
ORIGINAL ARTICLE

An empirical evaluation of cross project priority prediction

Meera Sharma • Punam Bedi • V. B. Singh

Received: 24 November 2013 / Published online: 11 February 2014

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2014

Abstract Prioritization of bugs decides the bug fix

sequence. Incorrect prioritization of bugs results in delay of

resolving the important bugs, which leads delay in release

of the software. Prediction of bug priority needs historical

data on which we can train the classifiers. However, such

historical data is not always available in practice. In this

situation, building classifiers based on cross project is the

solution. In the available literature, we found very few

papers for bug priority prediction and none of them dealt in

cross project context. In this paper, we have evaluated the

performance of different machine learning techniques

namely Support Vector Machine, Naive Bayes (NB),

K-Nearest Neighbors and Neural Network in predicting the

priority of the newly coming reports in intra and cross

project context. To evaluate the performance of these

machine learning techniques for priority prediction in cross

project context, we have considered three scenarios: (i) 10

fold cross-validation for intra project (ii) cross project

validation for inter projects and (iii) inter project cross

validation with different combination of training datasets.

We performed experiments for each scenario on five

datasets. Results from these experiments conclude that the

accuracy performance for all machine learning techniques

except NB is above 70, 72 and 73 % in respective sce-

narios. The experimental results also show that the com-

bination of different project datasets for training candidates

does not provide a significant improvement in performance

measures.

Keywords Bug repositories � Bug priority � Classifiers �
10 fold cross validation � SVM � K-NN � Naive Bayes �
Neural network � Cross project validation

1 Introduction

With the frequent changes in the software source code to

meet the changing and enormous requirements of the users,

a large number of bugs are being reported on daily basis. A

bug may be reported by a user, a developer, or by any staff

member. The reported bugs should be analyzed carefully to

find it out whether the bug is correct or incorrect, valid or

invalid, important or unimportant, new or duplicate. We

assign priority to a bug so that an important bug should not

be left untreated for a long time. Correct prioritization is

again a problem. The reporter may not have the complete

knowledge of the project which may result in incorrect

prioritization. Triager (a person who analyzes, expands and

overall refines the bugs) with his knowledge and experi-

ence assign the priority to the bug. Manually doing this is a

cumbersome task. We need to automate the process of bug

priority prediction.

Cross project study is getting an edge in software

engineering to predict bugs, cost, bug fix time, severity and

priority and some other attributes or project property on the

basis of historical data of other projects. In the available

literature, very few attempts have been made in cross

M. Sharma (&) � P. Bedi

Department of Computer Science, University of Delhi, Delhi,

India

e-mail: meera_sharma44@yahoo.com

V. B. Singh

Delhi College of Arts & Commerce, University of Delhi, Delhi,

India

e-mail: vbsinghdcacdu@gmail.com

123

Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663

DOI 10.1007/s13198-014-0219-4



project study and very few authors have attempted to work

on cross project validation for priority prediction. Recently,

Sharma et al. (2012) have made an effort to predict the

priority of a reported bug in cross project context but it was

for a limited number of cases and combination of datasets

for developing training candidate has not been considered

which is proven to be very successful. In this paper we

have made an attempt to predict the priority of a reported

bug using different machine learning techniques and

investigated the priority predictions in the cross project

context by considering the combination of datasets for

training candidates. To study and investigate the priority

prediction in intra and cross project context, we have set

the following research questions:

Research

Question 1:

Which machine learning technique is

most appropriate for priority prediction?

Research

Question 2:

How performances of different machine

learning techniques vary with number of

terms?

Research

Question 3:

Does training data from other projects

provide acceptable priority prediction

results?

Research

Question 4:

Does the combination of training data

sets provide better performance than

single training data set?

We have visualized the empirical evaluation and

experimental setup by creating three scenarios.

Scenario 1 10 fold cross-validation within same project

dataset

Scenario 2 Cross project validation across different

project datasets

Scenario 3 Cross project validation by combining

different project datasets as training candidate

Scenario 1 answers the research questions 1 and 2.

Scenario 2 answers the research question 3 and scenario 3

answers research question 4.

We have applied Support Vector Machine (SVM),

Naı̈ve Bayes (NB), K-Nearest Neighbors and Neural Net-

work classification techniques on bug repositories of open

source projects namely Eclipse and OpenOffice. The per-

formance measures namely accuracy, precision, recall and

F-measure have been calculated using 10 fold cross-vali-

dation with stratified sampling. Rest of the paper is orga-

nized as follows: Section 2 provides related research work.

Section 3 discusses about the pre-processing and repre-

sentation of textual data (summary) of bug reports. Sec-

tion 4 describes the dataset and features selected. Section 5

deals with the experimental setup. Section 6 discusses

about the results. Section 7 mentions the threats to validity

of results and finally, the paper is concluded in Section 8

with future research directions.

2 Related work

Attributes of a bug can be used to predict the priority,

severity, fixer and status of the bug. Summary field rep-

resents the information about the bug (what this bug is).

By mining the summary field and using machine learning

techniques we can predict various attributes for new bug

report. Canfora and Cerulo (2006) have proposed a study

on how change requests have been assigned to developers

involved in an open source project (Mozilla and KDE)

and a method to suggest the set of best candidate devel-

opers to resolve a new change request. An approach

consisting of constructing a recommender for bug

assignments has been proposed by Anvik (2006). Anvik

et al. (2006) applied SVM, Naive Bayes and Decision

Trees on Eclipse, Firefox and GCC projects for automatic

assignment of developer to a new bug report. Tamrawi

et al. (2011) proposed a fuzzy set-based approach for

automatic assignment of developers to bug reports. Weib

et al. (2007) presented an approach to predict the fixing

effort for an issue allowing early effort estimation, help-

ing in assigning issues and scheduling stable releases.

Kim and Whitehead (2006) computed the bug-fix time of

files in ArgoUML and PostgreSQL by identifying when

bugs are introduced and when the bugs are fixed. Lam-

kanfi et al. (2010) investigated whether we can accurately

predict the severity of a reported bug by analyzing its

textual description using text mining algorithms. Authors

concluded that it is possible to predict the severity with a

reasonable accuracy (both precision and recall vary

between 0.65–0.75 with Mozilla and Eclipse; 0.70–0.85 in

the case of GNOME). Chaturvedi and Singh (2012) have

made an attempt to demonstrate the applicability of

machine learning algorithms namely NB, K-Nearest

Neighbor, NB Multinomial, SVM, J48 and RIPPER in

determining the severity class of bug report data of NASA

from PROMISE repository. Menzies and Marcus (2008)

presented a new and automated method named SEVERIS

(SEVERity ISsue assessment), to assist the test engineer

in assigning severity levels of defect reports of NASA’s

Project and Issue Tracking System (PITS). Anvik and

Murphy (2011) proposed a recommender for development

oriented decisions like assignment of developer to a new

bug report, prediction of the component for new bug

report. Marks et al. (2011) have done the analysis for

different features of bug reports to find the characteristics

of bug fix-time using Mozilla and Eclipse bug reposito-

ries. Sharma et al. (2013) predicted the cc-list count of a

bug by using different regression techniques. Yu et al.

(2010) predicted the priority of a bug during software

testing process using artificial neural network and NB

classifier. Kanwal and Maqbool (2010, 2012) used a

classification based approach to compare and evaluate the

652 Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663

123



SVM and NB classifiers to automate the prioritization of

new bug report by using the categorical and textual

attributes of bug report to train the model. They have

shown that SVM performance was better than the NB

with textual attributes and NB performance was better

than SVM for categorical attributes. But this analysis has

been carried out on a limited data and techniques. Cross

project study is a new and challenging task.

Our study on cross project priority prediction is moti-

vated and based on the following papers:

Recently, Sharma et al. (2012) conducted a study to

predict the bug priority within project using SVM,

K-NN, NB and Neural Net, and found that SVM and

Neural Network are better than K-NN and K-NN is

better than NB. He et al. (2012) have done an investi-

gation on the feasibility of cross-project defect predic-

tion and found that cross-project defect prediction is

better than prediction when training data set is from the

same project. Zimmermann et al. (2009) performed a

large scale experiment on Data versus Domain versus

Process cross-project defect prediction. Turhan et al.

(2009) have done an empirical study on the relative

value of cross-company and within-company data for

defect prediction.

3 Preprocessing and representation of data

We have predicted the priority of a bug report based on its

summary attribute entered by user at the time of bug filling.

We pre-processed the bug summary in Rapid Miner tool

containing the following steps:

3.1 Tokenization

Tokenization is the process of breaking a stream of text

into words, phrases, symbols, or other meaningful elements

called tokens. In this paper a word or a term has been

considered as token.

3.2 Stop word removal

In bug summary prepositions, conjunctions, articles, verbs,

nouns, pronouns, adverbs, adjectives, etc. are stop words

and have been removed.

3.3 Stemming to base stem

The process of converting derived words to their base word

is known as stemming. In this paper, we have used Stan-

dard Porter stemming algorithm (Porter 2008) for

stemming.

3.4 Feature reduction

Tokens of minimum length 3 and maximum length 50 have

been considered because most of the data mining algorithm

may not be able to handle large feature sets.

3.5 Weight by information gain or infogain

Information gain tells the importance or relevance of the

term or token.

To make textual data structured for analysis it is rep-

resented as document*term matrix where the rows are

considered as documents or files and columns are consid-

ered as terms or tokens. The frequency of a term in the

document will be counted and stored in the matrix form.

TFi is the occurrences of a term in the document. To nor-

malize TFi it is divided by total number of terms in the

document, n is the total number of terms in the document.

TF 9 IDF represents ‘‘term frequency (TF) times

inverse document frequency (IDF)’’. It determines the

importance of a term in the complete dataset or document

set. Importance of a term increases with the frequency

count of the term in the document but is offset by the

frequency of the word in the dataset. The inverse document

frequency is obtained by dividing the number of all doc-

uments by the number of documents containing the term,

and then taking the logarithm of that quotient. This rep-

resentation is used to rank the terms and selecting top few

terms.

Wi ¼ TFi� IDFi where IDFi ¼ log ðN=DFi)

DFi is the document frequency which shows the

appearance of a particular term in the number of documents

and N is the total number of documents.

Different accuracy measures namely accuracy, preci-

sion, recall and F-measure can be calculated to measure the

performance of a classifier.

Accuracy of a classifier is defined as proportions of

classifications, over all the N examples that were correct. It

is the percentage of correct classification.

Precision of a class A is defined as number of instances

correctly classified as class A divided by the total number

of instances classified as class A. It measures the percent-

ages of correct predictions related to the predictions made

by the classifier.

Precision ¼ No: of instances correctly classified as class A

Total number of instances classified as class A

Recall of a class A is the number of instances correctly

classified as class A divided by the total number of

instances in the dataset having class label A. It measures

the percentage of correct predictions related to actual class.

Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663 653

123



Recall ¼ No: of instances correctly classified as class A

Total no: of instances in dataset having class label A

F-measure is calculated to measure the average perfor-

mance of the classifier to avoid the bias towards precision or

recall. It is twice of the harmonic mean of precision and recall.

F - Measure ¼ 2� Precision� Recall

Precisionþ Recallð Þ

4 Dataset and feature selection

In this paper, we have collected bug reports from Eclipse and

OpenOffice projects. These projects are very popular in

terms of their usage. Eclipse projects provide a development

platform with extensible frameworks, tools and runtimes for

building and managing software throughout its life time. In

the Eclipse project, we have considered 6 products and 49

components. We have used only bug reports for platform

product which has 21 components because other components

do not have sufficient number of bug reports. Bug reports

were collected up to 13th July 2012 from http://bugs.eclipse.

org/bugs/. For the OpenOffice, we have collected Database

Access, Presentation and Spreadsheet products bug reports

taken up to 17th July 2012 from http://issues.apache.org/

ooo/. We have used summary feature of bug report to predict

the priority of newly coming bug. Only resolved bug reports

with status value ‘‘resolved’’, ‘‘closed’’ or ‘‘confirmed’’ with

‘‘fixed’’ and ‘‘duplicate’’ resolution have been taken because

only these types of bug reports contain the meaningful

information for building and training the models. Table 1

shows priority wise bug reports of different Eclipse and

OpenOffice products.

5 Experimental setup

To conduct the experiment, we made an automated work-

flow in Rapid Miner (Mierswa et al. 2006) containing steps

for preprocessing of bug reports, model building, cross

validation and model testing.

A graphical presentation for generating training datasets

for Database Access (DB) product of OpenOffice project in

scenario 2 and 3 has been shown in Fig. 1.

6 Results and discussion

Scenario 1 we have applied different machine learning

techniques namely SVM, Naive Bayes, K-Nearest Neigh-

bors and Neural Network for predicting the priority of

reported bug using 10 fold cross-validation and varying

number of terms from 25 to 200 (Sharma et al. 2012). We

have tried different kernels and other parameters and then

we used the appropriate parameters values to get the sig-

nificant amount of performance. For SVM we have taken

polynomial kernel with degree 3.

Fig. 1 Procedure of generating training sets for DB

Table 1 Number of bug reports in different projects

Projects Product Priority level

P1 P2 P3 P4 P5 Total

Eclipse Platform version 2(V2) 923 1,416 8,609 370 229 11,547

Eclipse Platform version 3(V3) 361 963 26,667 320 136 28,447

OpenOffice Database Access (DB) 76 472 2,834 243 38 3,663

OpenOffice Spreadsheet (SST) 82 518 4,210 316 114 5,240

OpenOffice Presentation (PPT) 62 553 2,688 90 37 3,430

654 Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663

123

http://bugs.eclipse.org/bugs/
http://bugs.eclipse.org/bugs/
http://issues.apache.org/ooo/
http://issues.apache.org/ooo/


Accuracy of SVM and NB has been shown in Table 2.

Above table shows that the accuracy of SVM is more

than 74 % for all datasets. It slightly improves or just

fluctuates by increasing the number of terms from 25 to

200. But NB accuracy increases as we increase the number

of terms from 25 to 200. For Eclipse project version 2 and

subversions, SVM accuracy slightly increased from 74.66

to 74.76 % for variation in number of terms from 25 to 75.

After this it keeps on fluctuating with a small fraction. For

Eclipse project version 3 and subversions, SVM gives

highest accuracy i.e., 93.73 %. In OpenOffice Database

access product, accuracy slightly increased from 77.94 to

78.27 % for 25 to 100 terms and then it keeps on fluctu-

ating with the increase in number of terms. For OpenOffice

Spreadsheet product, accuracy slightly increased from 81.07

to 81.17 % for 25 to 200 terms. In case of OpenOffice Pre-

sentation product, accuracy slightly increased from 79.74 to

80.26 % for 25 to 175 terms. These results show that there is

no significant increase in accuracy with the increase in

number of terms after 100 terms.

Accuracy of NB classifier is not significant. The reason

behind this is the large degree of class overlapping in our

datasets as features (terms) we used for priority prediction

belongs to more than one priority class. Denil and Trap-

penberg (2010) shown that SVM is not sensitive to the

overlapping problem. It is able to achieve performance

comparable to the optimal classifier in the presence of

overlapping classes.

Accuracy of K-NN for K = 1 to 5 has been shown in

Table 3.

Accuracy of K-NN increases slightly with the increase

in value of K from 1 to 5 and decreases slightly with

increase in number of terms from 25 to 200. For Eclipse

platform product version 2 accuracy for K = 1, is 69.48 %

which goes on decreasing to 64.25 % with increase in

number of terms from 25 to 200. On the other hand for

increasing value of K, the accuracy increased from 69.48 to

73.98 %. For version 3 accuracy for K = 1, is 91.70 %

which goes on decreasing to 89.61 % with increase in

number of terms from 25 to 200. On the other hand for

increasing value of K, the accuracy increased up to

93.70 %. In all cases for all datasets accuracy is above

64 %. The maximum accuracy of the classifier with present

datasets is 93.70 % for 25 and top 200 terms with K = 5.

Same trend is followed for other datasets. This shows that

there is no effect of number of terms on the accuracy in a

great extent.

Accuracy of NNET has been shown in Table 4.

Accuracy of Neural Network decreases with increase in

number of training cycles from 100 to 300 in almost all

datasets. We get maximum number of highest accuracy at

100 training cycles. Accuracy in case of Eclipse version 2

and 3 are 74.75 and 93.77 %for 100 training cycles and

100 terms. For OpenOffice project highest accuracy is

79.06, 81.31 and 81.16 %.

In the answer of research question 1 we concluded

that the performance of Neural Network in terms of

accuracy is better than SVM which is better than

K-NN. Accuracy of Naive bayes is the lowest of all.

Graphical presentation of performance measure accu-

racy for all the classifier with varying number of terms i.e.

from 25 to 200 across all datasets has been shown in Fig. 2,

3, 4, 5, 6.

Figure 2 shows that SVM and NNET accuracy remain

invariant with increase in number of terms whereas, K-NN

accuracy goes down slightly with increase in number of

terms. Figure 3 shows that all the three classifiers: SVM,

NNET and K-NN show no significant effect of increase in

number of terms on accuracy. From Fig. 4 it’s clear that

Table 2 Accuracy measures of SVM and NB classifiers

Project Product Classifier No. of terms/features/attributes

Accuracy (in %)

25 50 75 100 125 150 175 200

Eclipse Platform version 2 & subversions SVM 74.66 74.66 74.76 74.67 74.62 74.44 74.49 74.48

Naı̈ve Bayes 5.93 6.77 8.33 8.52 8.97 9.28 9.27 9.38

Eclipse Platform version 3 & subversions SVM 93.73 93.70 93.68 93.71 93.72 93.69 93.69 93.70

Naı̈ve Bayes 3.48 3.85 5.86 5.855 6.25 6.56 7.21 7.54

OpenOffice Database Access SVM 77.94 78.19 78.21 78.27 78.02 78.11 77.94 78.13

Naı̈ve Bayes 9.17 10.16 9.61 12.99 14.88 16.22 15.86 16.65

OpenOffice Spreadsheet SVM 81.07 80.99 80.84 80.84 80.88 80.90 81.05 81.09

Naı̈ve Bayes 4.75 5.32 7.00 7.92 8.55 9.43 9.90 11.01

OpenOffice Presentation SVM 79.74 79.74 80.09 80.20 80.12 80.23 80.26 80.17

Naı̈ve Bayes 4.72 9.21 13.35 15.95 15.95 17.35 17.78 17.93

Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663 655

123



accuracy of SVM and NNET remain invariant with

increase in number of terms whereas, K-NN accuracy goes

down slightly with increase in number of terms. Figure 5

shows that accuracy of NNET goes down with increase in

number of terms from 25 to 125. After that it increases for

150 terms and then again decreases with increase in

number of terms. K-NN accuracy goes up for 75 terms and

then shows a fluctuating behavior with increase in number

Table 3 Accuracy measure (in %) of K-NN classifier with K = 1–5

Projects

and products

K-NN accuracy (in %)

No. of

terms

K = 1 K = 2 K = 3 K = 4 K = 5

Eclipse

platform

product

version 2 &

subversions

25 69.48 73.14 73.10 73.51 73.98

50 67.75 75.59 72.34 73.27 73.54

75 66.33 72.44 72.24 73.03 73.40

100 65.24 72.37 72.32 73.01 73.45

125 64.74 72.30 71.85 72.75 73.28

150 64.34 72.37 71.76 72.87 73.29

175 64.16 72.25 71.71 72.88 73.23

200 64.25 72.49 71.71 72.98 73.29

Eclipse

platform

product

version 3 &

subversions

25 91.70 93.48 93.47 93.66 93.70

50 90.43 93.41 93.31 93.60 93.64

75 90.03 93.34 93.29 93.58 93.64

100 89.93 93.37 93.25 93.61 93.70

125 89.72 93.38 93.25 93.63 93.68

150 89.69 93.43 93.26 93.61 93.68

175 89.70 93.37 93.36 93.62 93.67

200 89.61 93.41 93.56 93.69 93.70

OpenOffice

Database

Access

25 72.37 77.64 77.15 78.02 78.63

50 71.77 77.51 77.12 77.89 78.00

75 72.18 77.64 76.85 77.48 78.02

100 72.32 76.82 76.39 77.12 77.10

125 71.44 76.99 76.36 76.50 77.07

150 70.90 76.41 75.76 76.96 77.04

175 70.79 76.25 75.46 76.66 77.31

200 71.06 76.58 76.06 77.15 77.29

OpenOffice

Presentation

25 76.76 79.62 79.18 79.68 79.56

50 75.83 79.56 78.98 79.62 79.94

75 75.60 79.33 78.75 79.01 80.09

100 74.43 78.86 78.16 78.69 79.39

125 75.34 79.10 78.25 79.33 79.33

150 74.61 79.15 78.63 78.92 79.88

175 74.66 79.18 78.89 78.89 79.71

200 75.04 79.27 79.07 79.30 79.88

OpenOffice

Spreadsheet

25 77.82 80.29 80.40 80.76 81.03

50 73.32 79.79 79.69 80.44 81.01

75 71.97 79.47 79.37 79.90 80.31

100 72.73 79.43 79.33 80.08 80.17

125 72.61 79.52 79.10 80.29 80.36

150 72.50 79.56 78.85 80.32 80.52

175 71.79 79.05 78.23 80.11 80.23

200 71.98 79.24 78.72 80.32 80.23

Table 4 Accuracy measure (in %) of Neural network for 100–300

training cycles

Projects and products Neural network training cycles

No. of

terms

100 200 300

Eclipse platform product version

2 & subversions

25 74.72 74.69 74.66

50 74.63 74.56 74.54

75 74.69 74.47 74.37

100 74.75 74.67 74.73

125 74.38 74.20 74.03

150 74.67 74.55 74.28

175 74.62 74.33 68.18

200 74.67 74..22 74.27

Eclipse platform product version

3 & subversions

25 93.77 93.75 93.71

50 93.74 93.73 93.73

75 93.74 93.65 93.65

100 93.76 93.73 93.69

125 93.75 93.74 93.69

150 93.77 93.71 93.67

175 93.78 93.63 93.65

200 93.74 93.69 93.65

OpenOffice Database Access 25 79.03 78.79 78.71

50 79.06 78.90 78.41

75 78.79 78.84 78.52

100 78.71 77.75 71.08

125 78.54 67.90 77.83

150 78.46 77.86 73.22

175 78.41 78.00 77.45

200 78.27 77.61 77.97

OpenOffice Presentation 25 81.20 81.08 81.28

50 81.20 81.31 80.85

75 80.85 80.47 79.94

100 80.55 78.92 73.79

125 80.17 79.39 78.39

150 81.17 79.27 79.15

175 80.29 79.65 72.94

200 80.52 79.30 72.62

OpenOffice Spreadsheet 25 81.09 81.03 81.13

50 81.16 81.13 80.74

75 80.84 80.48 80.36

100 80.46 80.53 80.32

125 80.86 80.38 80.90

150 80.48 70.11 79.89

175 80.27 75.44 80.53

200 80.73 80.63 80.71

656 Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663

123



of terms. SVM accuracy shows a very slow increment with

increase in number of terms. From Fig. 6 we see that K-NN

and NNET accuracy show a fluctuating behavior with

increase in number of terms. SVM accuracy shows an

invariant behavior with increase in number of terms.

The accuracy trends with varying number of terms show

that the globally distributed users of open source software

use a set of technical terms (words) related with software to

report a bug. This set of prominent terms is fixed and is not

very large in open source software. For some software it’s

of 25 terms only and adding more terms to this will not

show improvement in accuracy. This shows that bug

reporting follows a systematic approach in open source

software.

For SVM classifier in Eclipse version 2 dataset, P1 class

precision increased from 34.62 to 46.88 % for 25 to 75

terms and after that it starts decreasing for 100 to 200

terms. For P2 class, precision increases from 14.29 to

26.79 % for 25 to 75 terms, then it starts decreasing and

again increases to maximum value i.e., 27.03 % at 175

terms. Precision of P3 class increases from 74.94 to

75.24 % till 100 terms and then starts decreasing with

increase in number of terms. Precision increases from

65.45 to 72.55 % till 75 terms in case of P4 class. P5 class

precision increases from 0.00 to 54.55 % for 25 to 75

terms, after that it decreases. In case of Eclipse version 3

dataset, P1 class precision increased from 0.00 to 73.33 %

for 25 to 125 terms and after that it starts decreasing for

Fig. 2 Accuracy measure for Eclipse Ver2

Fig. 3 Accuracy measure for Eclipse Ver3

Fig. 4 Accuracy measure for Database access

Fig. 5 Accuracy measure for Presentation

Fig. 6 Accuracy measure for Spreadsheet

Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663 657

123



150 to 200 terms. For P2 class, precision increases to

17.65 % at 100 terms and then fluctuates and reaches to

18.75 % for 200 terms. Precision of P3 class increases from

93.81 to 93.90 % till 100 terms and then starts fluctuating

with increase in number of terms. Precision increases from

55.88 to 58.33 % till 100 terms in case of P4 class. P5 class

precision, increases from 0.00 to 50.00 % for 25 to 75

terms, then it fluctuates.

In case of OpenOffice Database Access dataset, P1 class

precision increased from 75.00 to 87.50 % for 75 terms and

after that it starts fluctuating. For P2 class, maximum

precision is 61.04 % at 75 terms. Precision of P3 class

increases to 78.88 % till 75 terms. Precision increases to

57.14 % till 200 terms in case of P4 class. P5 class pre-

cision, increases from 0.00 to 20.00 % for 50 terms. In case

of OpenOffice Spreadsheet dataset, P1 class precision

increased to 62.50 % for 75 terms and after that it fluctu-

ates. For P2 class, maximum precision is 73.44 % at 25

terms. Precision of P3 class increases to 81.51 % till 200

terms. Precision increases to 83.33 % till 200 terms in case

of P4 class. P5 class precision, increases to 57.14 % for

175 terms. In case of OpenOffice Presentation dataset, P1

class maximum precision is 83.33 % for 25 terms and after

that it fluctuates. For P2 class, maximum precision is

69.84 % at 150 terms. Precision of P3 class increases to

80.88 % till 50 terms. Precision increases to 66.67 % till 50

terms in case of P4 class. P5 class precision remains

0.00 % for all number of terms.

For 5 different priority classes and 5 datasets we

have 25 maximum precision values. Out of which, for

P5 class, in one case precision value remains 0 for all

the number of terms. 18 cases of maximum precision

we get for range of 25 to 100 terms and 6 cases for

range of 125 to 200 terms. This concludes that 25 to

100 terms are sufficient to get the maximum precision

for a class.

In case of Eclipse version 2 dataset, P1 class f-measure,

increased from 1.91 to 6.63 % for 25 to 100 terms and after

that it starts decreasing for 125 to 200 terms. For P2 class,

f-measure increases from 0.41 to 2.68 % for 25 to 175

terms. F-measure of P3 class increases from 85.52 to

85.55 % till 75 terms and then starts decreasing with

increase in number of terms. F-measure increases from

16.94 to 17.58 % till 75 terms in case of P4 class. P5 class

f-measure increases from 0.00 to 5.74 % for 25 to 100

terms, after that it decreases. In case of Eclipse version 3

dataset, P1 class f-measure increased from 0.00 to 6.29 %

for 25 to 100 terms and after that it starts decreasing for

125 to 200 terms. For P2 class, f-measure increases from

0.00 to 1.20 % at 100 terms. F-measure of P3 class is

96.76 % at 25 terms and then starts fluctuating with

increase in number of terms. F-measure increases from

10.74 to 14.08 % till 200 terms in case of P4 class. P5 class

f-measure, increases from 0.00 to 9.34 % for 25 to 100

terms, after that it fluctuates. In case of OpenOffice

Database Access dataset, P1 class f-measure is 31.25 % at

25 terms and after that it starts fluctuating. For P2 class,

maximum f-measure is 17.13 % at 25 terms. F-measure of

P3 class increases to 87.72 % till 100 terms. F-measure

increases to 6.22 % till 200 terms in case of P4 class. P5

class f-measure is 4.65 % for 25 terms. In case of

OpenOffice Spreadsheet dataset, P1 class f-measure

increased to 11.12 % for 75 terms and after that it fluctu-

ates. For P2 class, maximum f-measure is 17.96 % at 100

terms. F-measure of P3 class increases to 89.48 % till 200

terms. F-measure increases to 9.35 % till 200 terms in case

of P4 class. P5 class f-measure, increases to 6.61 % for 175

terms. In case of OpenOffice Presentation dataset, P1 class

maximum f-measure is 24.66 % for 100 terms and after

that it fluctuates. For P2 class, maximum f-measure is

28.61 % at 50 terms. F-measure of P3 class increases to

88.91 % till 175 terms. F-measure increases to 4.30 % till

50 terms in case of P4 class. P5 class f-measure remains

0.00 % for all number of terms.

18 cases of maximum f-measure we get for range of

25 to 100 terms and 6 cases for range of 125 to 200

terms. This concludes that 25 to 100 terms are suf-

ficient to get the maximum f-measure for a class.

For K-NN classifier precision increases with increase in

value of K from 1 to 5 and decreases with increase in

number of terms from 25 to 200 across all datasets.

F-measure shows fluctuating behavior with increase in

number of terms, but shows an increasing trend for increase

in value of K from 1 to 5. Maximum F-measure for P3

class is 85.16 for K = 5 and 25 terms. For value of K equal

to 4 and 5, we got maximum highest values of precision

and F-measures with less number of terms.

For Neural Network classifier, precision increases with

increase in number of terms in most of the cases. Highest

precision for Eclipse version 2 is 39.29, 36.36, 75.26, 73.47

and 50 % for P1 to P5 class. Highest precision for Eclipse

version 3 is 40.00, 16.67, 93.86, 62.50 and 0 % for P1 to P5

class. Precision for OpenOffice Database Access is 100.00,

64.18, 82.12, 100 and 0 % for P1 to P5 class. Precision for

OpenOffice Spreadsheet is 63.64, 53.33, 82.60, 100 and

20 % for P1 to P5 priority level. Highest precision for

OpenOffice Presentation is 100.00, 60.80, 85.52, 50 and

0 % for P1 to P5 priority level. We get highest precision,

recall and f-measure for P3 class.

For NB classifier in eclipse version 2 dataset, P1 class

maximum precision is 20.40 % at 50 terms. For P2 class,

precision is 26.68 % for 50 terms. Precision of P3 class is

89.33 % at 75 terms. Precision is 8.21 % at 25 terms in

case of P4 class. P5 class precision increases from 2.35 to

658 Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663

123



2.72 % for 25 to 100 terms, after that it decreases. In case

of Eclipse version 3 dataset, P1 class maximum precision is

2.56 % at 200 terms. For P2 class, precision is 12.48 % for

150 terms. Precision of P3 class is 98.33 % at 75 terms.

Precision is 8.91 % at 25 terms in case of P4 class. P5 class

precision increases from 0.52 to 0.66 % for 25 to 200

terms. In case of OpenOffice Database Access dataset, P1

class maximum precision is 19.39 % at 25 terms. For P2

class, precision is 36.94 % for 25 terms. Precision of P3

class is 93.36 % at 100 terms. Precision is 18.46 % at 100

terms in case of P4 class. P5 class precision increases from

1.11 to 1.25 % for 25 to 125 terms. In case of OpenOffice

Spreadsheet dataset, P1 class maximum precision is 5.15 %

at 25 terms. For P2 class, precision is 34.08 % for 50 terms.

Precision of P3 class is 89.66 % at 150 terms. Precision is

34.04 % at 25 terms in case of P4 class. P5 class precision

increases from 2.35 to 3.33 % for 25 to 200 terms. In case

of OpenOffice Presentation dataset, P1 class maximum

precision is 7.07 % at 50 terms. For P2 class, precision is

50.00 % for 25 terms. Precision of P3 class is 91.51 % at

75 terms. Precision is 4.71 % at 75 terms in case of P4

class. P5 class precision increases from 1.15 to 1.41 % for

25 to 100 terms.

19 cases of maximum precision we get for range of 25

to 100 terms and 6 cases for range of 125 to 200

terms. This concludes that 25 to 100 terms are suf-

ficient to get the maximum precision for a class.

For NB, in case of Eclipse version 2 dataset, class P1

f-measure, is 24.90 % at 75 terms. For P2 class, f-measure

is 8.48 % for 100 terms. F-measure of P3 class is 7.74 % at

200 terms. F-measure is 12.72 % for 75 terms in case of P4

class. P5 class f-measure increases from 2.35 to 5.25 % for

25 to 100 terms, after that it decreases. In case of Eclipse

version 3 dataset, P1 class f-measure, is 4.73 % at 200

terms. For P2 class, f-measure is 11.48 % for 175 terms.

F-measure of P3 class is 11.82 % at 200 terms. F-measure

is 13.77 % for 25 terms in case of P4 class. P5 class

f-measure increases from 0.52 to 1.31 % for 25 to 100

terms, after that it decreases. In case of OpenOffice Data-

base Access dataset, P1 class f-measure, is 26.55 % at 25

terms. For P2 class, f-measure is 24.75 % for 150 terms.

F-measure of P3 class is 19.74 % at 200 terms. F-measure

is 23.55 % for 100 terms in case of P4 class. P5 class

f-measure increases from 1.11 to 2.44 % for 25 to 125

terms, after that it decreases. In case of OpenOffice

Spreadsheet dataset, P1 class f-measure, is 8.58 % at 25

terms. For P2 class, f-measure is 31.26 % for 200 terms.

F-measure of P3 class is 9.94 % at 200 terms. F-measure is

19.59 % for 150 terms in case of P4 class. P5 class

f-measure increases from 2.35 to 6.08 % for 25 to 200

terms. In case of OpenOffice Presentation dataset, P1 class

f-measure is 12.10 % at 75 terms. For P2 class, f-measure

is 31.89 % for 100 terms. F-measure of P3 class is 7.74 %

at 200 terms. F-measure is 7.26 % for 100 terms in case of

P4 class. P5 class f-measure increases from 1.15 to 2.76 %

for 25 to 100 terms, after that it decreases.

12 cases of maximum f-measure we get for range of

25 to 100 terms and 13 cases for range of 125 to 200

terms. This concludes that 125 to 200 terms are

sufficient to get the maximum f-measure.

A Graphical presentation for performance of the dif-

ferent classifiers across all datasets on the basis of f-mea-

sure has been shown in Fig. 7.

We have counted maximum F-measures for each pri-

ority class for each technique. After adding all these values

Table 5 Accuracy (in %) of cross validated projects

Training vs. testing dataset SVM K-NN NNET Naive Bayes

V2 vs. V3 92.05 90.38 93.60 3.66

V2 vs. DB 77.07 76.03 77.23 3.55

V2 vs. SST 79.77 79.27 80.23 4.94

V2 vs. PPT 77.84 77.14 78.02 4.29

DB vs. V2 74.30 73.00 74.05 8.00

SST vs. V2 74.47 72.92 74.51 9.57

PPT vs. V2 74.25 73.28 74.43 8.07

V3 vs. DB 77.26 77.37 77.37 3.52

V3 vs. SST 80.32 80.32 80.34 4.85

V3 vs. PPT 78.28 78.34 80.23 5.51

DB vs. V3 93.44 90.94 93.37 6.28

SST vs. V3 93.55 91.32 93.73 4.79

PPT vs. V3 93.45 91.70 93.56 7.13

DB vs. SST 79.64 78.83 79.87 10.15

SST vs. DB 77.04 77.04 77.15 6.42

PPT vs. DB 77.01 77.10 76.90 13.43

DB vs. PPT 77.96 78.31 75.23 9.18

SST vs. PPT 77.96 78.51 78.28 9.18

PPT vs. SST 79.52 79.50 79.69 11.24

Fig. 7 Classifiers performance using f-measure

Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663 659

123



for each technique, we plotted the graph for f-measure.

Result shows that performance in terms of f-measure is 41,

29, 24 and 6 % for SVM, NNET, NB and K-NN

respectively.

In answer of research question 2, we have concluded

that 100 top terms are sufficient to get optimum per-

formance in terms of accuracy, precision and f-mea-

sure across all machine learning techniques. We found

that for K = 5 for K-NN and 100 training cycles for

Neural Network we get optimum performance.

Scenario 2 From scenario 1 we concluded that K-NN

and NNET give optimum results for K = 5 and training

cycles = 100. So, we ran Scenario 2 for these values.

Table 5 summarizes accuracy for cross project priority

prediction for 4 different techniques.

Cross project validation for Eclipse version 2 as training

set and version 3 as testing set gives 90.38, 92.05 and

93.60 % accuracy for K-NN (K = 5), SVM and Neural

Network with 100 terms. It is clear from the empirical

evidence that cross validation works well within same

domain. We also found that cross project validation is

bidirectional with accuracy above 72 %.

In answer of the research question 3, we concluded that

cross project validation across domain gives accuracy

above 72 % for SVM, K-NN and Neural Network. We

found that cross projects validation working well with

significant accuracy in priority prediction.

The value of f-measure for machine learning techniques

namely SVM, K-NN, Neural Network and NB varies in the

range of 85.25 to 96.67, 84.49 to 95.69, 84.97 to 96.76 and

0.83 to 5.21 % across all datasets for priority level 3. Due

to insufficient number of reports in case of priority level 1,

2, 4 and 5 we are not getting desired performance of dif-

ferent machine learning techniques. This is one of the

problems in multi-class prediction.

Scenario 3 Table 6, 7, 8, 9 summarize the accuracy for

different training candidates for the studied learning techniques.

From these tables, the accuracy of V3 dataset has been

found more than 90 % in all the techniques except NB

classifier irrespective of the training datasets.

Table 6 Accuracy (in %) of SVM model in different datasets

Training dataset Testing dataset

V2 V3 DB PPT SST

V2 – 92.05 77.07 77.84 79.77

V3 74.32 – 77.26 78.28 80.32

DB 74.30 93.44 – 77.96 79.64

PPT 74.25 93.45 77.01 – 79.52

SST 74.48 93.55 77.04 77.96 –

V2 ? V3 – – 77.37 77.35 80.04

V2 ? DB – 93.12 – 78.08 80.02

V2 ? PPT – 93.26 77.07 – 79.77

V2 ? SST – 93.13 76.74 78.05 –

V3 ? DB 74.44 – – 78.05 80.23

V3 ? PPT 74.37 – 77.26 – 79.96

V3 ? SST 74.44 – 77.31 77.99 –

DB ? PPT 73.95 93.38 – – 79.68

DB ? SST 74.13 93.58 – 77.61 –

PPT ? SST 74.05 93.32 76.49 – –

V2 ? V3 ? DB – – – 78.22 80.23

V2 ? V3 ? PPT – – 77.20 – 80.19

V2 ? V3 ? SST – – 77.29 77.90 –

V2 ? DB ? PPT – 93.19 – – 80.06

V2 ? DB ? SST – 93.36 – 78.10 –

V2 ? PPT ? SST – 93.19 77.04 – –

V3 ? DB ? PPT 74.45 – – – 80.06

V3 ? DB ? SST 74.32 – – 78.25 –

V3 ? PPT ? SST 74.37 – 76.82 – –

DB ? PPT ? SST 73.89 93.44 – – –

Table 7 Accuracy (in %) of K-NN model in different datasets

Training dataset Testing dataset

V2 V3 DB PPT SST

V2 – 90.38 76.03 77.14 79.27

V3 74.53 – 77.37 78.31 80.32

DB 73.00 90.94 – 78.31 78.83

PPT 73.28 91.70 77.10 – 79.50

SST 72.92 91.32 77.04 78.51 –

V2 ? V3 – – 77.23 78.31 80.34

V2 ? DB – 93.22 – 77.67 79.98

V2 ? PPT – 93.24 77.07 – 80.00

V2 ? SST – 93.35 77.10 77.93 –

V3 ? DB 74.52 – – 78.22 80.34

V3 ? PPT 74.52 – 77.29 – 80.06

V3 ? SST 74.50 – 77.18 78.40 –

DB ? PPT 73.77 93.33 – – 79.66

DB ? SST 73.63 93.41 – 77.35 –

PPT ? SST 73.95 93.60 77.20 – –

V2 ? V3 ? DB – – – 78.31 80.42

V2 ? V3 ? PPT – – 77.34 – 80.04

V2 ? V3 ? SST – – 77.37 78.37 –

V2 ? DB ? PPT – 93.15 – – 80.13

V2 ? DB ? SST – 93.29 – 78.10 –

V2 ? PPT ? SST – 93.37 77.37 – –

V3 ? DB ? PPT 74.56 – – – 80.23

V3 ? DB ? SST 74.53 – – 78.25 –

V3 ? PPT ? SST 74.53 – 77.23 – –

DB ? PPT ? SST 73.93 93.50 – – –

660 Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663

123



In answer of the research question 4, we conclude

that for combined training datasets we get accuracy

which is above 73 % for all cases which is not a

significant improvement over single training dataset.

In NB we are getting very low accuracy.

The value of f-measure for machine learning techniques

namely SVM, K-NN, Neural Network and NB varies in the

range of 85.08 to 96.68, 84.92 to 96.70, 85.18 to 96.77 and

0.00 to 1.27 % across all data sets for priority level 3. Due to

insufficient number of reports in case of priority level 1, 2, 4

and 5 we are not getting desired performance of different

machine learning techniques. This is one of the problems in

multi-class prediction where we have imbalance data sets.

7 Threats to validity

Following are the factors that affect the validity of our

approach:

7.1 Construct validity

The accuracy of classifier depends on the summary text; if

summary does not contain appropriate terms to be learned

then the result will be in wrongly predicted class. Number of

bug reports in P3 class is more than number of bug reports in

other classes. This makes classifier biased towards P3 class.

7.2 Internal validity

We have only taken summary feature of bug report. Other

features can also be considered for prediction.

7.3 External validity

We have considered Eclipse and OpenOffice projects

which are open source. We can consider closed source

software also.

Table 8 Accuracy (in %) of NB Model in different datasets

Training dataset Testing dataset

V2 V3 DB PPT SST

V2 – 3.66 3.55 4.29 4.94

V3 2.11 – 3.52 5.51 4.85

DB 8.00 6.28 – 9.18 10.15

PPT 8.07 7.13 13.43 – 11.24

SST 9.57 4.79 6.42 9.18 –

V2 ? V3 – – 1.20 1.08 2.27

V2 ? DB – 0.51 – 1.14 2.44

V2 ? PPT – 0.51 1.17 – 2.35

V2 ? SST – 0.49 1.45 1.14 –

V3 ? DB 2.65 – – 1.22 2.40

V3 ? PPT 3.25 – 6.61 – 6.18

V3 ? SST 2.10 – 6.50 1.22 –

DB ? PPT 2.23 0.51 – – 3.26

DB ? SST 7.92 1.30 – 2.39 –

PPT ? SST 2.24 0.51 2.10 –

V2 ? V3 ? DB – – – 1.52 2.39

V2 ? V3 ? PPT – – 1.56 – 2.33

V2 ? V3 ? SST – – 2.32 1.49 –

V2 ? DB ? PPT – 0.59 – – 6.11

V2 ? DB ? SST – 0.50 – 2.36 –

V2 ? PPT ? SST – 0.51 1.39 – –

V3 ? DB ? PPT 2.07 – – – 6.26

V3 ? DB ? SST 7.99 – – 1.72 –

V3 ? PPT ? SST 2.07 – 1.50 – –

DB ? PPT ? SST 2.31 0.62 – – –

Table 9 Accuracy (in %) of NNET model in different datasets

Training dataset Testing dataset

V2 V3 DB PPT SST

V2 – 93.60 77.23 78.02 80.23

V3 74.56 – 77.37 80.23 80.34

DB 74.05 93.37 – 75.23 79.87

PPT 74.43 93.56 76.90 – 79.69

SST 74.51 93.73 77.15 78.28 –

V2 ? V3 – – 77.37 78.37 80.34

V2 ? DB – 93.74 – 78.37 80.34

V2 ? PPT – 93.74 77.37 – 80.34

V2 ? SST – 93.73 77.37 78.37 –

V3 ? DB 74.43 – – 78.16 80.29

V3 ? PPT 74.54 – 77.29 – 80.34

V3 ? SST 74.50 – 77.37 78.37 –

DB ? PPT 74.09 93.53 – – 79.71

DB ? SST 74.44 93.66 – 77.90 –

PPT ? SST 74.54 93.73 77.29 – –

V2 ? V3 ? DB – – – 78.37 80.34

V2 ? V3 ? PPT – – 77.37 – 80.34

V2 ? V3 ? SST – – 77.37 78.37 –

V2 ? DB ? PPT – 93.74 – – 80.34

V2 ? DB ? SST – 93.71 – 78.37 –

V2 ? PPT ? SST – 93.74 77.37 – –

V3 ? DB ? PPT 74.54 – – – 80.32

V3 ? DB ? SST 74.56 – – 78.37 –

V3 ? PPT ? SST 74.54 – 77.37 – –

DB ? PPT ? SST 74.52 93.71 – – –

– shows that no validation has been done because testing dataset is

already a part of training dataset and it will lead a biased result

Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663 661

123



7.4 Reliability

Rapid Miner (http://www.rapid-i.com/) tool has been used

in this paper for data pre-processing, model building and

tenfold cross validation. The increasing use of Rapid Miner

tool in data mining community confirms the reliability of

the tool.

8 Conclusion

In response to the Scenario 1 and subsequent experimental

setup, following conclusions have been drawn with the

variation of number of terms from 25 to 200:

• SVM, Neural Network and K-NN techniques are

applicable to predict the priority level of reported bug

in open source projects.

• SVM and Neural Network give overall higher accuracy

in comparison of K-NN and Naive Bayes for all datasets.

• SVM performance in terms of accuracy had no

significant improvement with increase in number of

terms.

• SVM performance in terms of precision and f-measure

slightly improved by increasing the number of terms

from 25 to 100.We found fewer cases of increase in

range of 125 to 200 terms.

• K-NN performance in terms of accuracy, precision and

f-measure slightly decreased by increasing the number

of terms from 25 to 200 and increased by increasing the

value of K from 1 to 5.

• NB performance in terms of accuracy increases with

increase in number of terms from 25 to 200. Its precision

increases in range of 25 to 100 terms. We found fewer

cases of increase in range of 125 to 200 terms.

• Neural Network gives higher accuracy for 100 training

cycles, which decreases with increase in training cycles

in almost all cases. We get highest precision, recall and

f-measure for P3 priority level.

• Recall of SVM is high for class having large number of

reports and low for class having less number of reports.

Whereas in Naive Bayes, recall is high for class having

less number of reports and low for class having large

number of reports.

• Machine learning techniques performed well in terms

of precision only in case of priority level 3 due the fact

that it has sufficient number of bug reports.

• The value of performance measure, precision has

shown significant improvement with increase in num-

ber of reports across all the techniques. The value of

precision increases from 25 to 100 terms, after that it

starts decreasing with increase in number of terms.

• Automation of bug triage by using priority prediction

will save time and resources. It will help in solving

higher priority bugs within given time period.

• We found that the SVM and Neural Network are better

than K-NN and K-NN is better than NB.

In response to the Scenario 2 and subsequent experi-

mental setup, following conclusions have been drawn:

• The accuracy in cross project context is better than

within project.

• Cross project validation for different cases are working

with accuracy level more than 72 % except for NB

learner.

Finally we concluded that historical data of other pro-

jects developed in open source environment is better pri-

ority predictor and priority prediction in cross project

context is working well.

As a result of scenario 3, we found that combined

training datasets from other projects for training working

well but does not show significant improvement over single

training data set. In the non-availability of historical data,

combined training datasets from other projects provide an

acceptable performance. In our case we get accuracy above

73 % for all cases except NB learner.

In future, we will work on the following agendas:

• The current empirical study can be carried out on more

open source and closed source projects to validate

priority predictions in cross project context.

• The study can be extended to determine the optimum

number of bug reports as well as optimum number of

features/terms required to get the best performance.

• Impact of imbalance data on performance of the

classifier can be considered.

• Training data selection method used in this paper gives

an exponential increase in training datasets to be

considered to find best one. We will try to find a

similarity measure between training and testing projects

using fuzzy logic.

References

Anvik J (2006) Automating bug report assignment. In: Proceedings of

the 28th International Conference on Software Engineering,

Shanghai, China, pp 937–940

Anvik J, Murphy GC (2011) Reducing the effort of bug report triage:

Recommenders for development-oriented decisions. ACM

Transact Softw Eng Methodol 20(3):10

Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In:

Proceedings of the 28th International conference on Software

Engineering, Shanghai, China, pp 361–370

662 Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663

123

http://www.rapid-i.com/


Canfora G, Cerulo L (2006) Supporting change request assignment in

open source development. In: Proceedings of the ACM Sympo-

sium on Applied Computing, Dijon, France, pp 1767–1772

Chaturvedi KK, Singh VB (2012) Determining bug severity using

machine learning techniques. In: Proceedings of the International

Conference on Software Engineering (CONSEG), Indore, India,

pp 378–387

Denil M, Trappenberg T (2010) Overlap versus Imbalance. In:

Proceedings of the 23rd Canadian Conference on Advances in

Artificial Intelligence, Springer, Verlag Berlin, Heidelberg,

pp 220–231

He Z, Shu F, Yang Y, Li M, Wang Q (2012) An investigation on the

feasibility of cross-project defect prediction. In: Automated

Software Engineering, pp 167–199

Kanwal J, Maqbool O (2010) Managing open bug repositories

through bug report prioritization using SVMs. In: Proceedings of

the International Conference on Open-Source Systems and

Technologies, Lahore, Pakistan

Kanwal J, Maqbool O (2012) Bug prioritization to facilitate bug

report triage. J Comput Sci Technol 27(2):397–412

Kim S, Whitehead J (2006) How long did it take to fix bugs? In:

Proceedings of the International Workshop on Mining Software

Repositories, Shanghai, China, pp 173–174

Lamkanfi A, Demeyer S, Gigery E, Goethals B (2010) Predicting the

severity of a reported bug. In: Proceedings of the 7th Working

Conference on Mining Software Repositories, Cape Town, South

Africa, pp 1–10

Marks L, Zou YA, Hassan E (2011) Studying the fix-time for bugs in

large open source projects. In: Proceedings of the 7th Interna-

tional Conference on Predictive Models in Software Engineer-

ing, Banff, Article No. 11

Menzies T, Marcus A (2008) Automated severity assessment of

software defect reports. In: Proceedings of the International

Conference on Software Maintenance, IEEE, pp 346–355

Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006)

YALE: Rapid Prototyping for Complex Data Mining Tasks. In:

Proceedings of the 12th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining (KDD-06).

http://www.rapid-i.com

Porter M (2008) An algorithm for suffix stripping. Program

14(3):130–137

Sharma M, Bedi P, Chaturvedi KK, Singh VB (2012) Predicting the

priority of a reported bug using machine learning techniques and

cross project validation. In: Proceedings of the 12th International

Conference on Intelligent Systems Design and Applications

(ISDA) Kochi, India, pp 539–545

Sharma M, Kumari M, Singh VB (2013) Understanding the meaning

of bug attributes and prediction models. In: Proceedings of the

5th IBM Collaborative Academia Research Exchange Work-

shop, I-CARE 2013, Article No. 15, ACM, New York, USA

Tamrawi A, Nguyen T, Al-Kofahi J, Nguyen TN (2011) Fuzzy set

based automatic bug triaging. In: Proceedings of the 33rd

International conference on Software Engineering (NIER Track),

Miami, USA, pp 884–887

Turhan B, Menzies T, Bener AB, Stefano JD (2009) On the relative

value of cross-company and within-company data for defect

prediction. Empir Softw Eng. doi:10.1007/s10664-008-9103-7

Weib C, Premraj R, Zimmermann T, Zeller A (2007) Predicting effort

to fix software bugs. In: Proceedings of the Workshop on

Software Reengineering, Bad Honnef, Germany

Yu L, Tsai W, Zhao W, Wu F (2010) Predicting defect priority based

on neural networks. In: Proceedings of the 6th International

Conference on Advanced Data Mining and Applications,

Wuhan, China, pp 356–367

Zimmermann T, Nagappan N, Gall H (2009) Cross-project defect

prediction: a large scale experiment on data vs. domain vs.

process. In: Proceedings of the 7th Joint Meeting of the

European Software Enginnering Conference and the ACM

SIGSOFT Symposium on The Foundations of Software Engi-

neering, pp 91–100

Int J Syst Assur Eng Manag (Oct-Dec 2014) 5(4):651–663 663

123

http://www.rapid-i.com
http://dx.doi.org/10.1007/s10664-008-9103-7

	An empirical evaluation of cross project priority prediction
	Abstract
	Introduction
	Related work
	Preprocessing and representation of data
	Tokenization
	Stop word removal
	Stemming to base stem
	Feature reduction
	Weight by information gain or infogain

	Dataset and feature selection
	Experimental setup
	Results and discussion
	Threats to validity
	Construct validity
	Internal validity
	External validity
	Reliability

	Conclusion
	References


