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Abstract Object-oriented methodology has emerged as

most prominent in software industry for application

development. Maintenance phase begins once the product

is delivered and by software maintainability we mean the

ease with which existing software could be modified during

maintenance phase. We can improve and control software

maintainability if we can predict it in the early phases of

software life cycle using design metrics. Predicting the

maintainability of any software has become critical with

the increasing importance of software maintenance. Many

authors have practiced and proved theoretical validation

followed by empirical evaluation using statistical and

experimental techniques for evaluating the relevance of

any given metrics suite using many models. In this paper,

we have presented an empirical study to evaluate the

effectiveness of novel technique called Group Method of

Data Handling (GMDH) for the prediction of maintain-

ability over other models. Although many metrics have

been proposed in the literature, software design metrics

suite proposed by Chidamber et al. and revised by Li et al.

have been selected for this study. Two web-based cus-

tomized softwares developed using C# Language have

been used for empirical study. Source code of old and new

versions for both applications were collected and analysed

against modifications made in every class. The changes

were counted in terms of number of lines added, deleted or

modified in the classes belonging to new version with

respect to the classes of old version. Finally values of

metrics were combined with ‘‘change’’ in order to generate

data points. Hence, in this study an attempt has been made

to evaluate and examine the effectiveness of prediction

models for the purpose of software maintainability using

real life web based projects. Three models using Feed

Forward 3-Layer Back Propagation Network (FF3LBPN),

General Regression Neural Network (GRNN) and GMDH

are developed and performance of GMDH is compared

against two others i.e. FF3LBPN and GRNN. With the aid

of this empirical analysis, we can safely suggest that

software professionals can use OO metric suite to predict

the maintainability of software using GMDH technique

with least error and best precision in an object oriented

paradigm.
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Data Handling (GMDH) � Feed Forward 3-Layer Back

Propagation Network (FF3LBPN) � General Regression

Neural Network (GRNN) � Empirical validation

1 Introduction

There are many definitions available in literature about

‘software maintainability’ and more or less all are similar

(IEEE 1990; Software Engineering Standards Committee of

the IEEE Computer Society 1998; IEEE Standard 1993).

IEEE Standard Glossary of Software Engineering Termi-

nology (IEEE 1990) defines ‘software maintainability’ as

the ease with which a software system or component can be
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modified to correct faults, improve performance or other

attributes, or adapt to a changed environment. Data gathered

by Capers (2006) about software industry strongly indicates

that almost 75 % of project cost is actually spent on main-

tenance. Maintenance phase starts once the software is

delivered to the customer and during this phase changes

made into software are inevitable. It not only affects

developers in terms of cost and efforts associated but also

determines how the customers perceived towards quality as

stated by Ash et al. (1994). Cost associated to maintain one

line of source code is 10 times the cost of initial development

of that line. Hence, software industry today strives hard to

find ways and means to measure ‘‘Ease of maintainability’’

not only to reduce cost but also to ascertain whether main-

tenance of that product is worthwhile or not. As the largest

cost incurred for any software product over its lifetime is on

account of maintenance (Kaur et al. 2010; Aggarwal et al.

2007; Singh and Goel 2007) and if we really want to control

this maintenance costs, we can do so by many ways. One of

them would be by utilizing software design metrics during

the development phase (Zhou and Leung 2007; Briand et al.

2001; Bandi 2003). Chidamber and Kamerer (1991) and

Chidamber and Kemerer (1994) proposed object oriented

design metrics as summarized in Table 1 to measure various

the features of object orientation such as coupling, cohesion

and inheritance etc. Subsequently these were further revised

by Li and Henry in year (1993) and two more metrics were

added. Since then many researchers Coleman et al. (1994),

Bengtsson and Bosch (1999) have used this metric suite on

number of applications such as creation of prediction models

to establish the relationship of metrics suite with maintain-

ability and empirical validation of various prediction models

in terms of better prediction accuracy. Some important

studies are Aggarwal et al. (2005b), Aggarwal et al. (2007),

Thwin and Quah (2005), Misra (2005), Zhou and Leung

(2007), Koten and Gray (2006), Elish and Elish (2009), Jin

and Liu (2010), Wang et al. (2009), Dagpinar and Jhanke

(2003), Aggarwal et al. (2006), Lucia et al. (2005) and Kaur

et al. (2010). These studies have found that there exist a

strong link between OO software metrics and its software

maintainability. Researchers Heitlager et al. (2007) and

Land (2002) have also suggested that in general these design

metrics can be used as predictors of ‘‘How much would be

the maintainability of the product once it is operational?’’.

Contribution of this paper is firstly it presents an empirical

validation to determine the relationship between OO metrics

and maintainability. Secondly, the paper analyses and

compares the performance of Group Method of Data Han-

dling (GMDH) model with two other prediction models,

Feed Forward 3-Layer Back Propagation Network

(FF3LBPN) and General Regression Neural Network

(GRNN). The results are based on the data points collected

from two real life web based softwares developed using C#

language. After analysing the results it is concluded that

GMDH has outperformed and hence it is the best model for

the purpose of the prediction of software maintainability.

The rest of this paper is organized as follows. In Sect. 2 we

have discussed related studies in the current area. Section 3

describes list of selected software design metrics to measure

various aspect of object oriented software and typical

application which is studied and analysed on account of

selected metrics along with data sets consisting of indepen-

dent variables and dependent variables. Section 4 presents

brief introduction of modelling technique used in the study

such as Feed Forward 3-layer Back propagation Algorithm

(FF3LBPN), GRNN and GMDH. Section 5 reports the pre-

diction accuracy measures, results and analysis of BPNN,

GRNN and GMDH models. Section 6 mentioned about the

threats to validity and finally Sect. 7 concludes the paper with

outlines and directions for future work.

2 Related work

Many surveys and examples have been presented in past to

show that software design metrics are correlated with its

Table 1 Selection of metrics for study

Metrics Definition

Weighted methods per

class (WMC)

The sum of McCabes’s cyclomatic

complexities of all local methods in a

class. Let a class K1 with method

M1…Mn that are defined in the class.

Let C1…Cn be the complexity of the

methods. WMC =
Pn

i¼1

Ci

Depth of inheritance

tree (DIT)

The depth of a class in the inheritance tree

where the root class is zero

Number of children

(NOC)

The number of child classes for a class. It

counts number of immediate sub classes

of a class in a hierarchy

Response for a class

(RFC)

The number of local methods plus the

number of non local methods called by

local methods

Lack of cohesion of

methods (LCOM)

The number of disjoint sets of local

methods. Each method in a disjoint set

shares at least one instance variable with

at least one member of the same set

Message passing

coupling (MPC)

The number of messages sent out from a

class

Data abstraction

coupling (DAC)

The number of instances of another class

declared within a class

Number of methods

(NOM)

The number of methods in a class

SIZE1 (lines of code) The number of lines of code excluding

comments

SIZE2 (number of

properties)

The total count of the number of data

attributes and the number of local

methods in a class

166 Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):165–173

123



maintainability. Fioravanti and Nesi (2001) presented a

prediction model using multi linear regression analysis and

validated it on real data. Thwin and Quah (2005) used

neural networks to build software quality prediction mod-

els. Aggarwal et al. (2005a) proposed that maintainability

can be estimated with the help of fuzzy model. They also

proved empirically that the integrated measure of mainte-

nance obtained from this fuzzy model has strong correla-

tion with maintenance. Misra (2005) builds maintainability

prediction models using Linear Regression techniques.

Similarly, in 2006 software maintainability prediction

model proposed by Koten and Gray (2006) using Bayesian

network was validated for its prediction accuracy. Zhou

and Leung (2007) have used multivariate adaptive regres-

sion splines (MARS) for predicting object-oriented soft-

ware maintainability in 2007. They compared the

prediction accuracy of proposed model with four other

prevailing models: multivariate linear regression (MLR),

support vector regression (SVR), artificial neural network

(ANN), and regression tree (RT) and stated that MARS is

best model to be used as far as maintainability of prediction

is concerned. Elish and Elish (2009) proposed the use of

TreeNets for the prediction of maintainability. They used

the same data set proposed by Chidamber and Kamerer

(1991), Li and Henry (1993), and Chidamber and Kemerer

(1994) and used by Zhou and Leung (2007), Dagpinar and

Jahnke (2003), Thwin and Quah (2005), Koten and Gray

(2006), Elish and Elish (2009), and Aggarwal et al. (2006)

to compare their results with others. Recently, Malhotra

and Chug (2012) have successfully proved the efficiency of

GMDH model on the same data set proposed by Li and

Henry (1993), Chidamber and Kamerer (1991), and Chid-

amber and Kemerer (1994) and used by Zhou and Leung

(2007), Dagpinar and Jahnke (2003), Thwin and Quah

(2005), Koten and Gray (2006), Elish and Elish (2009), and

Aggarwal et al. (2006). In their study, it has been proved

that GMDH is an excellent method for software main-

tainability prediction as far as accuracy is concerned.

Inspired by the results achieved in Malhotra et al. (2012),

the aim of this study is not only to verify whether rela-

tionship between metrics and maintainability do exists in

real life web based applications but also to verify

supremacy of GMDH.

In practice, suitability of selected modelling technique

for maintainability prediction not only depends on its

ability in capturing the relationships which exists and also

the ease with which it could be applied for building pre-

diction models. Accurate software metrics-based main-

tainability prediction is desirable because firstly it reduces

future maintenance efforts by enabling developers to better

identify the determinants of software quality and thereby

improve design or coding, and secondly, it provides man-

agers with information for more effectively planning the

use of valuable resources (Dimitris et al. 1999; Staviro-

noudis et al. 1999). Although a number of maintainability

prediction models have been developed in last decade, they

have low prediction accuracies according to the criteria

suggested in the literature (Conte et al. 1986; Kitchenham

et al. 2001). Therefore, it is necessary to explore new

techniques which are easy to use for building maintain-

ability prediction models and should posses’ high predic-

tion accuracy. This paper investigates the applicability of

novel techniques called GMDH (Ivakhnenko 1966; Iva-

khnenko and Koppa 1970; Mohanty et al. 2009) for soft-

ware maintainability prediction and check if it has better

prediction accuracy then existing methods which are based

on neural networks namely Feed Forward 3-layer Back

Propagation Algorithm (FF3LBPN) and GRNN. In order to

do so, the empirical data has been collected and all three

prediction models were applied and finally results were

compared. We found that GMDH technique is very pow-

erful in its approach as far as prediction of maintainability

is concerned. It can do so because during model building, it

does not require the specification in advance. It can predict

the outcome even with smaller training sets as the com-

putational burden is very less as compared to other models.

The procedure used in GMDH automatically filters out

input properties that provide little information about loca-

tion and shape of hyper surface. A multilayer structure

maintained in GMDH model is a computationally feasible

way to implement multinomial of high degree. Hence, it is

very suitable for modelling complex relationships that

other modelling techniques find difficult, if not impossible,

to reveal. We compare the GMDH model with other pre-

diction models in terms of their prediction accuracy per-

formance. The results suggest that for web based system,

GMDH can predict maintainability more accurately than

the other modelling techniques.

3 Research background

In this section, we have described the data set used for our

study. We first introduced the selection of metrics in the

current study, their details and description of dependent

and independent variables. We have also described appli-

cations which are selected for the study and the empirical

data collection process to undertake this study.

3.1 Independent and dependent variables

Several attempts have been made in literature to relate

software metrics with software maintainability in object

oriented paradigm. Chidamber and Kamerer (1991) pre-

sented a OO metric suite to measure various attributes of

object oriented paradigm such as inheritance, coupling,
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cohesion etc. Since then many proposals of different met-

rics suite have been given by many researchers. In the last

decade many researchers have worked towards empirical

validation such as Thwin and Quah (2005), Misra (2005),

Zhou and Leung (2007), Koten and Gray (2006), Elish and

Elish (2009), Jin and Liu (2010), Wang et al. (2009),

Dagpinar and Jhanke (2003), Aggarwal et al. (2006), and

Kaur et al. (2010). More or less all have used the metric

suite proposed by Chidamber and Kamerer (1991) and Li

and Henry (1993). The OO metrics selected in our study

are also the same commonly used metric suite and sum-

marized in Table 1.

To determine the object oriented features present in the

software we measured the amount of coupling, cohesion

and inheritance present in it along with physical aspects

such as size. Obviously single metrics is not sufficient to

measure such characteristics. Hence the metrics selected

and mentioned in Table 1 were considered as independent

variables. In order to determine degree of maintainability

of software, various prediction models have been proposed,

validated and practiced. Primary goal of this paper is to

find the effectiveness of GMDH model over other for

prediction of maintainability. Dependent variable in our

study is ‘‘Changes’’ made into the software during main-

tenance phase. The changes were counted in terms of

number of lines added, deleted or modified in the classes

belongs to new version with respect to the classes of old

version.

3.2 Empirical data collection

In this paper we have investigated the prediction capability

of three models whether they could be used for the pre-

diction of software maintainability using design metrics or

not. To empirically validate the effectiveness of models,

we have carefully selected two web based software systems

namely:

(i) File Letter Monitoring System (FLMS) and

(ii) EASY Classes Online Services collection

Both applications are developed in Microsoft Visual

Studio (.NET) software using C# Language. We select

these applications and collected metrics to validate the

results in this work. FLMS system consists of 55 classes

and EASY system consists of 84 classes. Both systems are

medium sized software. Source codes of both applications

were collected for both versions. Each of the applications

was analysed and ‘‘Changes’’ made in second version from

the first one were identified. The changes were counted in

terms of number of lines added, deleted or modified in the

classes belongs to recent version with respect to the classes

of first version. Each added or deleted line in source code is

considered as one change where as each modification in

source code line is counted as two i.e. one addition of new

line and one deletion of old line. The careful selection of

OO metrics is discussed in Sect. 3.1. Finally values of

metrics were combined in order to generate data points to

not only examining the effectiveness of GMDH for pre-

dicting maintainability but also empirically validating its

superiority on real life projects. The data points are divided

into 3:1:1 ratio into training, test and validate all three

models. The models were used for predicting the value of

‘‘Change’’ based on these generated data points. Finally

predicted value received from all three models have com-

pared against actual value to evaluate their prediction

accuracy.

4 Research methodology

In this section we have given brief introduction of all three

models FF3LBPN, GRNN and GMDH which are used in

current study.

4.1 Feed forward 3-layer back propagation algorithm

It is a supervised learning method and extension of ANNs

so as to minimize the objective function (Bryson and Ho

1969; Russell and Norvig 2003). It is a multi-stage

dynamic system optimization method developed by Bryson

and Ho (1969). It is most useful for feed-forward networks

which usually have no feedback. The term ‘‘Back Propa-

gation’’ is an abbreviation for ‘‘backward propagation of

errors’’. Back propagation requires that the activation

function used by the artificial neurons must be differen-

tiable. Every iteration during training starts with extraction

of particular data points from training data set. It is then fed

through the network in a forward direction and result is

produced at the output layer. Now, based on known target

information, error is calculated. Necessary changes in

weights are determined based upon this error calculation.

Changes in weight are calculated layer by layer as a

function of the errors determined for all subsequent layers,

working backward toward the input layer. This process is

repeated until all necessary weight changes are calculated

for the entire network. The calculated weight changes are

then implemented throughout the network and the next

iteration begins. The entire procedure is repeated using the

next training pattern.

4.2 General Regression Neural Network (GRNN)

Originally proposed by Specht (1991), GRNN is a modi-

fication of Probabilistic Neural Network (PNN) for

regression problems. It is a one-pass learning algorithm
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with highly parallel structure and provides a smooth tran-

sitions from one observed value to another even with

sparse data in a multidimensional measurement space

(Martin 2011; Rutkowski 2004). If the relationship

between independent variables and dependent variables is

very complex and not linear in nature, this modified form

of regression is a perfect solution. It is very fast in learning

and converges to the optimal regression surface as the

number of samples becomes very large and allows learning

from previous outcomes. The network architecture of a

GRNN is similar to that of a PNN except that its summa-

tion layer has two neurons that calculate the numerator and

denominator. The single neuron in the output layer then

performs a division of the two summation neurons to

obtain the predicted biological value of the given com-

pound as shown in Fig. 1.

4.3 Group Method of Data Handling (GMDH)

In 1966 it was introduced by Ivakhnenko (1966) and Iva-

khnenko and Koppa (1970) for constructing an extremely

high order regression type model. The situations where

standard multiple regression becomes bogged down in

computation and identifying the linear dependence present,

this powerful model builds a multinomial of degree in hun-

dreds. The computational burden is quite less in comparison

with others and hence it can predict the outcome even with

smaller training sets. It can do so because it automatically

filters out input properties that provide little information

about location and shape of hyper surface. It is based on

forward multi-layer neural network structure where learning

procedure is self-organized. For the given data, after feeding

independent variables as inputs and dependent variables as

output, it computes mean square error between actual and

predicted value of each unit. Then it sort out the units by MSE

value in decreasing order and eliminate bad units i.e. where

the error rate is higher. This model keeps adding hidden

layers in order to reduce mean square error to minimum.

When the MSE become larger than that of the previous layer,

stop adding layers and choose the minimum mean square

error unit in the highest layer as the final model output.

Figure 2 illustrates a typical multi-layer network structure.

5 Results and analysis

In this section we have compared the results of all three

prediction models when applied on the data points

extracted on real life web based application. In Sect. 5.1 we

have discussed various prediction accuracy measured taken

from literature and 5.2 onwards, each measure is discussed

in detail with corresponding results of each model.

5.1 Prediction accuracy measure

Various measures have been suggested in literature to

evaluate the accuracy of any given model (Conte et al.

1986; Kitchenham et al. 2001). Some of the most com-

monly used measures which have also become de-facto-

standards to measure prediction accuracy are MRE,

MARE, r-square, R square etc. However, main measure

which we have used for evaluating model performance is

magnitude of relative error (MARE) proposed by Kitch-

enham et al. (2001). It is a normalized measure of the

discrepancy between actual values and predicted values. It

is calculated in two steps. First MRE for each observation

is calculated as follows:

MRE ¼j ðActualvalue� PredictedValueÞ
j �ðActualValueÞ

In second step, mean of MRE is calculated as follows:

MARE ¼
PN

i¼1 MREi

N

B1

A1

A3
A2

A4

Output Units

B2

B3

B4

Pattern Units

Summation Units

X1 X2 X3 Xn

Input Units

(X)

Ŷ f(X) K

f(X) K

f(X) K

(X)

Fig. 1 Architecture of GRNN

Fig. 2 Architecture of GMDH taken from Malhotra et al. (2012)
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N is the number of observations. MARE measures the

average relative discrepancy. It has the advantages that it is

not only independent of measuring unit but also scale

independent. In Table 2 we have summarised the MARE

values of all three proposed models. The values are plotted

in Fig. 3. It can be observed that GMDH has minimum

MARE value. We conclude from the results that the impact

of GMDH used in the study is valid for the prediction of

software maintainability. It also shows that GMDH has

good generalization capabilities.

5.2 Prediction accuracy at 25 and 30 %

Fentom and Pfleeger (1997) explains that the prediction

accuracy at 25 and 30 % actually measure what proportion

of the predicted values have MRE less than or equal to

specified value. For example pred(0.25) means how much

proportion of the result have MRE less than 0.25 to the

total number of observations made. It is given as:

PredðqÞ ¼ K

N

where q is the specified value, K is number of observations

whose MRE is less than or equal to q and N is total number

of observations. In current study we have taken observa-

tions for pred(0.25) and pred(0.30) and summarized them

in Table 3. The results are plotted in Fig. 4.

From Fig. 4 it is quite evident that prediction accuracy of

GMDH model is much better than other two models not

only at 25 % but also at 30 % significantly. At p(0.25) its

value is 0.61, which is interpreted as almost 61 % predic-

tions are having less than the error of 25 %. At p(0.30) its

value is 0.71 means almost 71 % results are having less than

30 % error in prediction which is quite notable. Values of

p(0.25) and p(0.30) for both GRNN and FF3LBPNN have

also been observed and found that even though their results

are also appreciable but we can safely state that GMDH

model has out performed than other two models GRNN and

FF3LBPNN as far as prediction accuracy is concerned.

5.3 Percentage of underestimated and overestimated

We have also calculated the percentage of observations that

have been underestimated and overestimated by each

model. During underestimation we check number of

observations where the predicted value is less than actual

value and during overestimation we check the number of

observations where the predicted value is higher than the

actual value. Finally % is calculated as follows:

Underestimate ¼ X

N
� 100

where X is number of observations where the predicted

value is less than the actual value. N is the total number of

observations.

Overestimate ¼ Y

N
� 100

where Y is number of observations where the predicted

value is greater than the actual value. N is the total number

of observations.

The results are illustrated and plotted in Fig. 5. It has

been observed that GRNN tends to slightly overestimate

and BPNN model tend to slightly underestimate; but for

GMDH, almost 47 % are underestimate and 53 % are

Fig. 3 Plot of MARE value achieved for each model

Fig. 4 Plot of pred(0.25) and pred(0.30) value for each model

Table 2 Models with their

corresponding MARE values
S. no. Model name MARE

1 FF3LBPNN 0.4578

2 GRNN 0.5476

3 GMDH 0.3566

Table 3 Models and their corresponding pred(0.25) and pred(0.30)

values

S. no. Model name Pred(0.25) Pred(0.30)

1 FF3LBPNN 0.51 0.59

2 GRNN 0.44 0.47

3 GMDH 0.61 0.71
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overestimate. This suggests that the GMDH is quite fair in

its approach and have tendency neither toward underesti-

mation nor towards overestimation.

6 Threats to validity

There are a few threats to validity of this study that should

be taken into consideration while interpreting the results.

Some of these limitations are very common whenever any

empirical study is conducted and hence not uniquely

attributable to this study. However, for the sake of com-

pleteness we have mentioned them all as follows:

(1) The results obtained in this study are based on the

data obtained from a two real life applications which

have specific characteristics and behavior and could

not be generalized.

(2) It is exposed here that most of the metrics selected in the

study have statistically significant relationship with

maintainability. Such statistical methods provide only

empirical evidence of relationships and do not demon-

strate the actual scenario. Controlled experiments where

certain measures can be varied in a controlled manner

while keeping the others constant, could actually dem-

onstrate the scenario. As usual however, it is difficult to

undertake such controlled experiments in reality.

(3) It should be noted that only code developed in C# was

considered in this study. We believed that the conclu-

sions derived from using this code are valid for object-

oriented methodologies. However, further research is

needed to be conducted to verify this scheme on other

object oriented languages such as Java.

(4) There are many psychological factors also which

affect maintainability but not considered in this study

as we can not quantify them such as different level of

expertise for developers, different standards in which

application is developed, number of active developers

involved, development history of the systems and

familiarity of the system with the persons involved in

maintenance.

(5) It should be reiterated that this study only provides

probable indications of the effect of different design

measures on maintainability. Since it was not possible

to consider all factors that affect maintainability in

one model in this study, the results obtained here are

worth verifying as part of future work using the

models that consider other factors as well.

7 Conclusions and future work

The life of any software depends on its maintainability. If

the software is more maintainable then it is enhance and

hence will reduce the maintenance cost significantly for a

longer period. This paper presented a study aimed at

assessing the efficiency of different prediction models for

prediction maintainability of web based systems using

Object Oriented metrics. The results show that the GMDH

is very helpful model in prediction of software maintain-

ability. After the analysis of results it has been observed

that error rate for GMDH model is 35.5 % in comparison

with F3LBPNN whose error rate is 45.7 % and GRNN with

error rate 54.7 %. Hence, GMDH is found to be more

accurate and precise for predicting maintainability of web

based applications.

Developers can use this model to judge maintainability

of the software while designing and coding. Software

practitioners and researchers can use GMDH model in

order to predict maintainability in early phases of software

development. They can thus reduce maintenance phase and

hence save the time. Further they can consider that the

developed application is more maintainable or not. This in

itself would save the time and cost for the organization

responsible for developing and deploying customized

software’s for the customers to gain their better satisfaction

in the industry.

However, it is recommended that further validation

studies should be performed using other analytical tech-

niques before the results are actually used in practice. Since

the results are based on empirical validation on medium

sized web based software more studies needs to be conducted

for large systems before generalising the concept. We plan to

validate the results on large sized systems in future.
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