
ORIGINAL ARTICLE

Predicting the complexity of code changes using entropy based
measures

K. K. Chaturvedi • P. K. Kapur • Sameer Anand •

V. B. Singh

Received: 10 May 2013 / Published online: 7 February 2014

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2014

Abstract Changes in software source codes are inevita-

ble. The source codes of software are frequently changed to

meet the user’s enormous requirements. These changes are

occurring due to bug repairs (BR), enhancement/modifi-

cation (EM) and the addition of new features (NF). The

maintenance task becomes quite difficult if these changes

are not properly recorded. The versions of these frequent

changes are being maintained using the software configu-

ration management repository. These continuous changes

in the software source code make the code complex and

negatively affect the quality of the product. In the litera-

ture, the complexity of the code changes has been quanti-

fied using entropy based measures (Hassan, in: Proceedings

of the 31st international conference on software engineer-

ing, pp. 78–88, 2009). In this paper, we have proposed a

model to predict the potential complexity of code changes

using entropy based measures. The predicted potential

complexity of code changes helps in determining the

remaining code changes yet to be diffused in the software.

The proposed model has been validated using seven com-

ponents of web browser Mozilla. The model has been

evaluated using goodness of fit criteria namely R squared,

bias, mean squared error, variation, and root mean squared

prediction error (RMSPE).The statistical significance of the

proposed model has been tested using v2 and Kolmogorov–

Smirnov (K–S) test. The proposed model is found statis-

tically significant based on the associated p value of the K–

S test. Further, we conclude that the rate of complexity

diffusion due to BR is found higher in four cases namely

Bonsai, Mozbot, tables and XUL. The other components of

Mozilla namely AUS, MXR and Tinderbox show increase

in complexity due to EM and NF.

Keywords Entropy � Software change complexity �
Software configuration management � Software

repositories � Open source software

1 Introduction

A software system is continuously subject to maintenance

activities, which requires the introduction of new features to

satisfy the user needs, fixing faults or adaptation of the sys-

tem to a new environment. Due to the time pressure, limited

effort, and the lack of a disciplined process, these activities

tend to deteriorate the software system structure, increasing

source code complexity, negatively affecting the system

design, and, in general, making the system more difficult to

be understood and maintained in the future (Canfora et al.

2010). Studies estimate that maintenance costs are at least

50 % and sometimes more than 90 % of the total cost

associated with the system. The relative cost of maintaining

software and managing its evolution continuously increasing

K. K. Chaturvedi

Indian Agricultural Statistics Research Institute (ICAR),

New Delhi, India

P. K. Kapur

Amity International Business, Amity University, Noida, UP,

India

S. Anand

SS College of Business Studies, University of Delhi, New Delhi,

India

V. B. Singh (&)

Delhi College of Arts & Commerce, University of Delhi,

New Delhi, India

e-mail: vbsinghdcacdu@gmail.com

123

Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):155–164

DOI 10.1007/s13198-014-0226-5



and represents more than 90 % of the total efforts of the

software (Erlikh 2000). The maintenance phase of the soft-

ware is very crucial for all stakeholders of the software. The

requests have been continuously generated from the end user

related to feature enhancements, bug fixing/fault repairing

and new feature for extending functionalities. The software

team assesses the requirement and calculate the effort needed

to implement such requests. There is a pressure from the

competitors for the early fault fixing and the incorporation of

new features. These requirements need a lot of changes

which have to be incorporated into the source code during

development or maintenance activity to meet the challenges

received from the end users. These changes are being

recorded in the source code repositories. The number of

changes is directly correlated with the errors or faults or bugs

in the software. But, it would be difficult to argue that the

changes themselves cause errors. Moreover, changes are

indicative of the trouble that the programmers face during the

code change. Most software evolves over time due to fixing

of defects and extending the existing as well as new func-

tionality. Changes in source code are needed to implement

the fault fix as well as new feature implementation which

makes the software code complex and prone to contain

errors.

Developers are distributed across the globe in open

source software and they seldom meet each other as

opposed to the closed source software. The changes in a

distributed scenario make software complex and some-

times causes a failure. These changes can be measured

using various complexity measures defined in the literature.

Baisli (1980) defines complexity as a measure of the

resources expanded by a system while interacting with a

piece of software to perform a given task. If the interacting

system is a computer, the complexity is defined by exe-

cution time and storage requirement need to perform

computation. If the interacting system is programmer, the

complexity is defined by the difficulty of performing tasks

such as coding, debugging, testing and modification. The

software complexity is often applied to the interaction

between a program and a programmer working on some

programming task. Measuring complexity is an important

activity which starts from development of code to main-

tenance (Mockus et al. 1999). Literature is available on

source code complexity (McCabe 1976; Halstead 1977),

complexity of object oriented design (Chidamber and Ke-

merer 1994) or functional complexity (Albrecht and

Gaffney 1983). These software complexity metrics have

been used to predict program length, program development

time, number of bugs, the difficulty of understanding a

program, and future cost of program maintenance. If the

changes are occurring in a specific line or block which does

not change the flow or other functionalities of the software,

the values of these complexities are not affected. These

metrics are not able to capture these changes of the source

code. Such changes lead to develop the complexity of code

change metric based on changes done in the source code.

Software entropy has been defined by using the second

law of thermodynamics which is stated as the second law

of thermodynamics. In principle, it states that a closed

system’s disorder can not be reduced. It can only remain

unchanged or increase. A measure of this disorder is called

entropy. This law also seems plausible for software sys-

tems. As a system is modified, its disorder or entropy

always increases (Jacobson et al. 1992). This is called

software entropy. The information theory deals with

assessing and defining the amount of information in the

message (Shannon 1948). The entropy measures the ran-

domness/uncertainty. The theory uses the information in

measuring the amount of uncertainty or entropy of the

distribution and this has been firstly attempted by Hassan

(2009) to quantify the code change process in terms of

entropy and predict the bugs based on past defects using

entropy based measures. In the present paper, we have

proposed a model to predict the potential change com-

plexity in the software. This will be helpful in determining

the stage of code maturity. The proposed model also

determines the rate at which change complexity diffused in

the software due to various types of code changes. The

proposed model has been empirically validated using his-

torical code changes data of open source web browser

Mozilla’s components. The performance of the proposed

model has been validated using goodness of fit criteria

namely bias, variation, mean squared error (MSE), and root

mean squared prediction error (RMSPE).The proposed

model has been also statistically validated using Kol-

mogorov–Smirnov (K–S) and v2 test. The rest of the paper

is organized in seven sections. Section 2 provides the

basics of the code change process and entropy. Section 3

discusses about the proposed model for predicting the

potential complexity of code changes. Section 4 deals with

goodness of fit criterion. Section 5 discusses about the data

collection and processing phase. The results and discus-

sions have been presented in Sect. 6 and finally the paper is

concluded with future research direction in Sect. 7.

2 Code change process and entropy

Code change process means to study the patterns of source

code modifications. Changes in the source code have been

done by developers to implement new features and repair

of faults. These patterns have been studied and quantified

their degree of complexity over time. Large projects

extensively use source code control systems to control and

manage their source code (Rochkind 1975). This repository

is very rich and continuously updated by the developers

156 Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):155–164

123



and contains a wealth of information. Data stored in these

repositories presents a great opportunity to study the code

change process. The data collection costs are minimal since

it is collected automatically by the source code control

system as the modifications done to the code.

2.1 Types of changes

Various modifications are described as follows:

2.1.1 New feature

This is one of the most important aspects of the software

maintenance. New feature requests are coming from the

end users/development team and from other competitive

teams. The incorporation of changes due to new feature

introduction increases the software source code complex-

ity. These changes as well as request have been recorded in

software configuration management (SCM) repository.

2.1.2 Feature enhancement

These changes are generally related to formatting of the

code, copyright messages and other comments/messages

appear in the code as well as during the execution. This

will include the enhancement/improvement of the existing

features taken as a perfective measure. The feature

enhancement will change the existing code and also add

some new source code files and hence increase the com-

plexity of code changes.

2.1.3 Bug repairs

Changes in the source code have been done to repair a fault/

bug. The changes due to bug repair (BR) may also con-

tribute towards increasing the complexity of code changes

as there are many changes needed to fix a fault. Even

though, the fault may not get fixed in a single attempt, it also

requires interactions among many developers.

The codes are continuously being changed due to any of

the above reasons. These changes in the source code are

making the software complex. There is need to study the

complexity of code changes due to above mentioned reasons.

2.2 Types of code change process

Earlier, Hassan (2009) has identified three variants of the

code change process which are as follows:

2.2.1 Basic code change

The changes are recorded based on the number of times the

file is modified. These changes are measured at the file

level instead of the code level at the fix interval or period.

The period can be taken as a day, week, month, year etc.

based on the total duration of the project.

2.2.2 Extended code change

Instead of using fixed length period, the basic code change

will be extended based on the variable length period. This

time period can be divided into three ways i.e., time based

periods, modification limits based periods and burst based

periods.In time based periods, total length of the project is

divided into equal length duration which depends on the

clock or calendar time. These partitions can be of any length.

In the modification limit based periods, the periods are

decided based on the equal number of modifications. The

modification limits period depends on the number of modi-

fications in the source code instead of fixed length periods.

Usually, the changes do not follow a specific pattern. It

generally follows the burst based patterns. Burst based per-

iod is depending on the sudden increase or decrease of the

modifications in the subsystem. These types of periods have

some advantages and disadvantages over one another.

2.2.3 File code change

Files are modified during periods of high change com-

plexity that also have the highest tendency to contain

faults. The actual modifications have been considered to

determine the period. The modifications may be addition/

deletion/modifications in the source code. This can be

further extended using extended code change based period

instead of a simple calendar/clock based period.

2.3 Complexity of code changes mesasurement

The code change has been studied using information theory

based entropy. Entropy is defined as the degree of uncer-

tainty or randomness or complexity of changes in the

source code. The information theory deals with assessing

and defining the amount of information in the message

using the Shannon Entropy (Shannon 1948). Hassan (2009)

used this concept of entropy to propose the complexity

based measures and predict the bugs which will be coming

in the future. The entropy is defined as

HnðpÞ ¼ �
Xn

k¼1

ðpk � log2 pkÞ where pk� 0;

Xn

k¼1

pk ¼ 1

pk is the probability of change occurrence and defined as

the ratio of number of times kth file changed during a

period and the total number of changes for all files in that

Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):155–164 157

123



period. The diagram shown below demonstrates the con-

version of change complexity into entropy (Fig. 1).

In the above diagram symbol star represents the change

in a file. For a first period, there are five changes occurred

in all four files in period T1. The probability of change

occurrence in files F1, F2, F3, and F4 will be 1/5 (=0.2),

1/5 (=0.2), 2/5 (=0.4) and 1/5 (=0.2) for first period (Fig.

1). Similarly, probability of change occurrence in files can

be calculated for other periods. Hassan (2009) used this

entropy and proposed history complexity metric (HCM)

based measures for bug prediction based on the pervious

faults. It also concluded from the study that the com-

plexity of code changes will get decay in an exponential

time period. Further, a benchmark study has been con-

ducted on defect prediction using publicly available

datasets and provides an extensive comparison of differ-

ent bug-prediction approaches (D’Ambros et al. 2010,

2012). This study also proposes some more approaches

namely entropy, code churn based approaches and applied

existing exponential decay model as well as proposed

linear decay and logarithmic decay based models for bug

prediction.

3 Proposed model for predicting the complexity of code

changes

The modifications in the source code are mainly due to BR,

feature enhancements and new feature introduction. The

complexity of code changes or uncertainty is diffused in

the system due to these changes. This complexity of code

changes has been studied and measured using entropy. The

aim of this paper is to predict the potential complexity of

code changes that the software will have during a long

maintenance period.

In this section, we have proposed a model on the line of

the Bass model (Bass 1969) to predict the potential com-

plexity of code changes in the software.

We take p is the rate at which entropy/ uncertainty /

complexity of code changes is diffused in the code due to

new feature introduction (NF)/feature enhancements

(EM)and q is the rate at which entropy/uncertainty/

complexity of code changes is diffused due to BRs, the

model has been proposed in Eq. (1) with the following

assumptions:

(i) Potential entropy /the complexity of code changes H

is constant.

(ii) The entropy diffusion due to new feature introduc-

tion/feature enhancements (EM) is independent and it

may introduce bugs.

(iii) At initial time t = 0, means there is no change in file

and entropy/the complexity of code changes is zero.

The entropy diffusion or complexity of code changes per

unit time can be written as follows:

dðHðtÞÞ
dt

¼ pðH � HðtÞÞ þ q
HðtÞ

H
ðH � HðtÞÞ ð1Þ

where H is the potential entropy/potential complexity of

code changes to be diffused in software over a period of

time and H(t) is the amount of entropy/complexity of code

changes at any given time t. Solving above differential

equation with initial conditions at t = 0 and H(0) = 0, we

get

HðtÞ ¼ �H
1� e�ðpþqÞt

1þ q
p

e�ðpþqÞt

" #
or HðtÞ ¼ H

1� e�/t

1þ be�/t

� �

Here / = p ? q is the entropy diffusion rate due to

changes occurred in the source code and b ¼ q
p

is a

constant.

The model parameter has been evaluated using cumu-

lative entropy of the studied subsystem or component using

nonlinear regression. This has been tested using statistical

measures namely, bias, variation, MSE, RMSPE, R2 and

statistical significance test.

4 Data collection and pre-processing

To empirically validate the proposed model, we have data

from the components of subsystems layout and web tools

of Mozilla project (The Mozilla project 2012). Mozilla is

very popular in the user’s community for web browsing.

The Mozilla project is using bugZilla (The bugZilla project

2012) for bug reporting. We have selected following

subcomponents.

4.1 AUS

Application update service (AUS) is a multi-faceted web

based service. This has been used to check the updates of

application software available on the server by the client

software.

Fig. 1 The pattern of modifications to the file

158 Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):155–164

123



4.2 Bonsai

It is a tool used to perform queries on the contents of a CVS

archive. The source code change data have been collected

using this tool in the experiment.

4.3 MXR

Mozilla cross reference (MXR) originally uses Linux cross

reference (lxr, lxr.linux.no). This tool will help in browsing

the repositories of source code namely, CVS server, Mer-

curial Server, and Subversion Server by cross referencing

for the mozilla.org. The source code of the individual files

is formatted online and presents the identifiers with hy-

perlinked interface.

4.4 Mozbot

Mozilla multipurpose extensible modular Perl Bot (Moz-

bot) provide useful services to the developing communities

using other Mozilla web tools, such as displaying changes

in the Tinderbox status, displaying information on bug

reports from Bugzilla.

4.5 Tinderbox

Tinderbox is a tool used by the Mozilla developer’s com-

munity to check the compile status of the current source

code on various platforms and passes automated test suites.

Tinderboxes continually build the latest source code and

show the status of these builds. This is helpful in deter-

mining the status of the source tree for platform, product,

and code branch.

4.6 Tables

Tables are used to design and construct the layout of tables

for the user interface.

4.7 XML user interface language (XUL)

An application of XML used to provide the development

environment to create user interfaces.

The process flow diagram has shown in Fig. 2 which

consist of seven steps starting from the CVS/SVN reposi-

tory till measuring the performance of the developed

model.

The code change data are available in the CVS reposi-

tory. This historical code change data has been extracted

using Bonsai tool of Mozilla from 1998 i.e. the start of the

tools made available in the repository. In this study, we

have taken a fixed period as 6 months. The number of files

in each of these subsystems is varied in the range of

16–124 files. There are

• 16 files in AUS,

• 124 files in Bonsai,

• 28 files in MXR,

• 57 files in Mozbot,

• 64 files in Tinderbox,

• 29 files in the subsystem ‘‘mozilla/layout/tables/’’, and

• 106 files in the subsystem ‘‘mozilla/layout/xul/’’.

The entropy has been calculated with respect to file

change on half yearly basis. This entropy has been used to

calculate the potential entropy of the code change using the

proposed model.

5 Goodness of fit

The goodness of fit test has been used to provide the sta-

tistical significance of the distribution obtained from the

predicted values.

Step 1 Null and alternate hypothesis can be stated as

below

Fig. 2 Process flow diagram for predicting the complexity of code

changes or potential entropy

Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):155–164 159

123



The null hypothesis (H0): The observed and estimated

values of the complexity of code changes are equal.

The alternate hypothesis (H1): The observed and estimated

values of the complexity of code changes are not equal.

Step 2 Calculate the value of v2.

v2 ¼
Xk

i¼1

ðoi � eiÞ2

ei

where oi and ei are the observed and estimated value of

complexity of code changes at (k - 1) degree of freedom.

Fig. 3 a Complexity of code

changes for AUS. b Complexity

of code changes for Bonsai.

c Complexity of code changes

for Mozbot. d Complexity of

code changes for MXR.

e Complexity of code changes

for Tinderbox. f Complexity of

code changes for tables.

g Complexity of code changes

for XUL

Table 1 The parameter

estimate using the proposed

model on various datasets

1 Unit = 6 months

S. no. Dataset H (predicted) / b p q Maturity period

of (unit)

Entropy at

maturity level

1 AUS 9.309 0.094 0.288 0.073 0.021 48 8.94

2 Bonsai 64.279 0.030 3.057 0.007 0.023 106 60.59

3 Mozbot 12.327 0.198 9.329 0.019 0.179 29 11.93

4 MXR 9.298 0.114 0.001 0.1139 0.0001 28 8.90

5 Tinderbox 74.791 0.020 0.779 0.011 0.009 70 47.26

6 Tables 60.105 0.050 1.731 0.018 0.032 59 52.23

7 XUL 53.970 0.094 3.057 0.023 0.071 49 51.85

Table 2 Goodness of fit measures of various datasets

S. no. Dataset R2 Bias MSE Variation RMSPE

1 AUS 0.997 -0.006 0.017 0.102 0.102

2 Bonsai 0.997 0.078 0.151 0.389 0.397

3 Mozbot 0.979 -0.053 0.303 0.560 0.563

4 MXR 0.959 0.028 0.179 0.434 0.435

5 Tinderbox 0.971 0.195 1.003 1.001 1.020

6 Tables 1.000 0.029 0.011 0.103 0.107

7 XUL 1.000 -0.014 0.009 0.098 0.099

160 Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):155–164

123



Step 3 Compare the estimated value with the tabulated

value of the k - 1 degree of freedom. If the calculated

value is less than the estimated value, the alternate

hypothesis is rejected and the null hypothesis is accepted.

5.1 Kolmogorov–Smirnov (K–S) Test

This is a non-parametric test and able to provide the dis-

tance between the observed and predicted curve with the

certain confidence level in terms of probability.

6 Results and discussions

The parameters of the diffusion model have been estimated

using SPSS software and the results are shown in Table 1.

Table 1 shows the value of the potential complexity of

code changes/entropy, stabilized entropy, stabilization

period, rate of entropy diffusion due to feature enhance-

ment/new feature addition and BR. The value of p is the

rate at which entropy/uncertainty/complexity of code

changes is diffused in the code due to new feature intro-

duction (NF)/feature enhancements (EM) and q is the rate

at which entropy/uncertainty/complexity of code changes

is diffused due to BR. It is clear from the table that for

some data sets p is more than q and for some q is more than

p.

The value of p is larger than the value of q in AUS,

MXR and Tinderbox which means in these components the

complexity of code changes have been introduced mainly

due to feature enhancement and new feature introduction.

The AUS component is mainly used by the client software

to check the updates of the application software. This

component is being made rich by providing new func-

tionalities. It means that the changes in the source code are

mainly due to the inclusion of new feature or feature

Fig. 4 a Goodness of fit curve for AUS. b Goodness of fit curve for Bonsai. c Goodness of fit curve for Mozbot. d Goodness of fit curve for

MXR. e Goodness of fit curve for Tinderbox. f Goodness of fit curve for tables. g Goodness of fit curve for XUL

Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):155–164 161

123



enhancements. The MXR originally uses the source code of

lxr. The bugs are reported in these components are being

originally fixed in the lxr and only changes in the MXR

components are being made to improve the existing fea-

tures and addition of new features. The new feature

introductions include as an example to provide interactive

web based GUI front end for browsing the source code

using cross referencing. The Tinderbox is used to check the

compile status of the current source code on various plat-

forms status of the build source code various computers.

This component provides the status details of various

builds such as a nightly build, dependent build, leak text

build, compile and run tests, static analysis. Most of these

features are only update/format oriented rather bug fix

oriented. Our experimental results validate the practical

occurrences in the components.

On the other side, the value of p is smaller than the value

of q in Bonsai, Mozbot, tables and XUL which means in

these components the complexity of code changes have

been introduced mainly due to bug fixes/repairs. These

components are mainly developed by Mozilla. The releases

are mostly due to bug fixes.

Various goodness of fit criteria results has been shown

in Table 2, which indicates that the proposed model fits the

observed data well. Table 2 shows the values of various

statistical parameters namely bias, MSE, variation, RMSPE

and R2. The value of R2 is more than 0.95 for all the

components. For the components tables and XUL the value

is 1. The other statistical parameters show that the model is

able to capture the entropy based complexity of code

changes and provide the better goodness of fit.

The pattern of entropy as complexity of code changes has

been shown in the Fig. 3a–g for various components of

Mozilla. In most of the components, the behaviour of

entropy is non-uniform except in layout components i.e.,

XUL and tables. In these components, minor variation in

the entropy has been observed for two consecutive periods.

The goodness of fit curve between observed and predicted

entropy has been plotted for these components in Fig. 4a–g.

These figures signify the better goodness of fit of the model

Fig. 5 a Potential complexity for

AUS. b Potential complexity for

Bonsai. c Potential complexity for

Mozbot. d Potential complexity for

MXR. e Potential complexity for

Tinderbox. f Potential complexity for

tables. g Potential complexity for XUL

162 Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):155–164

123



as the most of the points in these charts are overlapping with

each other in respect of observed and predicted values.

Figure 5a–g shows the potential complexity of code

change in the software for the components under study. We

observed from the graph that the value of complexity of

code changes/entropy increases with respect to time due to

feature enhancement/new feature addition and BR but it

got stabilizes/matures at some point of time and after that

the value increases very slowly to meet the predicted

potential entropy. This trend follows for all the data sets.

We have also calculated the value of the complexity of

code changes/entropy which stabilizes/matures the devel-

opment of the product.

To test the statistical significance of the proposed model,

we have applied non-parametric v2 and K–S test and the

results of these statistical tests are shown in Tables 3 and 4

respectively.

In Table 3, the second, third and fourth columns contain

the calculated value of v2, tabulated value of v2 at the 5 %

level of significance and degree of freedom respectively.

In all the datasets, the calculated value of the v2 statistic

is less than the tabulated value of the v2 statistic with

respective degree of freedom at the 5 % level of signifi-

cance. In this way, we can say that the null hypothesis is

accepted. Thus, we can conclude that the predicted

potential complexity of code changes/entropy has been

found statistically significant.

The K–S test shows the distance as D value with the

confidence provided by associated p value. In all the data-

sets, the probabilities are approximately one which shows

that the proposed model is able to fit the data very well and

the predicted value of potential entropy or complexity of

code changes are found to be statistically significant.

7 Conclusion

In this paper, the first one and a novel approach has been

proposed to predict the potential complexity of code

changes in the software. The diffusion of change com-

plexity has been validated using seven components namely

AUS, Bonsai, Mozbot, MXR, Tinderbox, tables and XUL

of Mozilla project. Experimental results on the basis of

different performance measures show that the diffusion of

the complexity of code changes in software can be pre-

dicted significantly using the proposed model. The entropy

based diffusion of change complexity is a good predictor of

potential entropy or potential change complexity i.e., the

remaining code changes yet to be diffused in the software.

The value of R2 is over 95 % of all cases. For statistical

validation, the proposed model is found statistically sig-

nificant based on v2 and K–S test for all the datasets. Our

study shows that the proposed measure of software change

complexity based on entropy can be applied in predicting

the remaining requirements or code changes yet to be

diffused in the software and hence it will help in managing

the software product. In the future, we will extend this

work on more data sets and at finer grain levels where we

can consider code level changes.

References

Albrecht AJ, Gaffney JR (1983) Software function, source lines of

code and development effort prediction: a software science

validation. IEEE Trans Soft Eng 9(6):639–648

Baisli VR (1980) Qualitative software complexity models: a

summary. In: Tutorial on models and methods for software

management and engineering. IEEE Computer Society Press,

Los Alamitos

Bass F (1969) A new product growth model for consumer durables.

Manag Sci 15(5):215–227

Canfora G, Cerulo L, Di Penta M, Pacilio F (2010) An exploratory

study of factors influencing change entropy. In: The 18th IEEE

international conference on program comprehension, ICPC

2010, Braga, Minho, Portugal, 30 June–2 July 2010. IEEE

Computer Society, Washington, DC, pp. 134–143

Chidamber AJ, Kemerer CF (1994) A metric suite for object oriented

design. IEEE Trans Soft Eng 20(6):476–493

D’Ambros M, Lanza M, Robbes R (2010). An extensive comparison

of bug prediction approaches. In: Proceedings of the seventh

IEEE working conference on mining software repositories

(MSR07). IEEE CS Press, pp. 31–41

Table 4 Tests for statistical significance using Kolmogorov–Smir-

nov (K–S) two sample test

Components D value Associated p value

AUS -0.0769 1.0000

Bonsai -0.0435 1.0000

Mozbot -0.1250 0.9868

MXR -0.1667 0.9448

Tinderbox -0.1111 0.9936

Tables -0.0476 1.0000

XUL 0.0526 1.0000

Table 3 Goodness of fit for complexity of code changes prediction

Components v2 (calculated) v2 (tabulated) Degree of freedom

AUS 0.0431 21.026 12

Bonsai 0.4762 33.924 22

Mozbot 1.9269 35.172 23

MXR 0.4903 27.587 17

Tinderbox 3.7407 38.885 26

Tables 0.0447 31.410 20

XUL 0.0573 28.869 18

Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):155–164 163

123



D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect

prediction approaches: a benchmark and an extensive compar-

ison. Empir Softw Eng 17(4–5):531–577

Erlikh L (2000) Leveraging legacy system dollars for E-business.

(IEEE) IT Pro, May/June 2000, pp 17–23

Halstead MH (1977) Elements of software science. Elsevier North

Holland, New York

Hassan AE (2009) Predicting faults based on complexity of code

change. In: proceedings of the 31st international conference on

software engineering, pp 78–88

Jacobson I, Christerson M, Jonsson P, Overgaard G (1992) Object

oriented software engineering: a use case driven approach. ACM

Press, Addison Wesley, New York, Reading, pp 69–70

Kagdi H (2007) Improving change prediction with fine-grained source

code mining. In: Proceedings of the twenty-second IEEE/ACM

international conference on automated software engineering,

Atlanta, Georgia, USA, 05–09 November 2007

Kagdi H, Maletic JI (2006) Software-change prediction: esti-

mated?actual. In: SOFTWARE-EVOLVABILITY ‘06 proceed-

ings of the second international IEEE workshop on software

evolvability. IEEE Computer Society, Washington, DC,

pp 38–43

Kagdi H, Maletic JI (2007) Combining single-version and evolution-

ary dependencies for software-change prediction. In: Proceed-

ings of the fourth international workshop on mining software

repositories held during 20–26 May 2007

McCabe TH (1976) A complexity measure. IEEE Trans Soft Eng

2(6):308–320

Mockus A, Eick SG, Graves TL, Karr AF (1999) On measurement

and analysis of software changes. Technical report, National

Institute of Statistical Sciences

Rochkind MJ (1975) The source code control system. IEEE Trans

Soft Eng 1(4):364–370

Shannon CE (1948) A mathematical theory of communication. Bell

Syst Tech J 27(379–423):623–656

The bugZilla project (2012). http://www.bugzilla.org. Accessed 30

Nov 2012

The Mozilla project (2012). http://www.mozilla.org. Accessed 30

Nov 2012

164 Int J Syst Assur Eng Manag (Apr-June 2014) 5(2):155–164

123

http://www.bugzilla.org
http://www.mozilla.org

	Predicting the complexity of code changes using entropy based measures
	Abstract
	Introduction
	Code change process and entropy
	Types of changes
	New feature
	Feature enhancement
	Bug repairs

	Types of code change process
	Basic code change
	Extended code change
	File code change

	Complexity of code changes mesasurement

	Proposed model for predicting the complexity of code changes
	Data collection and pre-processing
	AUS
	Bonsai
	MXR
	Mozbot
	Tinderbox
	Tables
	XML user interface language (XUL)

	Goodness of fit
	Kolmogorov--Smirnov (K--S) Test

	Results and discussions
	Conclusion
	References


