value

functions. The mean value function m(t) is described as the

expected cumulative number of bugs in (0, t] time interval.

The SRGM are based on the following assumptions.

It has been observed that the relationship between the

time and the corresponding number of bugs detected/

removed is either exponential or S-shaped. Let [N(t), t C 0]

denote a discrete counting process representing the cumu-

lative number of failures experienced (fault removed) up to

time t, i.e., N(t), is said to be a non-homogeneous poisson

process (NHPP) with intensity function k(t), if it satisfies

the following conditions:

There are no failures experienced at a timet = 0, i.e.,

N(t = 0) = 0 with probability 1.

The process has independent increments, i.e., the num-

ber of failures experienced in time interval, i.e.,

N(t ? Dt) - N(t), is independent of the history. Note this

assumption implies the Markov property that N(t ? Dt) of

the process depends only on the present state N(t) and is

independent of its past stateN(x), for x \ t.

The probability that a failure will occur during

(t, t ? Dt] is k(t)Dt ? o(Dt), i.e., Pr [N(t ? Dt) -

N(t) = 1] = k(t) ? o(Dt). Note that the function o(Dt) is

defined as

lim
Dt!0

oðDtÞ
Dt
¼ 0

Fig. 1 Number of changes in files with respect to a specific period of

time

Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60 47

123

In practice, it implies that the second or higher order

effects of Dt are negligible.

The probability that more than one failure will occur

during (t, t ? Dt] is o(Dt), i.e., Pr [N(t ? Dt) -

N(t) [1] = o(Dt).

The bug detection/removal process can be described as

dmðtÞ
dt
/ ðX � mðtÞÞ or

dmðtÞ
dt
¼ bðtÞ X � mðtÞð Þ ð2Þ

Here, b(t)is time dependent bug detection/removal rate.

Solving Eq (2) with initial condition, m(0) = 0 at a time

t = 0, we get

mðtÞ ¼ X 1� e
�
R t

0
bðtÞ dt

� �
ð3Þ

By putting different value of b(t) in Eq (3) and solving

with initial condition m(0) = 0, we get SRGM as follows

in (Goel and Okumoto 1979; Ohba 1984; Yamada et al.

1983; Singh et al. 2007). These models for different values

of b(t) have been shown in Table 1.

In the above approach, the models have been developed

by taking the calendar time i.e., t. These models have not

been linked to the source code changes. In the following

sections, we have proposed and developed models based on

the source code changes i.e., the complexity of code changes.

4.2 Time vs entropy (potential entropy based model)

Using this approach, we firstly predict the potential com-

plexity of code changes/entropy and after that the potential

complexity of code changes has been used to predict the

potential bugs lying dormant in the software.

The function H(t) is called the mean value function and

describes the expected complexity of code changes in (0, t]

time interval as described below by different mathematical

models. The diffusion of the complexity of code changes in

software has been described by the following equation:

dHðtÞ
dt
/ ðH0 � HðtÞÞ or

dHðtÞ
dt
¼ cðtÞ H0 � HðtÞ½ � ð4Þ

Here, c(t) is rate at which the code are changes i.e., the

complexity of code changes.

Solving the Eq (4) with initial condition, H(0) = 0 at a

time t = 0, we get

) HðtÞ ¼ H0 1� e
�
R t

o
cðtÞdt

� �
ð5Þ

We take different value of c(t) to derive different models

which are shown in Table 2.

We calculate the potential complexity of code changes

diffused in the software using proposed models i.e., Model

7 to Model 12 which are shown in Table 2. After getting

the potential complexity of code changes, we apply simple

linear regression to find the potential bugs diffused in the

software.

The simple linear regression (Weisberg 1980) has been

fitted with the complexity of code changes as independent

variable H(t) and bugs detected as dependent variable m(t)

using an equation

mðtÞ ¼ b0 þ b1 � HðtÞ ð6Þ

where b0 and b1 are regression coefficients

After getting the regression coefficients b0 and b1, we

obtain the potential bugs X for potential entropy H0 in the

software by putting the value of the potential complexity of

code changes obtained from the above proposed models

shown in Table 2.

Table 1 Time vs bugs (existing software reliability growth models)

Mean value function, mðtÞ ¼ X 1� e
�
R t

0
bðtÞ dt

� �

b(t) = b Model 1: m(t) = X(1 - e-bt) Reference (Goel and Okumoto 1979)

bðtÞ ¼ b2t
1þbt

Model 2: m(t) = X(1 - (1 ? bt)e-bt) Reference (Yamada et al. 1983)

bðtÞ ¼ b
ð1þbe�btÞ Model 3: mðtÞ ¼ X

ð1�e�btÞ
ð1þbe�btÞ

Reference (Kapur and Garg 1992; Ohba 1984)

b(t) = btk Model 4: mðtÞ ¼ X 1� e�
btkþ1

kþ1

h i
Reference (Singh et al. 2007)

bðtÞ ¼ b2 tkþ1

kþ1

1þbtkþ1

kþ1

Model 5: mðtÞ ¼ X 1� 1þ b tkþ1

kþ1

� �
e�

btkþ1

kþ1

� �� 	
Reference (Singh et al. 2007)

bðtÞ ¼ btk

1þbe
� btkþ1

=kþ1ð Þ Model 6: mðtÞ ¼ X 1�e
� btkþ1

kþ1

� �

1þbe
� btkþ1

kþ1ð Þ

" #
Reference (Singh et al. 2007)

If k = 0, model 4, model 5 and model 6 reduces to model 1, model 2 and model 3 respectively

48 Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60

123

4.3 Entropy vs bugs (complexity of code changes)

In this approach, we have developed the complexity of

code changes based models for bug prediction.

The function m(H(t)) is the mean value function and

describes the expected cumulative potential complexity of

code changes in (0, H(t)) interval. The bug diffusion/

detection process can defined as

dmðtÞ=dt

dHðtÞ=dt
/ Z � mðHðtÞÞ½ � or

dmðtÞ=dt

dHðtÞ=dt
¼ gðHðtÞÞðZ � mðHðtÞÞÞ

ð7Þ

g(H(t)) is the rate of bug occurrence/diffusion in the

software due to the complexity of code changes at any

given time t.

With the initial conditions H(0) = 0 at the time t ¼ 0;

by solving the above equation, we get

mðtÞ ¼ Z 1� e
�
R t

0
gðHðtÞÞdðHðtÞÞ

� �
ð8Þ

If we take different values of g(H(t)) in Eq (8), we get

different proposed models based on these values as shown

in Table 3.

The existing and proposed models are shown in

Tables 1, 2 and 3. The unknown parameters of the models

have been estimated using Statistical Package for Social

Sciences (SPSS) software.

5 Data collection and preprocessing

We have taken the complexity of code changes of ‘‘mozilla/

layout/svg/’’, ‘‘mozilla/layout/base/’’, and ‘‘mozilla/layout/

xul/’’ of the Mozilla project (The Mozilla project 2013) and

the bugs which have been reported in BugZilla (The bugZilla

project 2013) bug reporting and tracking system. The process

Table 2 Time vs entropy (proposed potential complexity of code changes based models)

Mean value function, HðtÞ ¼ H0 1� e
�
R t

o
cðtÞdt

� �

c(t) = c Model 7: H(t) = H0 (1 - e-ct)

cðtÞ ¼ c2t
1þct

Model 8: H(t) = H0 (1 - (1 ? ct)e-ct)

cðtÞ ¼ c
1þve�ctð Þ Model 9: HðtÞ ¼ H0

1�e�ctð Þ
1þve�ctð Þ

c(t) = ctk Model 10: HðtÞ ¼ H0 1� e�
ctkþ1

kþ1

� �

cðtÞ ¼ c2 tkþ1

kþ1

� �

1þctkþ1

kþ1ð Þ Model 11: HðtÞ ¼ H0 1� 1þ c tkþ1

kþ1

� �
e�

ctkþ1

kþ1

� �� 	

cðtÞ ¼ ctk

1þve
� ctkþ1

kþ1ð Þ
� �

Model 12: HðtÞ ¼ H0

1�e
� ctkþ1

kþ1

� �� �

1þve
� ctkþ1

kþ1ð Þ
� �

2
4

3
5

If k = 0, model 10, model 11 and model 12 reduces to model 7, model 8 and model 9 respectively

Table 3 Entropy vs bugs (proposed complexity of code changes based models)

Mean value function, mðtÞ ¼ Z 1� e
�
R t

0
gðHðtÞÞdðHðtÞÞ

� �

g(H(t)) = g Model 13: m(H(t)) = Z(1 - e-gH(t))

gðHðtÞÞ ¼ g2HðtÞ
1þgHðtÞ

Model 14: m(H(t)) = Z(1 - (1 ? gH(t))e-gH(t))

gðHðtÞÞ ¼ g

1þde�gHðtÞð Þ Model 15: mðHðtÞÞ ¼ Z
1�e�gHðtÞð Þ
1þde�gHðtÞð Þ

g(H(t)) = gH(t)k

Model 16: mðHðtÞÞ ¼ Z 1� e�
gHðtÞkþ1

kþ1

� �� 	

gðHðtÞÞ ¼ g2HðtÞkþ1

kþ1

� �

1þg
HðtÞkþ1

kþ1

� � Model 17: mðHðtÞÞ ¼ Z 1� 1þ g
HðtÞkþ1

kþ1

� �
e�

gHðtÞkþ1

kþ1

� �� 	

gðHðtÞÞ ¼ gHðtÞk

1þde
� gHðtÞkþ1

kþ1

� �
 !

Model 18: mðHðtÞÞ ¼ Z 1�e
� gHðtÞkþ1

kþ1

� �

1þde
� gHðtÞkþ1

kþ1

� �
 !

If k = 0, model 16, model 17 and model 18 reduces to model 13, model 14 and model 15 respectively

Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60 49

123

of data collection, extraction and model building are shown in

Fig. 2. These subsystems are selected as test cases and his-

torical changes of the files of these subsystems are extracted

from the concurrent versioning system (CVS) logs repository.

After extracting data from the repository, monthly number of

changes and the number of bugs occurred/fixed during that

period have been recorded for all the files.

These bugs are arranged based on their first appearance

for a fix and remaining duplicate entries of these bugs are

discarded. In this study, we have considered the period as

the calendar months of a year. There are 52 files in the

subsystem ‘‘mozilla/layout/svg/’’, 60 files in the subsystem

‘‘mozilla/layout/base/’’, and 106 files in the subsystem

‘‘mozilla/layout/xul/’’. The methodology for data collection

and modelling are as follows:

Step 1 Choose the project

Step 2 Select the sub-systems

Step 3 Browse the CVS logs for historical changes

a. Arrange the files as per their commit/transaction

date of the changes

b. Count month wise changes with respect to

various files in the chosen sub-system

c. Calculate entropy/complexity of code changes

of the files

Step 4 Browse the CVS logs for historical changes

a. Extract the bugs detected/removed during the

period under consideration

b. Arrange the bugs as per their arrival or first

appearance and remove other duplicate

occurrences

c. Count month wise bugs of the chosen sub-

system

Step 5 Build the Prediction Models using different

approaches

Step 6 Determine the potential complexity of code

changes and the potential number of bugs in the

software

Step 7 Apply the K–S test for statistical significance

using data in step6

Step 8 Calculate the entropy of the current period and

predict the number of bugs for the coming year

These detected/removed bugs are extracted from the

CVS log repository and confirms with the bug reporting

system. A sample of CVS logs in a particular file of the

specific subsystem is also shown in Fig. 3.

In Fig. 3, date wise changes are recorded for a spe-

cific file nsBidiPresUtils.h with a specific bug in the log

entry.

Fig. 2 Process for building the

entropy based prediction models

50 Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60

123

Prediction

Error (Pred.

Error)

It is the difference between observed value

and predicted value. The lower value

of Prediction error indicates less fitting

error, thus indicates better goodness of fit

Pr ed:Error

¼ ðObservedValue� Pr edictedValueÞ

Bias It is the average of prediction error.

Lower the value of bias, provides better

goodness of fit

Bias ¼
P
ðObserved � PredictedÞ

n

Variation The standard deviation of prediction

error is known as variation. Lower value

of variation indicates

better goodness of fit

Root mean

squared

prediction

error

(RMSPE)

It is a measure of closeness with

which a model predicts the observation.

Lower value of RMSPE provides better

goodness of fit

RMSPE

¼
ffi
ðBias�BiasþVariation�VariationÞ

p

Coefficient of

determination

(R-square)

This coefficient is defined as the ratio of the

sum of squares between corrected and

residuals subtracted from 1. This measure is

used to test the significant trend

between predicted and observed values.

R2 ¼ 1� CorrectedSS

Re sidualSS

R2 measures the total variation about the

mean for the fitted curve. It ranges in value

from 0 to 1. Lower values indicate that

the model does not fit the data well and the

larger R2 indicates the better fit of the model

and able to explain the variation in data

Kolmogorov–

Smirnov (K–

S) test

The K–S test is a non-parametric test and it

is free from the distribution. It does not

consider any assumption about the data.

This test is able to provide the distance

between the observed and predicted curve

with the confidence level in terms of proba

bility.Lower the value of distance and higher

the value of probability provides the signifi

cantly improved performance of the model

Fig. 3 CVS log output of the

subsystem of Mozilla (Source:

http://bonsai.mozilla.org/cvslog.

cgi?file=mozilla/layout/base/

nsBidiPresUtils.h&rev=

HEAD&mark=1.29)

Variation ¼
ffiP
ðPr ed:Error � BiasÞ � ðPr ed:Error � BiasÞ

n� 1

r

Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60 51

123

http://bonsai.mozilla.org/cvslog.cgi?file=mozilla/layout/base/nsBidiPresUtils.h&rev=HEAD&mark=1.29
http://bonsai.mozilla.org/cvslog.cgi?file=mozilla/layout/base/nsBidiPresUtils.h&rev=HEAD&mark=1.29
http://bonsai.mozilla.org/cvslog.cgi?file=mozilla/layout/base/nsBidiPresUtils.h&rev=HEAD&mark=1.29
http://bonsai.mozilla.org/cvslog.cgi?file=mozilla/layout/base/nsBidiPresUtils.h&rev=HEAD&mark=1.29

The trends of complexity of code changes/entropy and

bugs for the considered subsystem under study are shown

in Figs. 4, 5 and 6 for subsystems SVG, Base and XUL

respectively. It is clear from these figures that the entropy

and bugs fixed/occurred are highly correlated.

6 Results and discussions

The data has been collected for three subsystems of layout

components of Mozilla namely SVG, Base, and XUL. The

entropy/complexity of code changes is calculated on a

Fig. 4 Entropy and bug

occurrence trends of SVG

dataset

Fig. 5 Entropy and bug

occurrence trends of base

dataset

Fig. 6 Entropy and bug

occurrence trends of XUL

dataset

52 Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60

123

monthly basis with respect to changes in the files of these

subsystems. The parameters of these models have been

estimated by applying the non-linear regression in SPSS.

Simple linear regression has been applied between the

complexity of code changes and bugs to obtain the

regression coefficients. These regression coefficients have

been used to calculate the potential bugs based on the

potential complexity of code changes estimated using

entropy based models. The statistical performance and

regression coefficients for the considered data sets are

shown in Table 4. The values of R2 are found more than

98 % in all cases. The standard error of the estimates has

been found to be 19.0108, 48.8429 and 20.6138 for SVG,

Base and XUL respectively which shows the appropriate-

ness of the model fitting.

We have estimated the parameters of different proposed

models with respect to all the cases i.e., namely software

reliability growth models, the potential complexity of code

changes based models and the complexity of code changes

based models using the SPSS package.

The parameters of SRGM based models developed in

literature i.e., from Model 1 to Model 6 are estimated using

nonlinear regression and the results of this estimation is

shown in Table 5. The value of R2 is more than 0.99 for all

the models across all the datasets except models mentioned

Model 1 and Model 2 for SVG dataset. The bug detection/

removal rate i.e., b is varied from 0.001 to 0.095 for SVG,

0.001–0.013 for Base and 0.001–0.021 for XUL datasets.

Model 1 does not give the accurate value of the parameters

as this model is exponential in nature and does not fit on

SVG dataset. Estimated potential bugs are shown in

Table 5 in the third column as X. The potential bugs for the

Model 1 is in the range of 195,400, 12,450 and 9,845 for

datasets SVG, Base and XUL respectively. Model 1 is not

fitted well as shown by the value of R2 for the SVG dataset.

The value of b is also much less for this dataset i.e.,

1.71E-05. If we further look into the table, we found that

the values of X for the Model 2 are also very large i.e.,

1,532 with the R2 0.845. In the rest of the other cases

shown in Table 5, the value of R2 is more than 0.99 and the

potential bugs are within the range.

The goodness of fit curve has been shown in Figs. 7 and

8 for the models which give the maximum fit on the basis

of R2 for given datasets. The results are confirmed by

drawing the goodness of the fit curve for the Model 3 and

Model 6 in the Figs. 7 and 8 respectively. Model 3 fits well

with the predicted bugs and the actual bugs lying/detected

in the software. Model 6 shows the large variation for SVG

and Base dataset in the later part of the software mainte-

nance. Larger value of b shows the poor maintenance (bug

removal is delayed) in SVG as compared to smaller value

of b for XUL dataset. The value of k is found significant in

all the models namely Model 4, Model 5 and Model 6

using power functions. For management decision we

observed that the predicted potential bugs using Model 3,

4, 5 and 6 are closer to the detected bugs i.e., 488 for SVG

data set. The difference in R2 value of these models is also

non-significant. For Base data set, the Model 3 and Model

6 are estimated potential bugs closer to the detected bugs.

These models are also showing the improved performance

in terms of R2 which is significant. For XUL data set,

Model 2, Model 3 and Model 5 shows the significantly

closer potential bugs with the detected bugs in the com-

ponent i.e., 922. But the R2 is improved only in case of

Model 4 and Model 6 which have a significantly higher

value of potential bugs.

The parameters of the potential complexity of code

changes based models proposed in Model 7 to Model 12

Table 4 Statistical performance parameters of entropy vs bugs using

simple linear regression

Data

sets

Regression

parameters

R2 Adjusted

R2
Std. error of the

estimate

b0 b1

SVG -27.9694 8.1371 0.9875 0.9873 19.0108

Base -144.8785 14.4216 0.9923 0.9923 48.8429

XUL -41.5977 6.7249 0.9953 0.9953 20.6138

Table 5 Parameter estimates for different models of time vs bugs

(software reliability growth models)

Data sets Models Parameter estimates

X b b k R2

SVG Model 1 195,400 1.71E-05 – – 0.677

Model 2 1,532 0.01 – – 0.845

Model 3 558 0.095 17.14 – 0.997

Model 4 515 9.28E-11 – – 0.996

Model 5 541 1.41E-06 – 2.507 0.995

Model 6 515 0.001 32.22 1.295 0.998

Base Model 1 12,450 0.001 – – 0.953

Model 2 3,179 0.013 – – 0.998

Model 3 2,032 0.03 12.241 – 0.996

Model 4 2,377 0.001 – 0.792 0.996

Model 5 2,567 0.011 – 0.098 0.995

Model 6 2,021 0.005 3.554 0.349 0.996

XUL Model 1 9,845 0.001 – – 0.987

Model 2 1,255 0.021 – – 0.991

Model 3 1,330 0.021 4.00 – 0.993

Model 4 1,709 0.002 – 0.346 0.994

Model 5 1,255 0.021 – 0 0.991

Model 6 1,418 0.005 1.102 0.228 0.994

Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60 53

123

has been estimated using nonlinear regression and the

results are shown in Table 6. The value of R2 is more than

0.99 for all the models across all the datasets except model

discussed in Model 8 and Model 9 for SVG dataset. For

model mentioned in the Model 8 does not give the accurate

value of the parameters as this model is exponential and

does not fit on SVG dataset. This potential entropy or

potential complexity of code changes will help in pre-

dicting the future potential bugs lying dormant in the

software using simple linear regression. These regression

parameters shown in Table 4 are used with the potential

complexity of code changes to determine the potential bugs

lying dormant in the software. These potential bugs are

shown as the last column of the Table 6. The goodness of

fit curve has been shown in Figs. 9 and 10 for the models

which give the maximum fit on the basis of R2.

From the Table 6, it is also clear that the potential bugs

with respect to Model 7 are found 246,933, 16,209 and

6,298 for SVG, Base and XUL respectively. The value of

R2 for Model 7 and Model 8 are 0.784 and 0.971 for SVG

dataset. The value of R2 is more than 0.99 in the rest of the

other models and datasets. The rate of complexity of code

changes is also in the range of 0.001–0.06 for all the pro-

posed models based on the complexity of code changes.

The potential bugs predicted using all these proposed

models are at par with the actual bugs except Model 7.

Model 8 which is overestimated and also showing the poor

value of R2 i.e., 0.971 for SVG dataset.

For SVG data set, the value of potential bugs for Model

9, Model 10 and Model 12 give fair value against the bugs

detected i.e., 488. This shows that the remaining bugs still

need to be removed from the software. Since, Model 9 and

Model 12 gives better R2, we will trust these models for

determining remaining bugs yet to be removed from the

software. For Base data set, the potential bugs are esti-

mated at par i.e., 1,621 for the Model 8, Model 9, Model 11

Fig. 7 Goodness of fit for

model defined in Model 3

Fig. 8 Goodness of fit for

model defined in Model 6

54 Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60

123

and Model 12. By the comparison between these models

based on value of R2, it is found that for Model 9 and

Model 12 with 0.999 and 0.998 are slightly improved over

other models. Similar trends have also been observed in the

XUL data set with the potential bugs are estimated at 922

which is closer to the predicted potential bugs lying in the

software. The Model 9 and Model 12 show the improved

performance over other models. The goodness of fit curves

is shown in Figs. 9 and 10 for Model 9 and Model 12

respectively. The curve with respect to SVG dataset shows

the best fit using both these models.

The parameters related to complexity of code changes

with respect to bugs detected/removal for Model 13 to

Model 18 has been estimated using nonlinear regression

and the result is shown in Table 7. The value of R2 is more

than 0.98 for all the models and for all the datasets except

Model 13 for SVG and Base dataset. Model 13 does not

give the accurate value of the parameters as this model is

exponential and does not fit on SVG and Base datasets. The

values of potential bugs detected/removed due to diffusion

of complexity of code changes are in the range of 5.88E-

05 to 0.06. The value of potential bugs using the diffused

Table 6 Parameter estimates

for different models for time vs

entropy (potential complexity

based models)

Data sets Models Parameter estimates Potential bugs

H0 c v k R2

SVG Model 7 3.04E ? 04 1.54E-05 – – 0.784 246,933

Model 8 3.51E ? 03 0.02 – – 0.971 28,525

Model 9 83.985 0.06 125.665 – 0.996 655

Model 10 91.134 1.28E-06 – 2.245 0.992 714

Model 11 128.049 0.001 – 0.786 0.991 1,014

Model 12 77.404 0.009 31.385 0.443 0.996 602

Base Model 7 1,134 0.001 – – 0.994 16,209

Model 8 156.02 0.02 – – 0.995 2,105

Model 9 153.02 0.022 4.3 – 0.999 2,062

Model 10 193.376 0.002 – 0.354 0.998 2,644

Model 11 156.02 0.02 – 0 0.995 2,105

Model 12 153.02 0.022 4.3 0 0.999 2,062

XUL Model 7 942.694 0.001 – – 0.995 6,298

Model 8 171.661 0.025 – – 0.993 1,113

Model 9 181.883 0.022 3.121 – 0.998 1,182

Model 10 226.636 0.003 – 0.272 0.998 1,483

Model 11 171.661 0.025 – 0 0.993 1,113

Model 12 181.883 0.022 3.121 2.18E - 08 0.998 1,182

Fig. 9 Goodness of fit for

model defined in Model 9

Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60 55

123

complexity of code changes using Model 13 i.e., Zare

126,900, 13,770 and 5,771 for SVG, Base and XUL dataset

respectively. The value of R2 is also very low for these

datasets using Model 13 i.e., 0.974, 0.968, and 0.985 for

SVG, Base and XUL dataset respectively. For SVG data

set, the predicted potential bugs for Model 15 and 18 are

closer to the detected bugs i.e., 488. The value of R2 as

0.999 also confirms the fitting of these models for this data

set using these proposed models. For Base data set, the

value of predicted potential bugs estimated using the model

16 is 1,800 which is closer to detect bugs. In this model, the

R2 is least i.e., 0.889 for Model 16 as compared to other

models. Model 15 and Model 18 predict the fair amount of

potential bugs lying in the software components as the

larger is the value of R2 for these models. This confirms

with the bug arrival/detected patterns of the software

components because of the sharp increase after

105 months. For XUL data set, the closer value with the

predicted potential bugs is found for the model 14, 15, 17

and 18 but the R2 is poor as compared to Model 16. This is

Fig. 10 Goodness of fit for

model defined in Model 12

Table 7 Parameter estimates for different models of various entropy vs bugs (complexity of code changes)

Data sets Models Parameter estimates

Z g D k R2

SVG Model 13 126,900 5.88E-05 – – 0.974

Model 14 920 0.029 – – 0.998

Mode1 15 598 0.066 12.243 – 0.999

Model 16 855 0.0,016 – 0.6389 0.998

Model 17 918 0.0288 – 0.0010 0.998

Model 18 600 0.0188 4.0382 0.3028 0.999

Base Model 13 13,770 0.0013 – – 0.968

Model 14 3,137 0.014 – – 0.996

Mode115 3,338 0.018 6.965 – 0.998

Model 16 1,800 0.009 – 0.062 0.889

Model 17 2,467 0.013 – 0.093 0.993

Model 18 3,429 0.01 4.534 0.101 0.998

XUL Model 13 5,771 0.001 – – 0.985

Model 14 1,310 0.017 – – 0.987

Mode1 15 1,399 0.017 – – 0.993

Model 16 2,412 0.001 – 0.277 0.995

Model 17 1,310 0.017 – 0 0.987

Model 18 1,000 0.009 2.823 0.233 0.985

56 Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60

123

due to sudden increase in the arrival/detection of bugs in

the software.

The goodness of fit curve has been shown in Figs. 11

and 12 for the models which give the maximum fit on the

basis of R2 for given datasets. The goodness of fit curve of

the Model 18 for Base dataset is shown best fitting. In the

rest of the cases, the performance diminishes.

To summarize the performance of the proposed models

based on goodness of fit criteria i.e., R2, we have found that

there are 41 cases out of 54 cases (6 models, 3 data sets and

3 approaches) which shows the value of R2 is more than

99 %. It is also observed that 14 of software reliability

growth models based (time vs bugs) approach, 16 of

potential complexity of code changes based (time vs

entropy) approach and 11 cases of complexity of code

changes based (entropy vs bugs) approach out of 18 cases

for each category show the accuracy more than 99 %.

We further investigated the model which gives the best

performance in three approaches on the basis of Bias,

variation and RMSPE (root mean squared prediction error).

The statistical performances of the best models obtained

in the above proposed models are shown in the Table 8. In

this table, the value of R2 is more than 98 % which shows

all models are applicable in determining the potential bugs

in the software project based on complexity of code change

metric. If we compare these models based on other per-

formance measures namely, Bias, variation and RMSPE, it

is found that the time vs entropy based models are having

lower values of these performance measures. Further, we

have confirmed it with the non-parametric Kolmogorov–

Smirnov (K–S) test.

Further, we have applied the Kolmogorov–Smirnov test

(K–S test) to statistically validate the proposed models by

considering the actual and predicted bugs/complexity of

Fig. 11 Goodness of fit for

model defined in Model 15

Fig. 12 Goodness of fit for

model defined in Model 18

Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60 57

123

code changes of the system. Kolmogorov–Smirnov (K–S)

statistic quantifies a distance between the observed value

and the predicted value of the cumulative distribution

function for the given distribution. The K–S test has been

applied to the models selected based on the goodness of fit

criteria. The results of the K–S test are shown in Table 9.

We have applied K–S test on the models which give the

best performance on the basis of R2, Bias, Variation, and

RMSPE (the results are shown in Tables 4, 5, 6, 7, 8).

From Table 9, we have selected Model 3 and Model 6

for time vs bugs, Model 9 and Model 12 for time vs

entropy and Model 15 and Model 18 for entropy vs bugs

approaches. The D-value shows the distance between the

actual and predicted values. The high value of performance

parameter of associated P value shows the applicability of

that model. It is clear from the above table that for time vs

bugs approach; Model 3 gives associated P value 0.7677

and 0.8992 for the Base and XUL data sets. In time vs

entropy approach, Model 9 gives associated P value 0.9583

and 0.9733 for XUL and Base data sets. For this approach

also, Model 12 gives the associated P value 0.9583 and

0.9733 for XUL and Base data sets. The associate P value

in entropy vs bugs approach is in the range of 0.00–0.1070

which is not significant. If we compared across different

types of cases for the SVG dataset, we found that the

maximum associated P value of time vs entropy case is

0.2713. This value is non significant. This result in

rejecting the Null Hypothesis i.e., the alternate hypothesis

is accepted. This analytical results show that the time vs

entropy based approaches show significantly improved

performance over the other two approaches.

Table 8 Statistical

performance parameters of best

models of various datasets

Cases Models Data sets Statistical performance parameters

Bias Variation RMSPE R2

Time vs bugs Model 3 SVG 5.552 8.186 9.892 0.997

Base -5.127 36.808 37.163 0.998

XUL -10.393 23.802 25.972 0.996

Model 6 SVG 128.151 151.715 198.595 0.996

Base 60.190 55.341 81.765 0.993

XUL 26.979 30.429 40.667 0.994

Time vs entropy Model 9 SVG 0.278 1.307 1.336 0.996

Base 1.034 1.336 1.690 0.996

XUL 0.811 1.894 2.060 0.999

Model 12 SVG 123.479 149.183 193.656 0.999

Base 712.936 518.631 881.621 0.998

XUL 400.549 256.671 475.731 0.998

Entropy vs bugs Model 15 SVG -211.472 126.563 246.452 0.999

Base -107.875 63.564 125.209 0.999

XUL -357.048 95.219 369.527 0.998

Model 18 SVG -211.248 125.864 245.901 0.998

Base -89.315 56.185 105.517 0.993

XUL 79.163 48.494 92.836 0.985

Table 9 Statistical performance using Kolmogorov–Smirnov (K–S)

test of different models

Cases Models Data

sets

Kolmogorov–Smirnov

D-value Associated

P value

Time vs bugs Model 3 SVG 0.2059 0.0225

Base -0.0780 0.7677

XUL -0.0703 0.8992

Model 6 SVG 0.4902 0.0000

Base 0.1277 0.1866

XUL 0.125 0.2525

Time vs entropy Model 9 SVG 0.1373 0.2713

Base 0.5670 0.9733

XUL 0.0625 0.9583

Model 12 SVG 0.1471 0.2023

Base 0.5670 0.9733

XUL 0.0625 0.9583

Entropy vs bugs Model 15 SVG -0.4314 0.0000

Base -0.1560 0.0579

XUL -0.5078 0.0000

Model 18 SVG -0.4314 0.0000

Base -0.1418 0.1070

XUL 0.1953 0.0129

58 Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60

123

From above experiment and analysis, it is clear that all

three approaches used for bug prediction are not perform-

ing equally on the basis of different comparison criteria and

K–S test. It is also found that the second approach, i.e. the

potential complexity of code changes/entropy based mod-

els (time vs entropy) performance is better than the other

two approaches. Based on the results, we found that all

three approaches have significant difference; hence we

reject the null hypothesis.

7 Managerial applications

The potential complexity of code changes/entropy or

potential bugs will help the project manager in calculating

the remaining bugs that still exist in the software. It also

helps in determining the number of changes required in the

software to fix these bugs. Further the changes in the

software are also being made due to more usage, more bug

fixes, more feature enhancements and addition of new

features. These changes will make the software source

code complex. The complexity of the code changes will

further lead to determine the potential complexity of code

changes which will be helpful as a deciding factor for new

version/release of the software. These changes further help

in determining the software evolution.

This study is quite helpful for the manager who is

managing the code. One can continuously draws trends of

bug occurrence as well as trends of complexity of code

changes. The increase in the complexity may also lead to

require more resources as the number of files need to be

changed and it is very difficult to remember all of these

changes. The predicted bugs/complexity of code changes

will be helpful in determining the code maturity. As we are

aware that anyone can participate in the development

process of open source projects, but it is the duty of the

manager or consortia owner to judge the quality of code

produced by a particular developer. For example, whenever

any contributor of the code wants to fix the bugs, one has to

see all changes previously made by all contributors who

have contributed towards these changes in source codes.

The resource allocation can be optimized by the manager

to efficiently produce the quality product by allocating the

prospect contributor who is producing less complex codes.

This study will help in deciding the release schedule of the

software.

8 Threats to validity

In our study, we have considered only those bugs which are

affecting the changes in the subsystems under study. We

have collected data from the open source repositories

available online. A number of changes to the files are

affecting the entropy or complexity of code changes. These

changes might be lines modified, deleted or added but in

our study, we have considered the changes made in the

source code as reported in the CVS logs repositories

instead of lines deleted/added/modified. The assumptions

made during the models building process are violated in the

real time scenario. The repair of bugs may introduce fur-

ther new bugs.

9 Conclusions

Changes in files make the software complex and affect the

quality of product but essentially requires for bug repairs,

feature enhancement/modification for improvement and

new feature introduction in the software. In this paper, we

have discussed three approaches namely software reliabil-

ity growth models, potential complexity of code changes

based models and complexity of code changes based

models to determine the potential bugs lying in the soft-

ware. The experiment shows that all the three approaches

are sufficient to predict the potential bugs lying dormant in

the software. We observed that the potential complexity of

code changes based approach is performing well on the

basis of goodness of fit criteria. In our experiment, we

found that 14, 16 and 11 cases out of total 18 cases each of

different approaches respectively show the goodness of fit

more than 99 %. We have validated the models using non-

parametric K–S test to test the statistical significance of the

models proposed in the paper. The K–S test is also con-

firming the results obtained in the goodness of fit criteria.

The K–S test also shows that best cases are lying with time

vs entropy or potential complexity of code changes based

models with the associated P-Value more than 95 % for

two data sets out of three data sets. This study can be

further extended to capture all changes for the entire pro-

ject which will be helpful in predicting the actual number

of future bugs for the entire system.

References

Arisholm E, Briand LC (2006) Predicting fault prone components in a

java legacy system. In: Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software engineering.

ACM Press, p 8–17

Chaturvedi KK, Kapur PK, Anand S, Singh VB (2012) Predicting

software change complexity using entropy based measures.

Paper presented at 6th international conference on quality,

reliability, infocomm technology and industrial technology

management (ICQRITITM 2012) during 26–28 Nov. 2012 at

conference centre, University of Delhi, Delhi

D’Ambros M, Lanza M, Robbes R (2010) An extensive comparison

of bug prediction approaches. In MSR’10: Proceedings of the 7th

Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60 59

123

international working conference on mining software reposito-

ries. p 31–41

D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect

prediction approaches: a benchmark and an extensive compar-

ison. Empirical Softw Eng 17(4–5):531–577

Fenton NE, Neil M (1999) A critique of software defect prediction

models. IEEE Trans Softw Eng 25(3):675–689

Goel AL, Okumoto K (1979) Time dependent error detection rate

model for software reliability and other performance measures.

IEEE Trans Reliab 28(3):206–211

Graves TL, Karr AF, Marron JS, Siy HP (2000) Predicting fault

incidence using software change history. IEEE Trans Softw Eng

26(7):653–661

Gyimothty T, Ferenc R, Siket I (2005) Empirical validation of object-

oriented metrics on open source software for fault prediction.

IEEE Trans Softw Eng 31(10):897–910

Hassan AE (2009) Predicting faults based on complexity of code

change. In: The proceedings of 31st Intl. Conf. On Software

Engineering. p 78–88

Hassan AE, Holt RC (2003a) Studying the chaos in code develop-

ment. In: Proceedings of 10th working conference on reverse

engineering

Hassan AE, Holt RC (2003b) The chaos of software development. In:

Proceedings of the 6th IEEE international workshop on princi-

ples of software evolution

Hassan AE, Holt RC (2005) The top ten lists: dynamic fault

prediction. In: Proceedings of ICSM. p 263–272

Huang CY, Kuo SY, Chen JY (1997) Analysis of a software

reliability growth model with logistic testing effort function. In:

Proceedings of eighth international symposium on software

reliability engineering. p 378–388

Kamei Y, Matsumoto S, Monden A, Matsumoto K, Adams B, Hassan

A (2010) Revisiting common bug prediction findings using

effort-aware models. In: Proc. Int’l Conf. On Softw. Maint.

p 1–10

Kapur PK, Garg RB (1992) A software reliability growth model for

an error removal phenomenon. Softw Eng J 7:291–294

Kapur PK, Garg RB, Kumar S (1999) Contributions to hardware and

software reliability. World Scientific Publishing Co., Ltd.,

Singapore

Kapur PK, Goswami DN, Bardhan A, Singh O (2008) Flexible

software reliability growth model with testing effort dependent

learning process. Appl Math Model 32:1298–1307

Khoshgoftaar TM, Allen EB, Jones WD, Hudepohl JP (1999) Data

mining for predictors of software quality. Int J Softw Eng Knowl

Eng 9(5):547–563

Kim S, Zimmermann T, Whitehead J, Zeller A (2007) Predicting

faults from cached history. In: Proceedings of ICSE. IEEE,

p 489–498

Knab P, Pinzger M, Bernstein A (2006) Predicting defect densities in

source code files with decision tree learners. In: Proc. Int’l

workshop on mining software repositories. p 119–125

Leszak M, Perry DE, Stoll D (2002) Classification and evaluation of

defects in a project retrospective. J Syst Softw 61(3):173–187

Lyu MR (1996) Handbook of software reliability engineering.

McGraw-Hill, New York

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the

efficiency of change metrics and static code attributes for defect

prediction. In: Proc. Int’l Conf. On Softw. Eng. p 181–190

Musa JD, Iannino A, Okumoto K (1987) Software reliability,

measurement, prediction and application. McGraw-Hill, New

York

Nagappan N, Ball T (2005a) Static analysis tools as early indicators of

pre-release defect density. In: Proceedings of ICSE. ACM,

p 580–586

Nagappan N, Ball T (2005b) Use of relative code churn measures to

predict system defect density. In: Proceedings of the 27th

international conference on software engineering. p 284–292

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict

component failures. In: Proceedings of ICSE. ACM, p 452–461

Ohba M (1984) Inflection S-shaped software reliability growth model.

In: Osaki S, Hotoyama Y (eds) Lecture notes in economics and

mathematical systems. Springer, Berlin

Ostrand TJ, Weyuker EJ, Bell RM (2005) Predicting the location and

number of faults in large complex systems. IEEE Trans Softw

Eng 31(4):340–355

Pham H (2006) System software reliability. Springer series in

reliability engineering

Shannon CE (1948) A mathematical theory of communication. Bell

Syst Tech J 27(3):379–423 & 623–656

Singh VB, Chaturvedi KK (2012) Entropy based bug prediction using

support vector regression. In: Proceedings ISDA 2012–12th

international conference on intelligent system design and

applications, Nov 27–29, 2012, IEEE Xplore, Kochi. p 746–751

Singh VB, Chaturvedi KK (2013) Improving the quality of software

by quantifying the code change metric and predicting the bugs.

In: Murgante B et al (eds) ICCSA 2013, Part II, LNCS 7972.

Springer, Berlin, pp 408–426

Singh VB, Yadav K, Kapur R, Yadavalli VSS (2007) Considering the

fault dependency concept with debugging time lag in software

reliability growth modelling using a power function of testing

time. Int J Autom Comput 4(4):359–368

The bugZilla project (2013) http://www.bugzilla.org

The Mozilla project (2013) http://www.mozilla.org

Trivedi KS (2001) Probability and statistics with reliability, queuing

and computer science applications, 2nd edn. Wiley, New York

Weisberg S (1980) Applied linear regression. Wiley, New York

Xie M (1991) Software reliability modelling. World Scientific

Publishing Company Pte. Ltd, Singapore

Yamada S, Ohba M, Osaki S (1983) S-shaped software reliability

growth modelling for software error detection. IEEE Trans

Reliab 32(5):475–484

60 Int J Syst Assur Eng Manag (Jan-Mar 2015) 6(1):44–60

123

http://www.bugzilla.org
http://www.mozilla.org

	Bug prediction modeling using complexity of code changes
	Abstract
	Introduction
	Review of work
	Complexity of code changes
	Bug prediction approaches and modelling
	Time vs bugs (reliability growth models)
	Time vs entropy (potential entropy based model)
	Entropy vs bugs (complexity of code changes)

	Data collection and preprocessing
	Results and discussions
	Managerial applications
	Threats to validity
	Conclusions
	References

